Cognitive OpenlLS Specification

Stefan Hansen, Alexander Klippel, Kai-Florian Richter

°
TSPATIAI. COGNITION

SFB/TR 8 Report No. 012-10/2006

Report Series of the Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition
Universitat Bremen / Universitat Freiburg

Contact Address:

Dr. Thomas Barkowsky
SFB/TR 8

Universitat Bremen
P.O.Box 330 440

28334 Bremen, Germany

© 2006 SFB/TR 8 Spatial Cognition

Tel +49-421-218-64233

Fax +49-421-218-98-64233
barkowsky@sfbtr8.uni-bremen.de
www.sfbtr8.uni-bremen.de

CocNITIVE OPENLS
SPECIFICATION

October 18, 2006

Stefan Hansen,
CRC-Spatial Information, University of Melbourne / LISAsoft, Melbourne
Alexander Klippel,
CRC-Spatial Information, Department of Geomatics, University of Melbourne
Kai-Florian Richter,
Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition,
Universitat Bremen

Acknowledgements

This work results from a diploma thesis at Universitdt Bremen that has been
jointly supervised by the Universities Bremen and Melbourne and is based on
ongoing research at both sites. Cognitive OpenLS is currently being imple-
mented at Spatial Information Systems Ltd. / LISASoft, Melbourne.

This work has been supported by the Transregional Collaborative Research
Center SFB/TR 8 Spatial Cognition, which is funded by the Deutsche For-
schungsgemeinschaft (DFG), and by the Cooperative Research Centre for Spa-
tial Information, whose activities are funded by the Australian Commonwealth’s
Cooperative Research Centres Programme. OpenLS is a trademark of the Open
Geospatial Consortium.

Contents

1 Introduction

2 OpenLS
2.1 The OpenLS framework
XML for location services
2.1.2 The OpenLS services
Route directions with OpenLS
Route directions in the route service
2.2.2 Route directions in the Navigation Service
Data structure of the Navigation Service
NavigationResponse
Structure of the route directions
Data type of a single instruction
ManeuverType: Extending the AbstractManeuverType

2.2

2.3

2.1.1

2.2.1

2.3.1
2.3.2
2.3.3

234

3 Cognitive OpenlLS

3.1 Approach
Cognitively ergonomic route directions
3.1.2 Additional Features
3.1.3 Technical realisation
Extending RouteManeuverList
XStartingManeuverType,
3.2.2 XEndManeuverType
XManeuverType .
Deriving from AbstractManeuverType
3.3.2 Replacing NextSegment by CurrentSegment
Making route directions more precise
Direction model
3.4.2 Naming the structure
3.4.3 Types representing intersections
Integration of landmarks in OpenLS
AbstractLandmarkType
3.5.2 Landmarks for orientation at Start and End Point
3.5.3 AbstractNElementLMType
3.5.4 AbstractlElementLMType
3.5.5 Description of Landmarks
Chunking Route Directions

3.2

3.3

3.4

3.5

3.6

3.1.1

3.2.1

3.3.1

3.4.1

3.5.1

3.6.1

ChunkType

10
10
11
11
12
12
12
13
14

23
23
23
24
24
24
25
26
28
28
29
30
30
31
31
34
34
34
36
37
40
41
42

Contents

3.6.2 AbstractChunkElement 44

4 Examples of Cognitive OpenlLS 47
4.1 Example 1: A complete route, 47
4.2 Example 2: Spatial chunking 52
4.3 Example 3: Competing branches 55

5 Schema 57

List

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8
3.9

3.10

4.1

4.2

4.3

of Figures

Data structure of a list of route maneuvers in OpenLS.
Data structure of an abstract route maneuver in OpenLS.
List of possible actions described in a route direction of OpenLS.
Categories of intersections in Openl.S.
Possible directional changes in Openl.S.
Data structure of an extended route maneuver in OpenLS.

Diagram of the extended data structure of a route maneuver list.
This figure depicts the assumed position of the wayfinder at the
start of a route. To follow the route the wayfinder has to turn

The extended data structure of a route maneuver.
List of possible types of intersections.
Data structure of the different types of intersections.
Data structure representing n—FElements landmarks, Starting-

PointLMType and EndPointLMType.
Data structure representing 1-FElement landmarks.
Possible spatial relations between a point—landmark and a deci-

sion point.
Data Structure supporting Chunking.

Map of the route in example 1 from Ronzelenstrasse 18, 28359
Bremen to Berckstrasse 10, 28359 Bremen. Based on map from
www.uk.map24.com from March 2006.
Map of the route in example 2. It is based on a map provided
by www.de.map24.com in March 2006.
Map of the route in example 3. It is based on a map provided
by www.de.map24.com in March 2006.

48

1 Introduction

Research on wayfinding and route directions in psychology, linguistics, and cog-
nitive science provides ample evidence for principles of good route directions
(e.g., [4, 15]). By analyzing human route directions those principles can be
extracted that are most successful, in opposition to simply mimic human route
direction. In this report we combine existing approaches and our own research.
We identified the following three principles that we consider essential for cog-
nitively ergonomic route directions (cf. [7]; see also [13, 19]):

e Making direction concepts more precise: depending on the spatial
structure of a decision point, describing the action to be performed may
differ [10, 11, 14]. For example, a change in direction usually described as
“veer right” might turn to “fork right” given that the road ahead forks to
the left and right (i.e. there are two possible branches to take, one heading
off to the left, one to the right at approximately 45 degrees).

e References to landmarks: landmarks are crucial for good route di-
rections [4, 5, 17]. They are used, among others, to identify decision
points, to link actions to be performed to decision points, and to provide
confirmation information that the correct route is still followed.

e Subsuming route directions: subsuming several directions for individ-
ual decision points into one higher order direction covering a sequence of
decision points with a single instruction is the third important principle of
cognitive ergonomic route directions [3, 12]. Examples of instructions em-
ploying this spatial chunking [12] are “turn left at the third intersection”
and “follow the river until the gas station.”

These principles need to be transformed into an adequate data structure to
be able to represent the required information for automatically generating cog-
nitively ergonomic route directions. With the Navigation Service the OpenLS
specification [16, 1] developed by the Open Geospatial Consortium [18] offers
exactly the functionality required for this purpose. This service provides a client
with the data necessary to generate route directions.

In this document, we present the specification of Cognitive OpenLS, a data
structure that captures these principles, which is based on the OpenLS spec-
ification. More details on the motivation, the empricial and computational
justification, and the general approach of this line of research can be found
elsewhere in our publications, for example, in [7, 10, 14, 19]. In this document,
we focus on the data structure itself, i.e. on the XML-specification of Cognitive
OpenLS.

The document is structured as follows: in the next chapter we introduce
the organization of OpenLS as defined by the OGC. Chapter 3 details how

CHAPTER 1. INTRODUCTION

the cognitive principles required for cognitive ergonomic route directions are
integrated in the OpenLS specification, i.e. presents our extension to OpenLS;
Chapter 4 shows some examples of specifying wayfinding situations using Cog-
nitive OpenLS. Chapter 5 then lists the XML schema that defines Cognitive
OpenLS.

2 OpenlLS

In this chapter, we detail the OpenLS specification as provided by the OGC
and its functionality. Generally, our work aims at integrating cognitive er-
gonomics and automatically generated route directions. The Open Location
Services specification [16, 1] offers an open interface to a location based server.
Extending this approach with the aspects of spatial cognition as discussed in
Chapter 1, allows for specifying a system capable of providing automatically
generated route directions that adhere to principles of cognitive ergonomics.

2.1 The OpenLS framework

Location based services are usually provided over a network, which offer users
information depending on their current location. The functionalities available
are primarily designed to meet the requirements of mobile devices, which are
assumed to be used for accessing the services. Examples for these services are
providing the address of a user’s current location (reverse geocode services),
points of interest in the closer environment (directory services), or navigation
and routing information (route or navigation services).

Location based services are often regarded as one of the main applications
in mobile networks. Therefore, the Open Geospatial Consortium proposed
an implementation specification, which describes the Open Location Services
(OpenLS), also known as the GeoMobility Server (GMS). This standard spec-
ifies an open platform for location based services. A Server implementing this
platform according to the specification can be accessed by any client that sup-
ports OpenLS.

The OpenLsS specification describes the basic services of a GMS (directory
service, gateway service, location utility service, presentation service, route ser-
vice), their basic functionality, the communication between client and server,
the abstract data types (ADTs) and the relationship of OpenLS to other spec-
ifications and standards. The provided services are described in Section 2.1.2.

The OpenLsS standard consists of a set of specifications of interfaces (defined
as XML schemas), which determine access to the basic services of such a server
and the abstract data types used in the documents that are exchanged between
server and client. OpenLS defines primarily the interaction between client and
server (request and response schemas) and the format in which the transfered
data is encoded. This way, the functionality a server implementing OpenLS has
to offer are already implicitly defined.

Since May 2005 OpenLS is available in version 1.1 with status final. Recently
the OGC has formed a group, which will develop the next version of the OpenLS
specification.

CHAPTER 2. OPENLS

2.1.1 XML for location services

The main part of the OpenLS specification comprises the definition of the XML-
based markup language XML for Location Services (XLS). The documents
defined as request and response schemas and exchanged in communication be-
tween client and a GMS are encoded in XLS.

XLS is a markup language defined in a XML-schema. It defines the structure
and application of the XML-documents, which are transfered as requests and
responses for the client/server interaction, and it specifies the abstract data
types (ADTs) (e.g., there is an ADT for an address, a location, a route) used
by the OpenLS services for encoding information. The ADTs representing
route directions are discussed later in more detail. These are extended with the
cognitive ergonomic aspects to become Cognitive OpenLsS.

2.1.2 The OpenlLS services

The basic service framework of a GeoMobility Server comprises the five so—
called core services. These services are described in [16]. In an additional
document [1], a sixth service, the Navigation Service, is specified. This Naviga-
tion Service does not belong to the core services. In the following section, the
functionality of these service is briefly described.

Core services

Part 1: Directory Service offers access to an online directory (such
as the Yellow Pages). It allows for finding a specific or a nearest place, a
requested product or service.

e Part 2: Gateway Service is an interface between a GMS and a Location
Server for requesting the location of one or more mobile devices.

e Part 3: Location Utility Service (Geocoder/Reverse Geocoder) re-
turns to a given position the complete normalized description of a feature
location (place name, street address, postal code) or given a feature loca-
tion (place, street or postal code) it provides the position and the complete
normalized description.

e Part 4: Presentation Service The Presentation Service portrays a map
based on any geographic information for display on a mobile terminal.

e Part 5: Route Service offers routes and additional navigation infor-
mation.

Navigation service

The Navigation Service is an enhanced version of the Route Service. It is
not part of the core services of the OpenLsS specification and is described in a
separate document [1].

10

2.2. ROUTE DIRECTIONS WITH OPENLS

The Navigation Service supports the same parameters as the Route Service
and thus, offers the same functionality. Additionally, it extends the Route Ser-
vice by adding special parameters for navigation purposes. This allows aclient
providing a user with more detailed and elaborate route directions. It intro-
duces a special data structure for route directions. The information encoded in
such ADTs can be used by OpenLS based applications to produce more specific
and appropriate route directions.

2.2 Route directions with OpenLS

The OpenLS specification offers two different possibilities for providing route
directions. The first is based on verbal instructions encoded as simple strings
and supported by both services dealing with routes, namely the Route Service
and the Navigation Service. The second possibility, which is only part of the
Navigation Service, provides for each instruction a complex object. This can
be used by a client to generate directions according to the user’s preferences.
In the following section, both methods are described in greater detail and their
advantages and disadvantages are discussed.

2.2.1 Route directions in the route service

The functionality of the Route Service focuses on calculating a route between
two or more points and presenting the requested route as an overlay over a
map of the surrounding environment. Therefore, it offers the subscriber several
parameters for specifying the characteristics of the route (e.g., different route
preferences like fastest, shortest or most scenic route). Additionally to this
overlay, the Route Service provides the user with simple route directions. A
single direction in the Route Service consists of:

e a string containing the instruction itself,

the geometry of the route elements, where the described action takes
place, encoded in GML,

a bounding box bordering the next area of interest,

the travel duration and

the actual length of the current route segment.

For more user specific route directions, subscribers can indicate their preferred
language. Optionally, the text-format of the directions can be set by a param-
eter. The default value is text/plain. Other options for setting this parameter
are not specified in the OpenLS standard.

The route directions of the Route Service provide only verbal instructions.
Multimodal directions including, for example, visualizations in form of pic-
tograms describing the required action can only be generated by the accessing

11

CHAPTER 2. OPENLS

application. They are not specificly supported by the transferred data. There-
fore, the given route directions are, as far as the verbal instructions are con-
cerned, not flexible at all and a client cannot adapt them according to cognitive
aspects.

The verbal instructions are generated on the server and transferred as an (ar-
bitrary) string. Based on this specification, it is not possible to decide whether
the provided route directions regard the aspects of cognitive ergonomic route
directions discussed in Chapter 1. Furthermore, encoding instructions in simple
strings might be sufficient for providing route directions respecting for some of
the cognitive ergonomic aspects. However, this way it is impossible to ensure
their integration in route directions presented to a user.

2.2.2 Route directions in the Navigation Service

The Navigation Service offers two possibilities of encoding route directions.
Since it provides all parameters and all functions which are available in the
Route Service, the first possibility is the verbal route directions described in the
previous section. The second possibility is the generation of complex objects
that describe each route direction in more detail.

The provided objects contain preprocessed information which are necessary
for generating route directions. This information needs to be further processed
by a client to be presentable to a human user. The application accessing this
service has to create its own route directions based on the provided data. The
advantage of transferring objects for each route direction rather than complete
instructions is that the client application can generate route directions that
regard the users’ individual preferences and the technical constraints of the
client system (e.g., display size or processing speed).

The parameters and information provided by the Navigation Service in an
XLS—element representing route directions are described in detail in the next
section. The abstract data types and information provided by elements of these
types are explained.

2.3 Data structure of the Navigation Service

As already mentioned, in OpenlLs communication between client and server
is realized as request and response pairs. In this section, we detail the data
structure and parameters of a Navigation Response. We focus on the elements
required to generate route directions on the client side.

2.3.1 NavigationResponse

For each service exists a request / response pair specified as a XML-schema. In
the following, alle elements of a NavigationResponse are explained. The focus
is placed on the response for a requested list of travel maneuvers.

12

2.3. DATA STRUCTURE OF THE NAVIGATION SERVICE

NavigateResponseType

The document containing a server’s answer to a requested navigation service
consists of a XLS-document containing the type NavigationRequestType. For
each requested feature of the Navigation Service it contains an element which
provides the appropriate information. A NavigateResponseType comprises spe-
cific elements containing the requested information and elements that are com-
mon for all types of responses (e.g., for error handling). All elements providing
the actual information are optional. This, for example, allows for transferring
only error codes in the case that an error occurred. The elements which are
specific for a Navigation Response are:

RouteHandle This optional element contains a reference to the requested route
on the server. It allows the client to request additional information about
the route or an alternate route.

RouteSummary In a RouteSummary the route’s overall characteristics are
specified. The contained information consists of the estimated travel time,
the whole distance the traveller has to cover for following the route and a
bounding box bordering the area in which the route is located. The use
of this element is optional.

RouteGeometry The geometry of the route is provided by this optional el-
ement. It contains the coordinates of the relevant parts of the roads
belonging to the route encoded in GML.

RoutelnstructionsList The RoutelnstructionsList provides a list of turn-by-
turn route instructions. It encodes the instructions according to the route
directions used in the Route Service (cf. Section 2.2.1). The use of this
element is optional.

RouteMap Each of these optional elements contain a map of a requested area.
The map is transferred as a binary image encoded as base64 [8]. The
number of provided maps is unbound.

RouteManeuverList The RouteManeuverList contains the route directions gen-
erated according to the more complex method used in the Navigation
Service. The use of this element is optional.

2.3.2 Structure of the route directions

The more complex route directions offered by the Navigation Service are pro-
vided in the element RouteManeuverList of the complex type RouteManeu-
verListType, which is derived from the abstract type AbstractRouteManeu-
verListType. Their structure (cf. also Fig. 2.1) is described in the following:

AbstractRouteManeuverList Type

This abstract type is the parent type of RouteManeuverListType, which is
used for storing route directions. It represents a simple list of so—called travel

13

CHAPTER 2. OPENLS

maneuvers. A travel maneuver comprises the description of a decision point
including the required action and the following route segment. Therefore, such
a list consists a sequence of an unbounded number of _Manuever elements,
with every element representing a single maneuver. The _Manuever elements
in the list are of the type AbstractManeuverType that specifies a single travel
maneuver.

<<Abstract >>
AbstractRouteManeuverList

_Manuever
? 1..*

RouteManeuverListType <<Abstract >>

AbstractManeuverType
0 +id: ID
required
<<5|.n.'pl eType>> +j uncti onName: String
positivelnteger optional

maxi nunHpadd ass

optional
+Maneuver Poi nt: gl : Poi nt Type

<<sinpl eType>> | .1

RoadClassType minOccurs=0

+actionType: RouteActionType
required

optional

optional

+nunber Exi t sToPass: nonNegati vel nt eger

+_Next Segnent: Rout eSegnent Ext endedType

+di rectionCf Turn: TurnDirectionType

+j unctionType: Juncti onCat egoryType

Figure 2.1: Data structure of a list of route maneuvers in OpenLS.

RouteManeuverList

The NavigationResponse for a requested navigation service provides a Route-
ManeuverList. For each decision point along the route there is one instruction
describing the action the traveller has to perform. A RouteManeuverList con-
tains all these travel maneuvers stored in a list.

A RouteManeuverList element is of the complex type RouteManeuverList-
Type, which is an extension of AbstractRouteManeuverListType and provides
all parameters of its parent. The extension adds the optional attribute maxi-
mumRoadClass (RoadClassType), which provides the number of levels in the
road-class hierarchy. This hierarchy ranks the roads according to their relative
size or importance in the route.

2.3.3 Data type of a single instruction

In this section, the data type representing a single route direction is described,
including an description of the simple and complex types of the used attributes
and elements.

14

2.3. DATA STRUCTURE OF THE NAVIGATION SERVICE

AbstractManeuverType

The complex type AbstractManeuverType (cf. Fig. 2.2) is used for storing in-
formation about a single route instruction describing the action which has to
be performed at a decision point and the decision itself.

<<Enuner at i on>>

JunctionCategoryType

+l ntersection
+Roundabout

+Encl osedTraf fi cArea
+Ent r anceRanp

gml:PointType
cf. GML-Specification

+Exi t Ranp
+Boar di ngRanp <<Abstract>> <<Abst ract >>
+None AbstractManeuverType Maneuver Poi nt AbstractMeasureType
+id 1D +val ue: deci mal
0.1 .
required required
j uncti onType) .
~@>1+j uncti onNane: String g +accuracy: deci mal
optional optional
+nunber Exi t sToPass: nonNegat i vel nt eger
optional
DistanceType
————
<<Abstract >>
Di stance
di rectionCf Turn RouteSegmentType
+Travel Ti ne: Duration -
acti onType +nane: string
optional
Boundi ngBox
uom
1 _Next Segment 0.
<<Enuneration>> RouteSegmentExtendedType
A L 1
TurnDirectionType
+Strai ght
:ieef’:' :“ <<Enunerati on>> <<Enunerati on>> gml:EnvelopeType
eepRi gl . . . L
+5li ght Lef t RouteActionType DistanceUnitType cf. GML-Specification
*Left +Turn +KM
+Shar pLef t +ProceedTo +M
+Sl i ght Ri ght +Enbar k DM 1
+R ght +Di senbar k +M
+Shar pRi ght +Stop D
tUTurn +Advi sory +FT

Figure 2.2: Data structure of an abstract route maneuver in OpenLS.

For this purpose an AbstractManeuverType contains the following elements
and attributes:

Elements:

ManeuverPoint The coordinates of the location where the described action
takes place is stored in this attribute which contains an element of the
complex type PointType. This type is an element of the GML—specification
[2]. The encoding of coordinates is not discussed in this work.

_NextSegment Information about the next segment of the route is contained
in this optional element of the type AbstractRouteSegmentType.

Attributes:
id Each instruction in OpenLS has a unique identifier (id). It is of type ID.

junctionName Encoded as a simple string, the name of the current intersection
is provided by this optional attribute.

15

CHAPTER 2. OPENLS

e Turn
ProceedTo
Embark

Disembark

Stop

Advisory

Figure 2.3: List of possible actions described in a route direction of OpenLS.

junctionType The type of the current intersection is given by this optional
attribute. It is of the simple type JunctionCategoryType (cf. Section
2.3.3).

numberExitsToPass This optional attribute of the type NonNegativelnteger
is only used in conjunction with two of the categories of intersections,
which are roundabout and complex intersections, and gives the number
of exits the traveller has to pass before leaving a roundabout or a com-
plex intersection. However, only the category Roundabout can be found
in the enumeration of the simple type JunctionCategoryType. A com-
plex intersection is not further mentioned or described in the OpenLS
specification.

actionType Each instruction describes an action stored in this attribute of the
simple type RouteActionType (cf. Section 2.3.3 and Fig. 2.3).

directionOfTurn If actionType takes the value Turn this attribute of the simple
type TurnDirectionType is used to specify the turn direction. If action-
Type has a different value directionOfTurn should not be used.

AbstractRouteSegment

A route direction in OpenLS always includes data about the next route segment
the traveller needs to follow after passing the current decision point.

This data is provided by elements of the type AbstractRouteSegment. They
contain elements that specify the distance of the segment, the estimated travel
time, and a bounding box enclosing the segment. Optionally such an element
can also provide the name of the described segment.

RouteActionType

For specifying the action the traveller has to perform at a decision point,
OpenLS introduces several categories of describing the action. Hence, every
route direction provides an attribute of the simple type RouteActionType. It
enumerates the possible action categories. The values an attribute of this type
can take and their meaning according to the documentation of OpenLS are:

16

2.3. DATA STRUCTURE OF THE NAVIGATION SERVICE

e Turn: Instructing the traveller to enter the next route segment

e ProceedTo: Directing a wayfinder to enter a segment without specifying
the action (e.g., used for the first route direction)

e Embark: Instructing a wayfinder to enter, for example, public transport

e Disembark: Directing a wayfinder to get off, for example, public trans-
port

e Stop: Notifying a wayfinder that she arrived at a stopping point

e Advisory: Used for instructing a wayfinder to keep on following the
current route segment

A special case in this enumeration is the action Turn. Only if the attribute of
the type RouteActionType takes this value, the attribute TurnDirectionType,
which is described later in this chapter, can be used. For all other values
specifying a turn direction is not allowed. However, this constraint is only set by
the documentation. A valid XLS—document still can combine a turn direction
with an attribute of the type RouteActionType that has taken another value
than Turn as it is not restricted in the schema itself.

JunctionCategoryType

Each route direction in OpenLsS is categorized according to the type of inter-
section at which the described action has to be performed. Eight categories
of intersections are introduced (cf. Fig. 2.4). Each route maneuver contains
an attribute of the simple type JunctionCategoryType, which enumerates the
possible types of intersections.

e Intersection o ExitRamp

e Roundabout e ChangeOver

e EnclosedTrafficArea e BoardingRamp
o EntranceRamp e None

Figure 2.4: Categories of intersections in OpenLS.

These categories distinguish between general intersections, roundabouts, and
enclosed traffic areas, which are described in the specification as “an area in
which unstructured traffic movements are allowed” [1, p. 22|, entrance ramps
to highways/motorways, the according exit ramps, change—overs between high-
ways/motorways, boarding ramps on public transport (e.g., a ferry), and, if the
route direction does not describe an action at an intersection (e.g., if there is
just a road name change or the instruction contains only a travel advisory) the
attribute can take the value none.

17

CHAPTER 2. OPENLS

TurnDirectionType

If a route instruction describes a turn the traveller has to perform the attribute
directionOfTurn of the type TurnDirectionType is used, which specifies the
directional change at the decision point (cf. Fig. 2.5). It is not to be used if the
attribute actionType takes another value than Turn (cf. Section 2.3.3).

e Straight e SharpLeft
o KeepLeft e SlightRight
o KeepRight e Right

o SlightLeft e SharpRight
o Left e UTurn

Figure 2.5: Possible directional changes in OpenLS.

The simple type TurnDirectionType defines an enumeration of all possible
descriptions of directional change. The directions are encoded as verbal expres-
sions. It covers an eight-sector direction model (straight, left, right, slight left,
slight right, sharp left, sharp right, u-turn) and additionally the directions keep
left and keep right. OpenLS does not specify the actual angular change for
each of these direction changes. Therefore, it is not possible to decide on which
concrete direction model the specification is based.

2.3.4 ManeuverType: Extending the AbstractManeuverType

Since the complex type AbstractManeuverType used in the AbstractRouteMa-
neuverListType to describe a single route instruction is declared as abstract,
elements which are directly of this type, cannot be created. Therefore, another
complex type has to be defined inheriting the characteristics of an AbstractMa-
neuverType.

The OpenLS specification offers one non—abstract complex type, which is
derived from AbstractManeuverType (cf. Fig. 2.3.3). The ManeuverType in-
herits not only the attributes of the AbstractManeuverType, but also extends
its functionality by adding new attributes and elements. The additional param-
eters are described in the following sections.

AdvisoryType

One of the main extensions added in the complex type ManeuverType is the
introduction of the element Advisory of the complex type AdvisoryType. It
allows the server to generate a much more elaborate instruction.

Every advisory is categorised by its attribute of the simple type AdvisoryCat-
egoryType. The actual category depends on what the advisory is informing
about. The possible categories are:

e StartLocation: The start point of the route

18

61

9°'g 2In31

Squado Ul JOATIDURBTI 9}NO0I PIPUIIXe UR JO aINJONIIS BIe(J

<<Abstract >>
AbstractMeasureType

[+val ue: deci mal
+accuracy: deci mal

AngleType

<<Abstract >>

AbstractManeuverType
+id: 1D
required
+j uncti onName: String
optional

optional
[+Maneuver Poi nt: gni : Poi nt Type

[+nunber Exi t sToPass: nonNegat i vel nt eger

+_Next Segnent : Rout eSegnent Ext endedType

+uom string = Deci nal Degrees
optional

DistanceType

pl eType>>
positivelnteger

<<Enunerat i on>>

DistanceUnitType

+KM
+M

minOccurs=0
+acti onType: Rout eActi onType
required
+di recti onCf Turn: TurnDi recti onType
optional
+j uncti onType: Junct i onCat egoryType
optional
ManeuverType
-+t owar dsSi gnText: string
optional
|+next Maneuver Fol | ows| mredi atel y: bool ean
loptional
AdvisoryType
Georet 1 Advi sor 0 Py TT————
| Place optional
<<Abstract >> _a 1 pl aceType
AbstractManeuverGeometryType NamedPlaceType
: 1 +nare: string
JAN
<<Abst ract >> Lype si dedt Road
AbstractLinkType
<<Enumer & i bn>> type
- . NamedPlaceClassification
LinkType
d: 1D [+Count r ySubdi vi si on
et rvar o +Count r ySecondar ySubdi vi si on
optional +Muni ci pal i ty <<Enunerati on>>
+accessi bl e: bool ean i i
o 1 ancnroundabont : +Muni ci pal i tySubdi vi si on SideOfRoadType
optional Lert
: bool ean 4 ght
optional +Bot h

+i sManeuver Ent ryLi nk: bool ean

optional
ExitLink: bool ean -
optional <<Enuner at i on>>
+i sRout eLink: bool ean [k AdvisoryCategoryType
optional +Start Location
+previ ousLi nkl D | DREF +EndLocat i on
optional +Vi aLocat i on
+Enter Pl ace
Ny) +Exi t Pl ace
ExitRampType EntranceRampType +Bypassaity
+St r eet NameChange
N +Tol | boot h
ChangeoverType BoardingRampType +Landmar k
e e O oserond
+H ghvaysher ge
ConnectedLinksType +Ranpher ge
+Roadsher ge
[I]
| IntersectionType | | RoundaboutType EnclosedTrafficAreaType

€'¢

HOIAYHS NOLLVDIAVN HHIL A0 HINILONYLS VIVd

CHAPTER 2. OPENLS

e EndLocation: The end point of the route
e ViaLocation: A special location the route leads through

e EnterPlace: Informs a wayfinder that she enters a named place (e.g., a
country, state, or city)

e ExitPlace: Leaving a named place
e BypassCity: Turning on a branch to bypass a city

e StreetNameChange: At this location , a change of the street name
occurs

e Tollbooth: Passing a tollbooth
e Landmark: Passing or turning at a landmark
e Crossroad: Passing or turning at a crossroad

e HighwaysMerge: The highway a wayfinder is currently on merges with
another highway

e RampMerge: A ramp merges with a current road

e RoadsMerge: The road a wayfinder is currently on merges with another
road

Furthermore, an advisory is associated with a name (associatedName) and
contains an optional attribute of the type NamedPlaceClassification. This pro-
vides the level in a hierarchy defined by comprising the different types: Coun-
trySubDivision, CountrySecondarySubdivision, Municipality, and Municipal-
itySubdivision. A further explanation of this hierarchy is not given. Addi-
tionally, an advisory includes optionally the attribute sideOfRoad of the type
sideOfRoad, which associates the advisory with either one side of the road or
both.

namedPlaceType

Similar to an advisory the extended route instructions have an attribute of the
type NamedPlaceClassification, which stores the level of the hierarchy explained
in the previous section.

Geometry

The extended version of the route directions also provides a more elaborate
description of the geometry of the current maneuver. This information is given
by the attribute Geometry of the type AbstractManeuverGeometryType. De-
rived from AbstractManeuverGeometryType and AbstractLinkType, the com-
plex type LinkType consists of several attributes and elements. The general
geometry of the link is described by the element InterLinkAngle of the type
AngleType. It states the angle of the outgoing branch relative to the branch

20

2.3. DATA STRUCTURE OF THE NAVIGATION SERVICE

on which the traveller arrives. If the current direction describes an action at a
roundabout, the position of the link on the roundabout is given (PositionOn-
Roundabout of the type AngleType) and the actual length of the (next) link is
provided (Length).

Apart from the actual geometric information, the type of the road is provided.
It contains the attribute roadClass of the type RoadClassType, providing the
class of the road described by a simple positive integer, a boolean attribute pro-
viding the accessibility of the road (Accessible) and a boolean attribute storing,
whether the road is a one way street or not (oneway). All these attributes are
optional.

The next group of information provided by this type regards the role of the
link in the current route. A link can be an entrance link (boolean attribute is-
ManeuverEntranceLink), an exit link (boolean attribute isManeuverExitLink),
or a route link (boolean attribute isRouteLink). The exact meaning of these
links is not specified [2, p. 38]. Again, the use of these attributes is optional.

Finally, LinkType contains some internal information. Every link has an
optional ID (attribute id of the type ID) and it also provides optionally the ID
of the previous link (attribute previousLinkID of the type ID).

towardsSignText

A ManeuverType can contain an optional attribute of the type towardsSign-
Text. This type provides a simple string in which the name of the place (usually
a city) the route is heading for is given.

nextManeuverFollowsImmediately

The meaning of this boolean attribute is not specified in the OpenLsS specifi-
cation. It is probably used to specify situations where the next action to take
follows very shortly after the current action, i.e. a wayfinder has only very short
time to prepare for the next action. Its usage is optional.

21

3 Cognitive OpenlLS

The OpenLS standard as defined by the OGC does not support cognitively
ergonomic route directions. In this chapter, we propose an extension that in-
tegrates precise direction concepts, landmarks and spatial chunking of route
directions in the OpenLS specification. The abstract data types of the OpenLS
Navigation Service which provide data for the generation of route directions
(AbstractRouteManeuverList, AbstractManeuverType and all related types)
are restructured. The changes and their implementation are described in detail
in this chapter. The XML specification of our extension is listed in Chapter 5.

3.1 Approach

Since the current version of the OpenLS specification does not support all nec-
essary features for generating cognitively ergonomic route directions, the stan-
dard, or more precisely the underlying data model, has to be extended. To this
end it is sufficient to adapt some types in the data structure of the navigation
service.

The extension replaces the complex types AbstractRouteManeuverList, Ab-
stractManeuverType and all related types. The proposed data types are in-
tegrated in the data structure in the same way the official extension of the
AbstractManeuverType, the ManeuverType are implemented. All new types
are derived from the original type.

In the following, the aspects regarded in the extension are explained. It is dis-
tinguished between aspects of human ergonomic route directions and additional
aspects which are integrated for technical reasons. Furthermore, the approach
for the technical realization is briefly discussed.

3.1.1 Cognitively ergonomic route directions

The main concern of the proposed extension of the OpenLS specification is
to enable the automatic generation of cognitively ergonomic route directions
based on the OpenLS data model. Thus, all aspects discussed in Chapter 1 are
regarded:

e Direction model: The direction model the encoding of the provided
turn direction is based on is adapted from the direction model presented
by [9] in combination with naming the structure of the intersection. This
is further detailed in Section 3.4.1.

e Structure of intersections: Including references to the structure of an
intersection is explained in Section 3.4.2.

23

CHAPTER 3. COGNITIVE OPENLS

e Landmarks: Landmarks play an important role in giving route direc-
tions. We integrate an elaborated model for their description in OpenLS
(cf. Section 3.5).

e Chunking: The extended version of OpenLS offers the possibility of
spatialchunking. The implementation of the combination of Klippel’s [12]
and Dale’s [3] approach is described in Section 3.6.

3.1.2 Additional Features

Besides of the aspects of cognitively ergonomic route directions some additional
features are integrated in the OpenLS specification. They make the usage of
the data structure easier, clearer and less error—prone.

e Start point: The start of a route is a crucial point in a description of a
route. Accordingly, it is treated separately in the extended version of the
OpenLsS specification (cf. Section 3.2.1).

e End point: Similar to the start point the end point of route requires spe-
cial attributes. A special complex type providing the necessary attributes
is introduced (cf. Section 3.2.2).

3.1.3 Technical realisation

Data about a single instruction in a Navigation Response is significantly in-
creased in the new version of the OpenLS specification. Especially the complex
type ManeuverType has been radically restructured and extended. Therefore,
the compatibility to the original version of the AbstractManeuverType is not
given. A server or client that supports one of the two versions cannot deal with
the abstract data types of the other.

3.2 Extending RouteManeuverList

In a list of single route directions, the start point and the end point of the
route play a special role. Instructions on the start point helps the wayfinder to
orientate and to commence the route in the correct direction. The end point
unambiguously identifies the actual destination.

Since start and end point have to be treated separately, they should also be
indicated explicitly in the list of the route maneuver. Thus, a complex type
XRouteManeuverListType is derived from AbstractRouteManeuverList, which
adds two elements containing information about the start and the end point of a
route. The already existing elements of a AbstractRouteManeuverList, the un-
bounded number of elements of the type AbstractManeuverType, remain and
thus, assure the compatibility of the next extensions to the original abstract
version of the OpenL;S Navigation Service. Additionally, like in RouteManeu-
verList the attribute maximumRoadClass is used.

An UML-diagram of the relationship between the single types, their at-
tributes and elements is shown in figure 3.1. The exact structure of a start
and an end point is explained in the following two sections.

24

3.2. EXTENDING ROUTEMANEUVERLIST

<<Abstract>>
<<Abstract>> Manuever 1..*

. a——L SR AbstractManeuverType
AbstractRouteManeuverList . P
cf. figure xy
<<si npl eType>> ?
positivelnteger XRouteManeuverListType
<<sinpleType>> b 1 naxinunRoadd ass St arti ngManeuver XStartingM T
RoadClassType artingManeuverType
EndMafjeuver +Address: AddressType
+Si deOf Road: Si dOf RoadType
optional
XEndManeuverType +posi tion: gm : Poi nt Type
+Addr ess: Addr essType +RoadDiretion: RoadDirectionType
+Si deOf Road: Si dOf RoadType optional
optional +Landrmark: Strat LMype
+posi tion: gni:Point Type optional
+Landnark: EndLMType +Orientation: gm: ConpassPoi nt Enurer ati on
optional optional

Figure 3.1: Diagram of the extended data structure of a route maneuver list.

3.2.1 XStartingManeuverType

Orientating the wayfinder at the beginning of the route is a crucial part in giv-
ing route directions. It has to be assured that the wayfinder follows the first
route segment in the right directions. Therefore, the complex type XStarting-
Maneuver is introduced providing a set of attributes and elements containing
the necessary and available information for the first orientation (cf. Fig. 3.2.1).

Position This element gives the exact geographic position of the start point of
the route encoded as an gml:PointType.

Address The element Address provides the address of the start point of the
route. For encoding this information, the complex type AddressType of
the OpenLS specification is used. It can contain either an unstructured
free form address (a simple string), a street address or an intersection
address and some additional elements (e.g., a post code).

RoadDirection Starting at the address/position, a wayfinder has to follow the
first segment of the route. At the start point, facing the road the wayfinder
can either turn left or right or he can proceed (in some special cases)
straight. Therefore, the attribute RoadDirection can be one element of
the enumeration of the simple type RoadDirection: left, right or straight.

Orientation The complex type XStartingManeuver additionally offers an at-
tribute providing the cardinal direction in which the wayfinder has to
go. For this purpose the simple type from the GML specification Com-
passPointEnumeration is used. It splits the possible directions into 16
homogeneous sectors. Each sector is represented by a cardinal direction
(e.g., south).

25

CHAPTER 3. COGNITIVE OPENLS

f Line of sight
Traveller(@)

_

Start location

Figure 3.2: This figure depicts the assumed position of the wayfinder at the
start of a route. To follow the route the wayfinder has to turn right.

Landmark The third possibility of orientating the wayfinder at the origin of the
route is to describe the direction relatively to a landmark. The landmark
for this purpose is provided by the element Landmark. This element is of
the complex type StartPointLMLMType. A detailed description of this
type can be found in Section 3.5.2).

id A start maneuver has an ID that identifies it unambiguously.

3.2.2 XEndManeuverType

Like the start point of a route, the end point is encoded separately. Its main
function is to provide all information in order to enable the wayfinder to iden-
tify the destination of her route. Therefore, elements of this type provide the
following information (cf. Fig. 3.2.1).

Position The exact geographic position encoded as an gml:PointType of the
end point of the route is provided by the element Position.

Address This element contains the address of the end point of the route. For
encoding this information, the XLS complex type AddressType is used
(cf. section 5.3.1).

SideOfRoad The end point of the route can be located either on the left side,
the right side or on both sides of the road to the current direction the
user is travelling in. The simple type SideOfRoad offers the three values:
left, right and both. The attribute SideOfRoad of a EndManeuverType
can take one of them as value.

Landmark For describing the position of the end of the route, a landmark may
be used. The spatial relation between the end point and the landmark
has to be described, as well as the landmark itself. The necessary features
for this purpose are provided by the complex type EndPointLMType. An
element of the type EndManeuverType contains the element Landmark,
which is of this type.

26

yXé

€'¢ a3

"IOATIOURUI PUS UR PUR IOANOURUI 1IB)S B JO dINJONIIS BYR(]

<<Abstract>>

+_Next Segnent :

AbstractManeuverType
+id: ID
required
+j unctionNane: String
optional
+nunber Exi t sToPass: nonNegat i vel nt eger
optional

+Maneuver Poi nt: gn : Poi nt Type
Rout eSegnent Ext endedType

minOccurs=0
+actionType: RouteActionType
required
+directi onOf Turn: TurnDirectionType
optional
+j unctionType: JunctionCategoryType
optional
XStartingManeuver
+d 1D XEndManeuver
required
<<Enuner ati on>> D.. 1 RoadDirection Addr ess AddressType Addr ess Landmar k EndLMType
RoadDirectionType cf. OpenLS-Specification P
Left +PictureData: string (base64)
R ght choice
+St rai ght +Pi ctur eURL: string
choice
Si deOf Road <<Enurer ati on>> Si deCf Road +Spat i al Rel ati on: EndLMRel ation
Landmar k i i
StartLMType SideOfRoadType optional
- - +Si de(f Road: Si deCf RoadType
+PictureData: string (base64) +L.eft +Poi nt Posi ti on: gni : Poi nt Type
choice *Right Choice o
+PictureURL: strin *Both
choice : 9 +Li nePosi tion: gni:LineType
Choice
+Spati al Rel ati on: StartLMzel ation +Ar eaPosi tion: g : Pol ygonType
optional o — o ol : gni: Pol ygonTy
+Si deCt Road: Si deCf RoadType Posi tion gm .Pomt‘l")'/pe‘ Posi tion e o
+Poi nt Posi tion: gnl : Poi nt Type cf. GML-specification reqﬁired
Choice
+Li nePosi tion: gni:LineType
Choice - -
+AreaPosi tion: gni : Pol ygonType Orientation gml:CompassPointEnumeration Pr evi ousseanent

Choice

cf. GML-specification

XRouteSegmentExtendedType

+Landmar k: NonDPPLMType

ka3

LSITHHANINVINHLNOY DONIANHLXH

CHAPTER 3. COGNITIVE OPENLS

previousSegment In the data structure, a decision point of a route and the
route segment leading to this decision point are stored together. Hence,
the last route segment leading to the end point of the route has to be
stored together with the end point. The element previousSegment of the
complex type XRouteSegmentExtendedType contains this segment.

id A start maneuver has an ID that identifies it unambiguously.

3.3 XManeuverType

Route directions based on the complex type AbstractManeuverType do not
support cognitively ergonomic route directions. Also the type ManeuverType
derived from AbstractManeuverType does not offer the necessary features to
encode all information for generating the aspects of cognitively ergonomic route
instructions. Hence, the extension of the OpenLS Navigation Service introduces
a new complex type XManeuverType for encoding single route directions, which
provides the required elements and attributes (cf. Fig. 3.3.1).

3.3.1 Deriving from AbstractManeuverType

Like the original ManeuverType XManeuverType is derived from AbstractMa-
neuverType. Even though it replaces all of the elements and attributes of the
super type except of one, the derivation is necessary to assure the compatibility
to the original, abstract version of the Navigation Service. The reused attribute
is:

id This attribute encodes an identification number in order to identify the di-
rection unambiguously as an attribute of the simple type ID.

The new attributes are:

previousSegment In our extension a decision point and the route segment
which leads to it form a unit (e.g., “Follow street XY and then turn
left at the church.”). This schema is commonly used in human generated
route directions and current navigation services. Therefore, the element
previousSegment of the complex type XRouteSegmentExtendedType is
introduced.

nextStreet This attribute contains the name of the street the wayfinder is
turning in when she performs the described maneuver. The information
is also provided by other elements (e.g., the next segment, which is still
contained because of the derivation, or the following maneuver), but these
should not be used in Cognitive OpenLS.

JunctionCategory Since the element JunctionType of the complex type Ab-
stractManeuverType does not offer the features required for making route
directions more precise, the element JunctionCategory is introduced. It is
of the complex type AbstractJunctionType, which is discussed in Section
3.4.3.

28

3.3. XMANEUVERTYPE

<<Abstract >>
AbstractManeuverType

+id: 1D

required

+j unctionNane: String

optional

+nunber Exi t sToPass: nonNegat i vel nt eger
optional

+Maneuver Poi nt: gni : Poi nt Type

+_Next Segment : Rout eSegment Ext endedType
minOccurs=0

+actionType: RouteActionType

required
+directionCf Turn: TurnDirectionType
optional
+j unctionType: Juncti onCat egoryType
optional RouteSegmentExtendedType
L 1
previ ous Segnent
XManeuverType XRouteSegmentExtendedType l‘—
L 1
{ Landmar k
<<Abstract >> Junct i onCat egory Landnar k 0..% <<Abstract>> b..*
AbstractJunctionType NonDPPLMType
+Rout eBranch: gni : Angl eType +Spati al Rel ation: Spatial Rel ati onNonDPType
+NoRout eBranch: gl : Angl eType +Poi nt Posi tion: gn : Poi nt Type
maxOccur = unbounded Choice

+Li nePosi tion: gm:LineStringType
Choice

+Ar eaPosi ti on: gm : Pol ygonType
Choice

Figure 3.4: The extended data structure of a route maneuver.

Landmarks play an important role in the understanding of route directions
by humans. Hence, elements providing information about landmarks are intro-
duced. Decision points can be related to I-Element landmarks. n—FElements
landmarks can only be associated with chunks. Since a decision point can have
more than one landmark, the amount of elements representing a landmark is
unbounded.

Landmark This element of the abstract complex type AbstractlElementLMType
provides all required information about a landmark with a point-like
function. In principle, the number of landmarks associated with a deci-
sion point is unbounded. The attributes and elements of AbstractPoint-
LikeLMType and its sub—types are described in Section 3.5.

3.3.2 Replacing NextSegment by CurrentSegment

In an elementary route direction always (apart from the start point) a deci-
sion point and the previous route segment are combined. The route directions
generated on this basis generally follow the schema:

“Follow street XY and turn right after the landmark.”

This schema is also quite commonly used by humans giving route instructions,
as well as in instructions generated by navigation services.

In an element based on the complex type AbstractManeuverType of the
original version of the Navigation Service, a decision point is combined with the

29

CHAPTER 3. COGNITIVE OPENLS

following route segment, rather than with the previous segment. However, it is
possible to restructure the instructions and combine a decision point with the
following decision point. Since it has to be possible to relate a route segment to
a 1-Flement landmark, a new type providing the necessary element for storing
the information about a landmark is introduced.

The complex type XRouteSegmentExtendedType is derived from the original
XLS complex type RouteSegmentExtendedType and therefore, contains the
same attributes and elements. In order to enable the use of landmarks, new
elements are introduced:

Landmark The information about a landmark with a point—like function is
stored in this element of the type NonDPPLMType. A segment can be
related to an unbounded number of landmarks of this type.

RoadNameChange This attribute of the type RoadNameChangeType is also
introduced in this extension and provides the necessary information if the
street name changes at a segment and not at a decision point. The com-
plex type RoadNameChangeType contains the new street name encoded
as string and the position of the change as gml:PointType.

Streetname This attribute stores the name of the street to which the segment
belongs. In contrast to the name provided by RouteSegmentExtended-
Type, this attribute is required.

3.4 Making route directions more precise

According to the aspects of cognitively ergonomic route directions our OpenLS
extension introduces data types, which describe the spatial situation at a deci-
sion point as exactly as necessary and combines this with a direction concept
specifying the turn direction.

3.4.1 Direction model

In the current version of the Navigation Service, a direction is described by
a verbal expression. OpenLS offers a collection of ten verbal expressions in a
simple data type. How the underlying direction model structures the space is
not further explained.

Similar to the original verbal expressions, the proposed extension of the spec-
ification offers simple types for different kinds of intersections providing an ap-
propriate direction concept and its respective direction. Relating structure of
the intersection and appropriate directions constrains insensible combinations.

The directions for each type of intersection are encoded as enumerations of
verbal expressions. However, these verbal expressions are not necessarily to be
used in the route directions finally presented to a user. The verbal expressions
are only used in order to make the encoding of the data more readable for
humans.

The directions given in the instructions are all constrained by the type of
the intersection. These types require only the directions straight, left and

30

3.4. MAKING ROUTE DIRECTIONS MORE PRECISE

e T-Intersection
e Fork intersection
e Standard intersection

e Intersection with compet-
ing branches

e Small roundabout

e Large roundabout

Figure 3.5: List of possible types of intersections.

right. The definition of left and right is intelligible; the directions are divided
by the straight axis. Directions in the left half are represented by left, the di-
rections on the right side by right. However, it is not exactly specified which
directions should be represented by straight and subject to ongoing research.

3.4.2 Naming the structure

Describing the spatial situation at an intersection helps the wayfinder to ori-
entate herelf and allows to simplify the given turn directions. For example,
specifying an intersection as T—intersection reduces the possible directions to
the two options left and right.

An element representing an intersection provides the spatial situation by
listing all branches. This allows for producing, for example, a pictorial rep-
resentation of the intersection. Furthermore, all intersections are classified by
standard types. The offered types of intersections are listed in figure 3.5.

3.4.3 Types representing intersections

The elements of the current OpenLS version do not provide all features required
to generate precise route directions and its data structure does not constrain
the generation in a way that minimizes the possibility of creating unambigu-
ous instructions. Therefore, several new types for supporting this purpose are
introduced (cf. Fig. 3.4.3).

AbstractJunctionType

The proposed extension classifies each intersection into a category. Each cat-
egory is represented by a complex type derived from AbstractJunctionType.
AbstractJunctionType provides the attribute elements which are necessary for
all types of intersections.

name If an intersection has a special name identifying it, the name can be
stored in this optional attribute encoded as a simple string.

31

CHAPTER 3. COGNITIVE OPENLS

Encoding the spatial structure For each intersection its spatial structure has
to be provided. This allows giving the wayfinder an exact description of the
spatial situation and helps her to orientate. Every branch of the intersection
has to be listed. The branches are encoded as complex type Branch. Introduced
in the proposed extension, this type provides information on the angle between
branch and the route segment leading to the intersection as gml:AngleType and
the street name of the branch.

RouteBranchOut The branch on which the wayfinder leaves the intersection
must be stored in a separate element, since it has to be possible to dis-
tinguish it from the other branches due to its special role.

NoRouteBranch All other branches are stored in an element with the name
NoRouteBranch. The occurrence of this element is unbounded.

gml:AngleType Rout eBr anch <<Abstract>> NoRout eBranche 0. . * gml:AngleType
cf. GML-Specification AbstractJunctionType cf. GML-Specification

Schpstract>> | CompetingBranchesType | SmallRoundaboutType
noCompetingBranchesType [#nunber Exi tsToPass:_posi ti vel nteger | {
ﬁk TurnDi fect i on
LargeRoundaboutType
[#nunber Exi tsToPass: posi tivel nteger |
TintersectionType | StandardintersectionType | <<Er.|uner. ation>>
I 1 TurnDi fection TurnDirectionTypeSR
{ { +Ri ght
+Left
N - +Strai ght
ForkintersectionType Turnbi Jection <<Enunerati on>>

TurnDirectionTypeC

TurnDi fecti on +Ri ght
TurnDirection +Left

<<Enunerati on>>
<<Enumer ati on>> TurnDirectionTypeSR
TurnDirectionTypeSR +R ght

+Ri ght +Left
tLeft +Str ai ght

Figure 3.6: Data structure of the different types of intersections.

AbstractNoCompetingBranchesType

Junctions of the type AbstractNoCompetingBranchesType can be classified in
one of the categories T—intersection, Fork—intersection and standard intersec-
tion. For these classes of intersections it is sufficient to know the direction of
the turn and the category of the intersection. From this abstract type all three
sub—categories are derived.

TintersectionType T—intersections are intersections where the road on which
the wayfinder arrives ends at the intersection. If the wayfinder approaches the
same intersection on a different branch, it is not classified as a T—intersection
but as a standard intersection. The only attribute of this type contains the

32

3.4. MAKING ROUTE DIRECTIONS MORE PRECISE

direction of the turn. It is of the simple type TFTurnDirectionType and can
only take the value left or right.

ForkIntersection Similar to the T—intersection, the incoming branch of the
intersection sets whether it is categorised as fork intersection or not. The
wayfinder has to arrive on the branch that splits into the two other branches.
Also similar to the T—intersection, it provides only one attribute of the simple
type TFTurnDirectionType.

StandardlIntersectionType All other intersections that have no branch com-
peting with the outgoing branch belong to the category standard intersection.
The complex type of this group has only one attribute containing the turn
direction. In this case it is of the simple type SITurnDirectionType and can
therefore take the value left, right or straight.

CompetingBranchesType

The set of possible turn directions is divided by the straight-axis in a left and
a right part. Two branches of an intersection compete with each other, if they
are both either in the right or the left part. A branch going straight cannot
compete with another branch.

If at an intersection the outgoing branch competes with another branch, this
intersection is represented by the complex type CompetingBranchesType. For
this type of intersection, a direction concept is used that combines a coarse
turn direction (left or right) with an ordering concept: the competing branches
are counted and the appropriate number is chosen for the branch to take. An
element of the type CompetingBranchesType has two attributes. The Branch-
Number contains the number in the ordering concept encoded as a positive
integer value. TurnDirection is of simple type TurnDirectinTypeC, which can
take either the value left or right, whereas these values stand for one of the two
parts of the space of turn directions.

SmallRoundAboutType

Two different classes exist for roundabouts. Small roundabouts are encoded as
elements of the type SmallRoundaboutType. These roundabouts are so small
that an instruction like “Turn left” is comprehensible without problems. The
only attribute of this complex type representing an intersection is of the simple
type TurnDirectionType. An attribute of this type can take a value according
to the direction model discussed previously.

LargeRoundaboutType

The second class of roundabouts is for large roundabouts. For large round-
abouts the use of turn directions is ambiguous. Hence, the instruction for
performing a travel maneuver is to give the number of exits the wayfinder must
pass in the roundabout. The only attribute that an element the complex type

33

CHAPTER 3. COGNITIVE OPENLS

LargeRoundaboutType has is a simple integer value, which gives the number
of exits to pass at the roundabout.

3.5 Integration of landmarks in OpenLS

Landmarks play an important role in route directions. They can have different
purposes and functions, for example, they can be used for identifying segments
and decision points, they can help a wayfinder to orientate or they can specify
a required action.

According to their different functions, we set up a taxonomy for the classifi-
cation of landmarks (cf. [7]). This taxonomy is used as a basis for the abstract
data types representing landmarks in the proposed extension of the OpenLS
specification.

The usage and function of these newly introduced types depends on the
context of other types, which are contained as elements. This is discussed in
the following in the presentation of the different complex landmark types.

3.5.1 AbstractLandmarkType

All complex types representing a particular type of landmark are derived from
the abstract type AbstractLandmarkType. This type contains all elements and
attributes common to all landmarks.

The elements and attributes of AbstractLandmarkType are the name (Name)
and a description (description) of the landmark. The attribute Name should
contain the official name of the landmark. The description should provide all
information that is necessary to enable the wayfinder to identify the landmark
in the environment.

The use of the attribute Name is optional and its content is encoded as a
simple string. The element description is of the complex type AbstractLMDe-
scription. More information about this type is given in Section 3.5.5.

3.5.2 Landmarks for orientation at Start and End Point

The types StartingPoint LM Type and EndPoint LM Type provide all information
about the landmarks used for orientating the wayfinder at start and end of a
route.

StartingPointLMType

By choosing the information that is provided by an element representing a
start point the situation of a wayfinder has to be regarded. It is to assume that
the wayfinder is not familiar with the environment. Therefore, she do not know
which direction she has to head to in order to follow the route. She also does not
know where the landmark is located and how it looks like. Thus, the complex
type StartingPointLMType is introduced (cf. Fig. 3.5.2). Additionally to the
attribute Name and the element Description, which are already contained by

34

3.5. INTEGRATION OF LANDMARKS IN OPENLS

the abstract complex type AbstractLandmarkType, the following elements are
provided:

PointPosition, LinePosition, AreaPosition For the exact geographic position
of the landmark, it can be chosen between these three elements. Which
one is selected depends on the geometry of the landmark. The position is
encoded as gml:PointType, gml:LineStringType or gml:PolygonType.

Orientation Since this type of landmark is used to help the wayfinder to ori-
entate in general without relation to any other elements of the route
directions (for example, roads or current travel direction), providing the
general orientation of the landmark with respect to the wayfinder’s current
position is in some cases helpful. Thus, the attribute Orientation contains
this information encoded as an element of the simple type gml:Compass-
PointEnumeration.

SpatialRelation In this optional attribute the information whether a wayfinder
has to follow the first segment towards or away from the landmark is
stored.

EndPointLMType

In contrast to the start of a route, the wayfinder is already correctly oriented
on the last route segment. The task of the last instruction is to support the
wayfinder in identifying her final destination. The end point of a route is in most
cases a street address, which is usually identified by its house number. Since
this number is quite often not visible or not easy to spot for the wayfinder, it
is helpful to describe the position of the destination of the route in relation to
a much more salient landmark. Therefore, the complex type EndPointLMType
is introduced (cf. Fig 3.5.2). It provides, additionally to the name and a
description of the landmark, the following elements in order to fulfill this task:

PointPosition, LinePosition, AreaPosition For the exact geographic position
of the landmark it can be chosen between these three elements. Which
one is selected depends on the geometry of the landmark. The position is
encoded as gml:PointType, gml:LineStringType or gml:PolygonType.

SpatialRelation The attribute SpatialRelation stores the spatial relation be-
tween the described landmark and the destination of the route. The rela-
tion is encoded as a verbal expression. The possible relations are defined
by the simple type EndLMRelationType. According to this a landmark
used to identify the destination of a route can be located next to the
destination (left or right) or opposite to it.

SideOfRoad Since the wayfinder is following a road, the landmark can be lo-
cated either on the right side of the road, the left side or on both. This
information is stored in this optional attribute.

35

CHAPTER 3. COGNITIVE OPENLS

<<Abstract>> LMD ass <<Abstract>>
AbstractLandmarkType AbstractDescriptionLMType
: 1

+Nane:_String

<<Abstract>>
Abstract1ElementLMType

I

<<Abstract>> StartPointLMType EndPointLMType
AbstractNElementLMType
—————

AreaLMNType
—

<<Abst ract >>

LinearLikeLMType

Si ded Road <<Enuner at| on>> Si dedf Road
SideOfRoadType

+Lef t
+Ri ght
+Both

Li nePosi ti on gml:LineType Li nePosi ti on|
cf. GML-specification
—
A eaPosi ti on gml:PolygonType Ar eaPosi ti on)
cf. GML-specification
—
Poi nt Posi ti on gml:PointType Poi nt Posi t i or
<<Enuner ati on>> cf. GML-specification
—

SpatialRelationLinearldentType Spati al fel ation
i <<Enuner ati on>>
Li nePosi tion gml:LineTypeType +after Spati al Rel ati on <<Enumer at i on>>
cf. GML-specification StartLMRelation EndLMRelation
- —

Qientation [gmi:compassPointEnumeration
cf. GML-specification

gml:PolygonType
cf. GML-specification
<<Abstract>>
AbstractlEDPLMType
————

Landmar k

NotldentifyingLLMType

IdentifyingLLMType

Spatial Rel ation

Figure 3.7: Data structure representing n—Elements landmarks, StartingPoint-
LMType and EndPointLMType.

3.5.3 AbstractNElementLMType

Landmarks related to more than one route element are represented by the ab-
stract class AbstractNElementLMType (cf. Fig 3.5.2). Two child-classes repre-
senting the two required sub—categories are introduced. AbstractLineLMType
stores information on landmarks conceptualised as linear and AreaLMNType
those conceptualised as area-like.

AreaLMNType

Area-like landmarks identifying a chunk of route elements are represented by
the complex type AreaLMNType. Since there are no types derived from this
type, it is not abstract. Landmarks of this type have one additional element:

PolygonPaosition For giving the position of the landmark a polygon is provided
in this element. The polygon is encoded according to the GML specifica-
tion as a gml:PolygonType.

The spatial relation of a landmark to the related decision point is always around.
Hence, it is implicitly encoded in the complex type AreaLMNType.

AbstractLineLMType

Landmarks with a linear function are located along the route and are therefore
related to more than one element of the route. AbstractLinearLikeLMType is
introduced, which covers with its attributes and elements the characteristics
common to all types of landmarks with a linear function.

36

3.5. INTEGRATION OF LANDMARKS IN OPENLS

AreaPosition, LinePosition For the exact position of the landmark it can be
chosen between these two elements. Depending on the geometry of the
landmark, the position is encoded as gml:PolygonType or gml:LineString-

Type.

IdentifyingLLType The crucial part of describing the course of a route with a
landmark with linear characteristics is the point where the route stops following
the course of the landmark. The kind of landmarks represented by Identify-
ingLLType do not require reference to an additional landmark to identify this
point. It is sufficient to identify the last decision point at which this relation
ends by providing the spatial relation to each route element.

SpatialRelation This spatial relation is described by the attribute SpatialRe-
lation, which is of the simple type SpatialRelationLinearldentType. This
type enumerates the possible relations between the landmark and the
route, which are along or after.

NotldentifyingLLType Linear objects along the route, which are able to de-
scribe the course of the route due to their geometry but are not sufficient to
specify where the route stops following this course are described by the complex
type NotldentifyingLLLType. Since the landmark does not identify the end of
its course with the route, additional information has to be provided describing
this end point. For this purpose these line-landmarks contain an additional
point-landmark.

Landmark The point where the course of the route stops following the course of
the linear landmark is described by an additional landmark with a point-
like function. Therefore, the element Landmark provides the required
additional information encoded as the complex type AbstractPointLM-
Type. This type is described later in this chapter.

3.5.4 AbstractlElementLMType

The category of landmarks related to a single element of the route is divided
into two sub—categories: point—landmarks and area—landmarks. The abstract
complex type AbstractlElementLMType represents with its two child—classes
these two categories (cf. Fig. 3.5.4).

Abstract1IEDPLMType

The abstract complex type AbstractlEDPLLMType represents the supertype
for all landmarks identifying only one decision point. Using this type allows for
introducing in the type XManeuverType only one element (of an unbounded
occurance) for all possible types of landmarks. However, since these sub-—
categories have no common attributes or elements apart from those common for
all landmarks, Abstract]EDPLMType has no additional attributes or elements.

37

CHAPTER 3. COGNITIVE OPENLS

AreaLM1Type

Landmarks with an area—like function are represented by the complex type
AreaLM1Type. 1t is derived from the type AbstractlEDPLLMType. The
elements neeeded to identify a single decision point located within an area—like
landmark requires the following attributes:

PolygonPosition For giving the position of the landmark a polygon is pro-
vided. The polygon is encoded according to the GML specification as a
gml:PolygonType.

The spatial relation of such a landmark to a decision point is always in. Thus,
it is implicitly encoded in the complex type AreaLM1Type.

StructureLMType

The spatial configuration of an intersection can be salient enough to function
as a point-like landmark. The complex type StructureLMType is introduced
providing the information necessary for the identification of an intersection
functioning as a landmark.

Intersection The information about the intersection itself is already contained
in the element JunctionCategory of the element of the type XManeuver-
Type representing an instruction at a decision point.

In order to keep the data structure easily usable and to point out that
this information must be used here again, the same element of the type
JunctionCategory is contained again in the element Intersection, even
though this results in providing redundant data.

StreetNameLMType

Streets identified by their name can function as point-like landmarks. They
are represented by the complex type StreetNameLMType, which provides the
required information the wayfinder needs in order to identify the particular
street at the decision point. Since the name of the landmark is already contained
in the supertype AbstractLandmarkType, this type adds only the following
attribute:

PositionAtIntersection This attribute of the type gml:AngleType gives the
angle of the branch of the intersection functioning as a landmark with
respect to the branch on which the wayfinder arrives at the intersection.

GSOLMType

All other landmarks with a point-like function which do not belong to the
categories described above are represented by the complex type GSOLMType.
It describes a general salient object in the environment and provides attributes
and elements containing general information about the appearance of such an
object.

38

6¢

‘sy[rewrpue] Juoto -] SurjuosoIdal oInjoniys eye(J :Q'¢ 9InSi

<<Abstract >>

AbstractLandmarkType

L LMO ass

+Nane: String

<<Abstract >>
AbstractlElementLMType

7

<<Abstract>>
AbstractDescriptionLMType

<<Abstract >>

AbstractlLEDPPLMType

ArealLM1Type

Pol ygonfposi ti on

<<Abstract>>
AbstractDPPLLMType

A

gml:PolygonType
cf. GML-specification

StructureLMType

Y

Intersfection

<<Enuner at i on>>

SpatialRelationNonDPType

NonDPPLMType

[

Spat i al Rel ati on

+pass
+Cross
+t hr ough

GSOLMType

'

Poi nt Posi tion

<<Abstract>>

AbstractJunctionType

Li nePosi tion

gml:PointType
cf. GML-specification

Poi nt Posi tion

gml:AngleType
cf. GML-specification

Pol ygonPosi ti on

gml:LineStringType
cf. GML-specification

Li nePosi tion

StreetNameLMType

Posi tionAtlntersection

¢

Spati al Rel ati on

gml:PolygonType
cf. GML-specification

Pol ygonPosi ti on

<<Enuner ati on>>

SpatialRelationGSOType

+at
+after
+before

SINHJO NI SMUVINANVT 40 NOLLVHOHLNI "6°€

CHAPTER 3. COGNITIVE OPENLS

PointPosition, LinePosition, AreaPosition A GSO can have an area-like, lin-
ear or point—like geometry. Accordingly, there is a choice between different
ways to encode the geographic location. The position is encoded either
as gml:PointType, as gml:LineStringType, or as gml:PolygonType.

SpatialRelation This attribute gives the spatial relation of the described object
to the route segment. It is of the simple type SpatialRelationGSOTYype,
which lists all possible spatial relations identified by a verbal label (cf.
figure 3.9).

e before

e after

e at

Figure 3.9: Possible spatial relations between a point—landmark and a decision
point.

NonDPPLMType

For point-landmarks located at route segments the type NonDPPLMType de-
rived from AbstractlElementLMType is introduced. It provides the following
attribute and element:

PointPosition, LinePosition, AreaPosition As in the other types representing
landmarks which can have different geometries, there is a choice between
different ways to encode the geographic location. The position is encoded
either as gml:PointType, as gml:LineStringType, or as gml:PolygonType.

SpatialRelation The possible spatial relations are provided by this attribute
encoded as SpatialRelationNonDPType. Depending on the geometry of
the landmark, the relation can be pass, cross or through.

3.5.5 Description of Landmarks

For using landmarks properly in route directions, they need to be described in
order to be identifiable. A wayfinder has to be informed what kind of salient
object is used as the landmark and its appearance has to be described as far as
it is necessary to identify the object unambiguously.

All this necessary information has to be provided in the landmark elements.
Since this part of the OpenLS navigation service tries to deliver the requested
data independent from the finally generated instruction, the information for
describing a landmark has to be encoded independent from constraints imposed,
for example, by concrete verbal description.

Presently, this problem has not yet been sufficiently solved. Here, only a
short sketch of a possible solution is outlined to define a non—abstract type for
generating example documents based on the proposed extension.

40

3.6. CHUNKING ROUTE DIRECTIONS

PictureData In order to enable the wayfinder to identify the used landmark
a picture showing the landmark can be helpful. Thus, the optional ele-
ment PictureData is provided. Thereby the picture is encoded as a string
according to base64, a binary to text encoding scheme defined in the
IETF (Internet Engineering Task Force) standard for Multipurpose In-
ternet Mail Extensions [6]. This scheme for encoding binary data in a
string is also used in other parts of the OpenLS specification.

PictureURL Apart from the picture itself, also an Internet address can be pro-
vided linking to the Internet location of a picture showing the landmark.
The URL (Uniform Resource Locator) is encoded as a simple string. This
element can be used as an alternative to PictureData or additionally for
making more pictures available.

InfoURL In order to allow the service to provide more information about a
landmark, an URL can be provided in the attribute InfoURL. The Inter-
net address is encoded as a simple string and links to an Internet page
containing additional information about the landmark.

3.6 Chunking Route Directions

Spatial chunking allows reducing the number of route directions, and by build-
ing up a hierarchy subsumes instructions to focus on the essential information.
Since chunking is not implemented in the original version of the OpenL.S Navi-
gation Service, the proposed extension adds the necessary types and adapts the
data structure accordingly.

To enable the usage of chunking in OpenLS according to the work of presented
in [12] and [3], several changes in the design of the data structure described in
XLS have to be made. The possibility of subsuming a sequence of directions
in one single instruction has to be introduced to allow for spatial chunking. To
build up a hierarchy it is also necessary to offer attributes and elements which
relate the route directions to each other.

A travel maneuver that summarises more than one decision point has to be
recognisable for the users as a higher order route segment. This way they know
that there is more detailed information accessible if the summarised direction is
not sufficient for them. Such an instruction has to contain all the information
about each subsumed decision point, so it is not necessary to contact the server
again for requesting more specific instructions.

For the internal data structure, it is helpful if higher order route segments can
be used in the same way as any other elementary instruction. This allows the
combination of chunks of different levels in one segment. For example, a list of
instructions may consist of chunks and elementary directions on the same level
of the built up hierarchy. Also, an elementary route direction can be chunked
together with an instruction that already subsumes several other elementary
route directions.

Besides segmenting directions on a higher level to build up a hierarchy also
chunking of elementary route direction elements has to be implemented. For

41

CHAPTER 3. COGNITIVE OPENLS

each possible chunking type (e.g., based on the different types of landmarks)
the necessary attributes and elements which allow for indicating the end of a
chunk and to describe the required actions have to be introduced.

Chunki ngEl enent

<<Abstract >>
AbstractManeuverType

+id: 1D

required

+j unctionName: String

optional

+number Exi t sToPass: nonNegat i vel nt eger
optional

+Maneuver Poi nt: gni : Poi nt Type

+_Next Segnent : Rout eSegnent Ext endedType
minOccurs=0

+actionType: RouteActionType

required

+directi onOf Turn: TurnDirectionType
optional

+j unctionType: JunctionCategoryType

optional

ChunkType

+Nunber Of PassedDP: posi ti vel nt eger
+Streetname: string

ChunkedManeuver

optional
[}

Chunki n¢gEl ement

<<Abstract >>

()

AbstractChunkingElementType

Chunki ngEl enent

i

L]
|

RoadHierarchyChunkType

+Level Nae: _string

<<Abstract >>

StructureChunkType
+TIntersection: TintersectionType
Choice
+Forkl ntersection: ForklntersectionType
Choice
+SRoundabout : Smal | Roundabout Type
Choice
+LRoundabout : LRoundabout Type
Choice

1 NElementMChunkingType

' }

PointLMChunkingType |
1

Chunkj ngLM

]

| AbstractNElementLMType

Chunkf ngLM

| AbstractlIEDPPLMType

NumericalChunkingStraightType

NumericalChunkingTurnType

'

TurnDirectionAt Last DP

'

ChunkDi rection

TurnDirectionTypeChunk

<<Enuner ati on>>

+Ri ght
+Lef t

Figure 3.10: Data Structure supporting Chunking.

3.6.1 ChunkType

To enable chunking, the complex type ChunkType is introduced which is de-
rived from AbstractManeuverType. An element of this type provides all infor-
mation for describing a summarising route segment and additionally all infor-
mation about the summarised directions.

42

3.6. CHUNKING ROUTE DIRECTIONS

Being derived from AbstractManeuverType has the advantage that it can be
used as a normal direction and contains the same elements and attributes as
an usual direction, but also provides additional attributes and elements. The
type ChunkType extends AbstractManeuverType by the number of combined
directions, a list of these directions, an optional street name and the element
ChunkingFElement.

NumberOfPassedDP This attribute states for how many decision points the
wayfinder has to perform the described action. It is essential for numerical
chunking where this is the basic information. But it can also be used
for other types of chunking as additional information for supporting the
identification of the end of the segment.

ChunkedManeuver This element provides a list of the subsumed instructions
as elements of the type AbstractManeuverType. Each element of this
list represents one of the summarised directions and the corresponding
information.

Since the type ChunkType is derived from AbstractManeuverType, the
list can also contain an object of the type ChunkType. This allows
building a recursive hierarchy. The structure of the hierarchy is not con-
strained.

Since each single subsumed instruction is still available in this list includ-
ing all information necessary for its description, it is possible to generate
more detailed and less chunked route directions from this data set without
contacting the sever again, if this is requested by the user.

Streetname The additional information provided by this attribute is simply
the name of the street which is used to subsume a sequence of decision
points along the road.

Street name chunking always requires an additional element to indicate
the end of the chunk. For specifying the end of such a chunk, the other
element ChunkingElement, which is always part of a ChunkType element,
can be used.

ChunkingElement To indicate unambiguously the last decision point of a se-
quence, an element of the type AbstractChunkElement is part of each
chunk. Therefore, each object contains an element of the type Abstract-
ChunkElement.

Lastintersection Even though the last instruction of a chunk provides the cate-
gory of the last intersection and the required turn, a ChunkType contains
an element of the type AbstractJunctionCategoryType. Since the same
element is part of the chunking element StructureChunkType this element
is optional to avoid further redundancy.

These elements define the type of chunking, which is used to create this
subsuming instruction. For each single type of chunking, one type derived

43

CHAPTER 3. COGNITIVE OPENLS

from AbstractChunkElement exists, which contains the necessary infor-
mation and indicates the type of chunking. The structure of an element
of the type AbstractChunkElement is explained in the next section.

3.6.2 AbstractChunkElement

For each possibility to indicate the last decision point of a sequence of chunked
route directions, an element of a different type is used.

Chunking based on the name of the street is integrated in the other chunking
methods, since its usage always needs a special element for indicating the last
decision point, similar to the other types of chunking.

StructureChunkType

If the structure of an intersection is used to indicate the end of a chunk, the
chunking element StructureChunkType is used. It contains either an element
of the type TlIntersectionType, ForkIntersectionType, LargeRoundaboutType
or SmallRoundAboutType. The other categories of intersections are not salient
enough.

RoadHierarchyChunkType

For the usage of road hierarchy chunking, the level of the current road segment
must be indicated. Since it differs depending, for example, on the country (the
administrative road hierarchy can vary in different countries) and the actual
type of hierarchy (e.g., an official hierarchy or just a street where you have
always the right of way), the used hierarchy cannot be predetermined. Thus, it
is practically impossible to regard all possibilities for the hierarchy of the current
street network. Therefore, an element of the type RoadHierarchy contains a
String LevelName, which is supposed to provide the official name of the current
road hierarchy level. An element of the type RoadHierarchy contains again an
AbstractChunkElement (ChunkingElement) to indicate the end of the segment.

NumericalChunking TurnType

Elements of this type are used to indicate the usage of numerical chunking.
The necessary information is mainly already provided by the corresponding Ab-
stractChunkFElement, because it can also be used for other types of chunking as
supporting information. Therefore, this type contains only additional informa-
tion of the turn (TurnDirection) since the category of directional change has to
be identical at each of the subsumed decision points.

NumericalChunkingStraightType

Apart from the missing TurnDirection this type is identical with NumericalChun-
kingTurnType. It indicates the chunking of several decision points without
directional change.

44

PointLMChunkingType

For using a point-landmark as chunking element and, thus, landmark—based
chunking, a chunking element of this type is used. The only element it contains
is the landmark object of the type AbstractlEDPLMType.

NElementLMChunkingType

For the chunking method based on n—Elements landmarks, a special type is
derived from AbstractChunkElement. Like the PointLMChunkingType it con-
tains a landmark, but of the type AbstractNElementLMType. If the landmark
is not sufficient to identify the end of the chunk, additionally another chunk-
ing element can be provided. Therefore, chunking with a n—FElements land-
mark can, for example, be combined with PointLMChunkingType or numerical
chunking.

CHAPTER 3. COGNITIVE OPENLS

46

1
2

4 Examples of Cognitive OpenlLS

In this chapter we provide some handcrafted examples on how to specify route
directions using Cognitive OpenLsS. All examples are based on real situations,
but the used data is not based on an exisiting data set. For creating the exam-
ples, a route was calculated using the navigation service www.uk.map24.com
and turned manually into an encoding in Cognitive OpenLS.

Due to this method of generating the required data, there is no geospatial
data available and thus, no exact angular information; all elements storing
geographic coordinates are set on default values. Only the first example covers
the description of a complete route. All others focus on a certain aspect and,
thus, contain only selected elements of the XLS-code.

For each example we provide possible verbal externalizations that, again,
are only used to illustrate the data-structure. They are not generated by any
automatic system, nor are they meant to be the only possible solution.

All pictures used in this chapter are based on maps generated with www.uk.-
map24.com in March 2006.

4.1 Example 1: A complete route

The first example is the only one that covers a complete route from start point
to end point. The route starts at Ronzelenstrasse 18, 28359 Bremen and ends
at the Ortsamt Horn-Lehe (Berckstrasse 10, 28359 Bremen). It comprises in-
structions for the beginning and the end of the route, a chunk using numerical
chunking, four point-landmarks and the basic features of a route (e.g., a simple
maneuver).

Each XLS file starts with a header defining the name space and the other
included XML-schemas. The extended version of XLS needs to include the
schema-file ADT_NavXtension.xsd.

<?xml version="1.0" encoding="UTF-8” 7>

<xls:XManeuverList xmlns:xls="http://www.opengis.net/xls” xmlns:sch="
http://www. ascc.net/xml/schematron” xmlns:gml="http://www.opengis.net
/gml” xmlns:xlink="http://www.w3.0rg/1999/xlink” xmlns:xsi="http://
www.w3. org /2001 /XMLSchema—instance” xsi:schemaLocation="http://www.
opengis.net/xls

D:\xml\o0ls1_.1\05—-016\ ADT_NavXtension .xsd”>

The description of the route starts with a chunk subsuming the two decision
points of the route. The start and the end maneuver can be found at the end of
the maneuver list. The xIs:ManeuverPoint gives the location of the last decision
point of the chunk.

47

CHAPTER 4. EXAMPLES OF COGNITIVE OPENLS

ng‘;?%
&
Riensberger Str.

e T Berckstrasse 10

s
Horner Kirche
LESTRA

Horner Heerstr.

Ronzelenstrasse 18

Ronzslenstr. <———() Ronzelenstr.

50m

WMOP29 & 2005 Mapsolute, Tele Atlas, AND

Figure 4.1: Map of the route in example 1 from Ronzelenstrasse 18, 28359
Bremen to Berckstrasse 10, 28359 Bremen. Based on map from
www.uk.map24.com from March 2006.

48

oo\ erRe)! =~

10
11
12
13

14
15
16
17
18
19
20

22
23

24
25

27
28
29
30
31
32
33
34
35
36
37
38

40
41
42

43
44
45
46

47
48
49
50

52
93
54

4.1. EXAMPLE 1: A COMPLETE ROUTE

<xls:ChunkManeuver id="chunkl” actionType="Advisory” NumberOfPassedDP="
27>

<xls:ManeuverPoint>
<gml:po0s>122.452372436 37.7725892713</gml:pos>
</xls:ManeuverPoint>

The first of the chunked maneuvers describes the action a wayfinder has to per-
form at a T—intersection. This intersection is also used as a structural landmark;
therefore the information about the intersection is encoded twice.

<xls:ChunkedManeuver xsi:type="xls:XManeuverType” actionType="Turn”
id="dpl” directionOfTurn="Right” junctionType="Intersection” >
<xls:ManeuverPoint>
<gml:p0s>122.452372436 37.7725892713</gml:pos>
</xls:ManeuverPoint>
<xls:JunctionCategory xsi:type="xls:TIntersectionType”
TurnDirection="right”>
<xls:RouteBranch Streetname="Horner_.Heerstrasse”>
<xls:Angle uom="degree”>90</xls:Angle>
</xls:RouteBranch>
<xls:NoRouteBranch Streetname="Horner_Heerstrasse”>
<xls:Angle uom="degree”>270</xls:Angle>
</xls:NoRouteBranch>
</xls:JunctionCategory>
<xls:Landmark xsi:type="xls:StructureLMType”>
<xls:Description xsi:type="xls:LMDescriptionExampleType”’></
xls:Description>
<xls:Intersection xsi:type="xls:TIntersectionType” TurnDirection=
Pright”>
<xls:RouteBranch Streetname="Horner_Heerstrasse”>
<xls:Angle uom="degree”>90</xls:Angle>
</xls:RouteBranch>
<xls:NoRouteBranch Streetname="Horner_Heerstrasse”>
<xls:Angle uom="degree”>270</xls:Angle>
</xls:NoRouteBranch>
</xls:Intersection>
</xls:Landmark>
<xls:PreviousSegment Streetname="Ronzelenstrasse”>
<xls:Distance value="10"></xls:Distance>
<xls:TravelTime>P1Y2M3DT10H30M12 .3S</xls:Travel Time>
<xls:BoundingBox>
<gml:p0s>122.452372436 37.7725892713</gml:pos>
<gml:po0s>122.452372436 37.7725892713</gml:pos>
</xls:BoundingBox>
</xls:PreviousSegment>
</xls:ChunkedManeuver>

<xls:ChunkedManeuver xsi:type="xls:XManeuverType” actionType="Turn”
id="dp2” directionOfTurn="Right” junctionType="Intersection” >
<xls:ManeuverPoint>
<gml:p0s>122.452372436 37.7725892713</gml:pos>
</xls:ManeuverPoint>
<xls:JunctionCategory xsi:type="xls:StandardIntersectionType”
TurnDirection="right”>
<xls:RouteBranch Streetname="Berckstrasse”>
<xls:Angle uom="degree”>90</xls:Angle>
</xls:RouteBranch>
<xls:NoRouteBranch Streetname="Riensberger_Strasse”>
<xls:Angle uom="degree”>270</xls:Angle>
</xls:NoRouteBranch>
<xls:NoRouteBranch Streetname="Leher._Heerstrasse”>
<xls:Angle uom="">0</xls:Angle>

49

55
o6

76
7

78
79
80
81
82
83
84
85
86
87
88

90
91
92
93
94
95

97
98
99

CHAPTER 4. EXAMPLES OF COGNITIVE OPENLS

</xls:NoRouteBranch>
</xls:JunctionCategory>

The second of the chunked decision points is identified by church, which func-
tions as a GSO/point-landmark. The landmark is also integrated in the de-
scription of the required turn, since a wayfinder has to perform a directional
change after she passed the church.

<xls:Landmark xsi:type="xls:GSOLMType” Name="Horner_Kirche”
SpatialRelation="after” >
<xls:Description xsi:type="xls:LMDescriptionExampleType”’></
xls:Description>
<xls:PointPosition>
<gml:pos>122.452372436 37.7725892713</gml:pos>
</xls:PointPosition>
</xls:Landmark>
<xls:PreviousSegment Streetname="Horner_Heerstrasse”>
<xls:Distance value="10"></xls:Distance>
<xls:TravelTime>P1Y2M3DT10H30M12 .35</xls:Travel Time>
<xls:BoundingBox>
<gml:pos>122.452372436 37.7725892713</gml:pos>
<gml:po0s>122.452372436 37.7725892713</gml:pos>
</xls:BoundingBox>
</xls:PreviousSegment>
</xls:ChunkedManeuver>

The chunking element for this chunk has to provide the type of chunking (this
is implicitly done by its type) and the directional change at the chunked turns.
The number of subsumed elements is given at the beginning as an attribute of
the chunk itself. The turn at the last decision point of the chunk is described by
the element xlIs:LastIntersection. The element xIs:ChunkedSegments contains
the estimated travel time and distance for all chunked segments together.

<xls:LastIntersection xsi:type="xls:StandardIntersectionType”
TurnDirection="1eft”>
<xls:RouteBranch Streetname=" Wilhelm—Kaisen—Bruecke”>
<xls:Angle uom="degree”>270</xls:Angle>
</xls:RouteBranch>
<xls:NoRouteBranch Streetname="Balgebrueckstrasse”>
<xls:Angle uom="degree”>90</xls:Angle>
</xls:NoRouteBranch>
<xls:NoRouteBranch Streetname="Martinistrasse”>
<xls:Angle uom="">0</xls:Angle>
</xls:NoRouteBranch>
</xls:LastIntersection>

<x1s:ChunkingElement
xsi:type="xls:NumericalChunkingTurnType”
TurnDirection="right”></xls:ChunkingElement>

<xls:ChunkedSegments>
<xls:Distance value="10"></xls:Distance>
<xls:TravelTime>P1Y2M3DT10H30M12.3S</xls:TravelTime>
<xls:BoundingBox>
<gml:po0s>22.452372436 37.772589271</gml:pos>
<gml:pos>22.452372436 37.772589271</gml:pos>
</xls:BoundingBox>

20

100
101
102

76
77
78
79
80
81
82
83
84
85
86
87
88

89

90
91
92
93
94
95

76
7
78
79

80
81
82
83
84
85
86

87

88
89
90
91

4.1. EXAMPLE 1: A COMPLETE ROUTE

</xls:ChunkedSegments>

</xls:ChunkManeuver>

The start maneuver orients the wayfinder at the beginning of the route. In this
case the absolute direction (West), the direction according to the address and
the first route segment (right), and a landmark are provided. Since there is no
better object available that could function as landmark just the next road the
wayfinder is heading towards is used.

<xls:StartingManeuver id="Start” Orientation="W’ RoadDirection="right”>

<xls:Address countryCode="DE’>
<xls:freeFormAddress>
Ronzelenstrasse 10, 28359 Bremen (Horn—Lehe)
</xls:freeFormAddress>
</xls:Address>

<xls:Position>
<gml:p0s>22.452372436 37.7725892713</gml:pos>
</xls:Position>

<xls:Landmark Orientation="W’ SpatialRelation="towards” Name=" Horner.
Heerstrasse”>
<xls:Description xsi:type="xls:LMDescriptionExampleType”></
xls:Description>
<xls:PointPosition>
<gml:p0s>22.452372436 37.7725892713</gml:pos>
</xls:PointPosition>
</xls:Landmark>

</xls:StartingManeuver>

For describing the destination of the route a point—landmark is given in the end
maneuver. To inform the wayfinder about its location and relation to its des-
tination, the absolute orientation and the side of the road the object is located
on is given, both according to the wayfinder’s current position. Furthermore,
the relationship between destination and landmark is provided (opposite.

<xls:EndManeuver id="end” SideOfRoad=" Left”>

<xls:Address countryCode="DE’>
<xls:freeFormAddress>Berckstrasse 10, 28359 Bremen</
xls:freeFormAddress>
</xls:Address>

<xls:Position>
<gml:po0s>22.452372436 37.7725892713</gml:pos>
</xls:Position>

<xls:Landmark Orientation="N” Name="Lestra” SideOfRoad="Right”
SpatialRelation="opposite”>
<xls:Description xsi:type="xls:LMDescriptionExampleType”></
xls:Description>
<xls:PointPosition>
<gml:p0s>22.452372436 37.7725892713</gml:pos>
</xls:PointPosition>
</xls:Landmark>

ol

92
93

95
96
97
98

100
101
102
103
104
105

1
2

CHAPTER 4. EXAMPLES OF COGNITIVE OPENLS

<xls:PreviousSegment Streetname="Berckstrasse”>
<xls:Distance value="12"></xls:Distance>
<xls:TravelTime>P1Y2M3DT10H30M12.3S</xls:TravelTime>
<xls:BoundingBox>
<gml:po0s>22.452372436 37.772589271</gml:pos>
<gml:pos>22.452372436 37.772589271</gml:pos>
</xls:BoundingBox>
</xls:PreviousSegment>

</xls:EndManeuver>

</xls:XManeuverList>

The example illustrates the basic usage of the data model and some more ad-
vanced features. This example demonstrates as many of the features as possible;
some of them would not be used in the actual generated route directions. For
example, the church describing the turn at the second decision point might
not be mentioned since this turn is already described by the numerical chunk.
Possible route directions based on this specification are:

1. Starting at Ronzelenstarsse 18, turn right into Ronzelenstrasse towards
Horner Heerstrasse.

2. Turn twice right.

3. Following Berckstrasse, you arrive at Berckstrasse 10 located on your left—
hand side opposite Lestra.)

4.2 Example 2: Spatial chunking

The second example demonstrates chunking using a linear landmark and chunk-
ing using road hierarchy. The chunk employing the landmark is subsumed in
the other chunk together with a third chunk.

After turning on the road Osterdeich, which is also called B75, the route
leads along the river Weser until the bridge Wilhelm-Kaisen-Bruecke, which
functions as a point-like landmark. The road is still part of the B75, even
though the street name had changed while following the river to Tiefer. After
the bridge the street is called Friedrich-Ebert-Strasse, but the wayfinder is still
on the B75. She leaves it when she turns into Kornstrasse at the end of the
chunk. This second part of the chunk combining the roads belonging to the
B75 can also be subsumed using numerical chunking.

The example starts with the first chunk, which subsumes the two other
chunks. Parts of the specification that do not illustrate features not already
contained in the first example are replaced by [...] to shorten the listings.
The first chunked maneuver is already the other chunk, which subsumes also 9
maneuvers.

<xls:ChunkManeuver id="C1” actionType="Advisory” NumberOfPassedDP="2">

92

4.2. EXAMPLE 2: SPATIAL CHUNKING

3 A = = —=
. - Fﬂdﬂﬂ
3 % Bremen 'f.%:x,
: ® s umboitst; 4

| Wilhelm-Kaisen-§;

et

..-" g M

¥ Kornstr. 5 & Ve Zum
*, G:’%% s ° ﬁﬂ*ﬁ;ﬂ g ey
d%q‘ﬂ-. NG T %ﬁ @ &d&% %‘&

Figure 4.2: Map of the route in example 2. It is based on a map provided by
www.de.map24.com in March 2006.

93

Nejok Nop Tk W

11
12
13
14
15

16
17

CHAPTER 4. EXAMPLES OF COGNITIVE OPENLS

[...]

<xls:ChunkedManeuver xsi:type="xls:ChunkType” id="C2” actionType="
Advisory” NumberOfPassedDP="9">

[...]

<xls:ChunkedManeuver xsi:type="xls:XManeuverType” actionType="Turn”
id="M2” directionOfTurn="Straight” junctionType="Intersection” >

</xls:ChunkedManeuver>

[...]

<xls:ChunkedManeuver xsi:type="xls:XManeuverType” actionType="Turn”
id="M10"” directionOfTurn="Left” junctionType="Intersection”>

</xls:ChunkedManeuver>

The river Weser is used for landmark chunking. Since this landmark is not
sufficient to identify the end of the chunk, a point-landmark (a bridge) is used
for this purpose. The second of the two chunks subsuming eight intersections
uses again numerical chunking. Since this is already demonstrated in the first
example, it is not listed in detail.

<xls:ChunkingElement xsi:type="xls:NElementLMChunkType” >
<xls:ChunkingLM xsi:type="xls:NotldentifyingLLType” Name=" Weser”>
<xls:Description xsi:type="xls:LMDescriptionExampleType”></
xls:Description>
<xls:LinePosition>
<gml:p0s>22.452372436 37.7725892713</gml:pos>
<gml:p0s>22.452372436 37.7725892713</gml:pos>
</xls:LinePosition>
<xls:Landmark xsi:type="xls:GSOLMType” SpatialRelation="at” Name=
” Wilhelm —Kaisen—Bruecke”>
<xls:Description xsi:type="xls:LMDescriptionExampleType”’></
xls:Description>
<xls:PointPosition>
<gml:po0s>122.452372436 37.7725892713</gml:pos>
</xls:PointPosition>
</xls:Landmark>
</xls:ChunkingLM>
</xls:ChunkingElement>

<xls:LastIntersection xsi:type="xls:StandardIntersectionType”
TurnDirection="1eft”>

</ xls:.I:;;),stIntersection>

<xls:ChunkedSegments>

</xls:.C‘};unkedSegments>
</xls:ChunkedManeuver>

)

<xls:ChunkedManeuver xsi:type="xls:ChunkType” id="C3” actionType=
Advisory” NumberOfPassedDP="8">

</xls:ChunkedManeuver>

o4

52

93
54
95

o6

o7
o8
59
60
61
62
63
64
65

—_

QU N

4.3. EXAMPLE 3: COMPETING BRANCHES

The chunking element of the type xls:RoadHierarchyChunkType requires an
additional chunking element which identifies the end of the chunk. In this case,
simply the name of the next street has been chosen. However, if appropriate,
numerical chunking could also provide the same information.

<xls:ChunkingElement xsi:type="xls:RoadHierarchyChunkType” LevelName="
B757>
<xls:ChunkingElement xsi:type="xls:PointLMChunkType”>
<xls:ChunkingLM xsi:type="xls:StreetnameLMType” Name=" Kornstrasse”>
<xls:Description xsi:type="xls:LMDescriptionExampleType”’></
xls:Description>
<xls:PositionAtIntersection uom="deg”>90</
xls:PositionAtIntersection>
</xls:ChunkingLM>
</xls:ChunkingElement>
</xls:ChunkingElement>

<xls:ChunkedSegments>
</xls:ChunkedSegments>

</xls:ChunkManeuver>

Route directions comprising the segments and decision points along the B75
would contain on the highest level only one instruction describing the chunk
along the B75. This instruction generated on the basis of this XLS—code could,
for example, be:

e Follow B75, till you reach Kornstrasse and turn left into Kornstrasse.

— Follow the river and turn left at Wilhelm-Kaisen-Bruecke.

— Turn left into Kornstrasse at the eighth intersection.

On the intermediate level the route consists of two chunks which are repre-
sented by two instructions, even though an instruction requiring to count eight
intersections is of questionable adequacy.

4.3 Example 3: Competing branches

The last example contains a single maneuver describing the action at a complex
intersection with competing branches. The out—going branch of the route com-
petes with another road. Therefore, an ordering concept has to be introduced.
In the element xIs:JunctionCategory, an ordering concept is used that describes
the turn unambiguously. A wayfinder is told to take the second exit (passing
one exit) on her right. Additionally the exact configuration of the route is
provided to give the wayfinder an exact picture of the spatial configuration.

9 9

<xls:XManeuver id="x” actionType="Turn” directionOfTurn="Right”
junctionType="Intersection” >

<xls:ManeuverPoint>

<gml:pos>122.452372436 37.7725892713</gml:pos>
</xls:ManeuverPoint>

99

Ruegheimer Str.

Ringstr.
Obere Torstr.

T
=
=

Figure 4.3: Map of the route in example 3. It is based on a map provided by
www.de.map24.com in March 2006.

6
7 <xls:JunctionCategory xsi:type="xls:CompetingBranchesType”
numberExitsToPass="1” TurnDirection="right”>

8

9 <xls:RouteBranch Streetname="Ruegheimer._Strasse”>
10 <xls:Angle uom="degree”>130</xls:Angle>

11 </xls:RouteBranch>

12 <xls:NoRouteBranch Streetname="Poststrasse”>

13 <xls:Angle uom="degree”>45</xls:Angle>

14 </xls:NoRouteBranch>

15 <xls:NoRouteBranch Streetname=" Ostheimer._Strasse”>

16 <xls:Angle uom="degree”>190</xls:Angle>

17 </xls:NoRouteBranch>

18 <xls:NoRouteBranch Streetname="Ringstrasse”>

19 <xls:Angle uom="degree”>280</xls:Angle>

20 </xls:NoRouteBranch>

21

22 </xls:JunctionCategory>

23

24 <xls:PreviousSegment Streetname="Obere_Torstrasse”>
25 <xls:Distance value="10"></xls:Distance>

26 <xls:TravelTime>P1Y2M3DT10H30M12.3S</xls:Travel Time>
27 <xls:BoundingBox>

28 <gml:po0s>122.452372436 37.7725892713</gml:pos>
29 <gml:po0s>122.452372436 37.7725892713</gml:pos>
30 </xls:BoundingBox>

31 </xls:PreviousSegment>

32

33 </xls:XManeuver>

An instruction based on this data could, for example, be:

“Take the second branch on your right.”

N —

OO0 Ut~ w

10

12
13
14
15

17
18
19

20
21

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

44
45
46
47
48
49
50
o1
52

5 Schema

<?xml version="1.0" encoding="UTF-8” 7>
<schema xmlns:gml="http://www.opengis.net/gml” xmlns:xls="http://www.
opengis.net/x1ls” xmlns="http://www.w3.o0rg/2001/XMLSchema”
targetNamespace="http://www.opengis.net/xls” elementFormDefault="
qualified”>
<import namespace="http://www.opengis.net/gml” schemaLocation="gml4xls.
xsd” />
<include schemaLocation="ADT.xsd” />
<include schemaLocation="ADT_Navigation.xsd” />

<!—— Basic element —>
<element name="XManeuverList” type="xls:XRouteManeuverListType” />
<!— (General Types —>
<complexType name="XRouteManeuverListType”>
<annotation>

<documentation>Extended version of the
AbstractManeuverListType. Defines a list of
travel maneuvers (chapter 5.3)
</documentation>
</annotation>
<complexContent>
<extension base="xls:RouteManeuverListType”>
<sequence>
<element name="StartingManeuver” type="
xls:XStartingManeuverType”>
<annotation>
<documentation>
Element describing the starting maneuver
(chapter 5.3.1)
</documentation>
</annotation>
</element>
<element name="EndManeuver” type="xls:XEndManeuverType”’>
<annotation>
<documentation>
Element describing the starting maneuver
(chapter 5.3.1)
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name=" XStartingManeuverType”>
<annotation>
<documentation>
All information about the first instruction of a route
(chapter 5.3.1)
</documentation>
</annotation>
<sequence>
<element name=" Address” type="xls:AddressType”>
<annotation>
<documentation>
Element providing the street address of
the starting point. AddressType is explained
in the OpenLS specification.

o7

CHAPTER 5. SCHEMA

53 </documentation>

54 </annotation>

55 </element>

56 <element name=" Position” type="gml:PointType”>

57 <annotation>

58 <documentation>

59 Geographic location of the starting point encoded

60 as gml:PointType

61 </documentation>

62 </annotation>

63 </element>

64 <element name="Landmark” type="xls:StartingPointLMType”>

65 <annotation>

66 <documentation>

67 Landmark used for orientating the traveller at

68 the starting point

69 </documentation>

70 </annotation>

71 </element>

72 </sequence>

73 <attribute name="i1d” type="ID” use="required” />

74 <attribute name=" Orientation” type="gml:CompassPointEnumeration” use=
?required”>

75 <annotation>

76 <documentation>

77 Specifying the travel direction as an orientation

78 encoded as gml:CompassPointEnumeration.

79 </documentation>

80 </annotation>

81 </attribute>

82 <attribute name=" RoadDirection” type="xls:RoadDirectionType” use="
optional”>

83 <annotation>

84 <documentation>

85 The direction to travel along the first route segment

86 from the starting point.

87 </documentation>

88 </annotation>

89 </attribute>

90 </complexType>

91 <complexType name="XEndManeuverType”>

92 <annotation>

93 <documentation>All information about the last instruction of a

route

94 (chapter 5.3.2)

95 </documentation>

96 </annotation>

97 <sequence>

98 <element name=" Address” type="xls:AddressType”>

99 <annotation>

100 <documentation>

101 Element providing the street address of

102 the end point. AddressType is explained in the OpenLS

103 specification .

104 </documentation>

105 </annotation>

106 </element>

107 <element name="Position” type="gml:PointType”>

108 <annotation>

109 <documentation>

110 Geographic location of the end point encoded as

111 gml:PointType

112 </documentation>

113 </annotation>

114 </element>

115 <element name="Landmark” type="xls:EndPointLMType”>

o8

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

<annotation>
<documentation>
Landmark used for orientating the traveller at
the starting point
</documentation>
</annotation>
</element>
<element name="PreviousSegment” type="xls:XRouteSegment”>
<annotation>
<documentation>
Segment leading to the end point
</documentation>
</annotation>
</element>
</sequence>
<attribute name="i1d” type="ID” use="required” />
<attribute name="SideOfRoad” type="xls:SideOfRoadType” use="optional”
>
<annotation>
<documentation>
Specifying on which side of the road the destination is
located. Using an OpenLS simple type
</documentation>
</annotation>
</attribute>
</complexType>
<complexType name=" XManeuverType”>
<annotation>
<documentation>
Extended version of the
AbstractManeuverListType. Defines a travel maneuver (chapter
5.)
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractManeuverType”>
<sequence>
<element name="JunctionCategory” type="xls:AbstractJunctionType
77>
<annotation>
<documentation>
This element contains the category of the intersection
</documentation>
</annotation>
</element>
<element name="Landmark” type="xls:AbstractlEDPLMType”
minOccurs="0" maxOccurs="unbounded”>
<annotation>
<documentation>
List of l—element—DP landmarks at this decision point.
</documentation>
</annotation>
</element>
<element name="PreviousSegment” type="xls:XRouteSegment”>
<annotation>
<documentation>
This element contains the previous route segment
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<element name="XManeuver” type="xls:XManeuverType” substitutionGroup="
xls:_Manuever”>

99

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

CHAPTER 5. SCHEMA

<annotation>
<documentation>
A travel maneuver.
</documentation>
</annotation>
</element>
<complexType name="RoadNameChangeType”>
<annotation>
<documentation>
Information about a road name change
</documentation>
</annotation>
<sequence>
<element name="PointPosition” type="gml:PointType”>
<annotation>
<documentation>
Position encoded as a gml:PointType
</documentation>
</annotation>

</element>
</sequence>
<attribute name="NewName” type="string” use="required”>
<annotation>
<documentation>

The new street name
</documentation>
</annotation>
</attribute>
</complexType>
<complexType name=" XRouteSegment”>
<annotation>
<documentation>
RouteSegmentExtendedtype extension by landmarks
</documentation>
</annotation>
<complexContent>
<extension base="xls:RouteSegmentExtendedType”>
<sequence>
<element name="Landmark” type="xls:NonDPPLMType” minOccurs="0"
maxQOccurs="unbounded”>
<annotation>
<documentation>
List of point—landmarks at this decision point.
</documentation>
</annotation>
</element>
<element name="RoadNameChange” type="xls:RoadNameChangeType”
minOccurs="0">
<annotation>
<documentation>
Information about a street name change
</documentation>
</annotation>
</element>
</sequence>
<attribute name="Streetname” type="string” use="required”>
<annotation>
<documentation>
Streetname of the segment
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name="Branch”>

60

242 <annotation>

243 <documentation>

244 Type representing a branch of an intersection
245 </documentation>

246 </annotation>

247 <sequence>

248 <element name=" Angle” type="gml:AngleType”>
249 <annotation>

250 <documentation>

251 Angle between branch and incoming branch.
252 </documentation>

253 </annotation>

254 </element>

255 </sequence>

256 <attribute name="Streetname” type="string” use="required”>
257 <annotation>

258 <documentation>

259 Name of the street/branch

260 </documentation>

261 </annotation>

262 </attribute>

263 </complexType>

264 <!— Junctions —>

265 <complexType name=" AbstractJunctionType” abstract="true”>
266 <annotation>

267 <documentation>

268 Abstract type for a description of an intersection

269 </documentation>

270 </annotation>

271 <sequence>

272 <element name=" RouteBranch” type="xls:Branch”>

273 <annotation>

274 <documentation>

275 Angle of the outgoing branch in respect with the incoming
branch

276 encoded gml:AngleType

277 </documentation>

278 </annotation>

279 </element>

280 <element name="NoRouteBranch” type="xls:Branch” minOccurs="0"

maxOccurs="unbounded”>

281 <annotation>

282 <documentation>

283 Angle of the other branches in respect with the incoming
branch

284 encoded gml:AngleType. One elment for each branch.

285 </documentation>

286 </annotation>

287 </element>

288 </sequence>

289 <attribute name="Name” type="string” use="optional”>

290 <annotation>

291 <documentation>

292 If the intersection has a name.

293 </documentation>

294 </annotation>

295 </attribute>

296 </complexType>
297 <complexType name=" AbstractNonCompetingType” abstract="true”>
298 <annotation>

299 <documentation>

300 Abstract type for a description of an intersection
301 </documentation>

302 </annotation>

303 <complexContent>

304 <extension base="xls:AbstractJunctionType” />

61

305
306
307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

CHAPTER 5. SCHEMA

</complexContent>
</complexType>
<complexType name=" TIntersectionType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractNonCompetingType”>
<attribute name="TurnDirection” type="xls:TurnDirectionTFType”
use="required”>
<annotation>
<documentation>
Possible directions
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name=" ForkIntersectionType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractNonCompetingType”>
<attribute name="TurnDirection” type="xls:TurnDirectionTFType”
use="required”>
<annotation>
<documentation>
Possible directions
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name=" StandardIntersectionType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractNonCompetingType”>
<attribute name="TurnDirection” type="xls:TurnDirectionSIType”
use="required”>
<annotation>
<documentation>
Possible directions
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name=" CompetingBranchesType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>
<complexContent>

62

368
369

370
371
372
373
374
375
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

<extension base="xls:AbstractJunctionType”>
<attribute name="TurnDirection” type="xls:TurnDirectionCType”
="required”>
<annotation>
<documentation>
Possible directions
</documentation>
</annotation>
</attribute>
<attribute name="numberExitsToPass” type="nonNegativelnteger”
="required”>
<annotation>
<documentation>
number of exits to pass
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name="LargeRoundaboutType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractJunctionType”>
<attribute name="numberExitsToPass” type="nonNegativelnteger”
="required”>
<annotation>
<documentation>
number of exits to pass
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name=" SmallRoundaboutType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractJunctionType”>

<attribute name="TurnDirection” type="xls:TurnDirectionSRType’

use="required”>
<annotation>
<documentation>
Possible directions
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<!—— Chunking —>
<complexType name="ChunkType”>
<annotation>
<documentation>
Type for chunks subsuming other route directions.
</documentation>
</annotation>
<complexContent>

63

use

use

use

430
431
432

433
434
435
436
437
438
439

440
441
442
443
444
445
446

447
448
449
450
451
452
453

454
455
456
457
458
459
460
461

462
463
464
465
466
467
468
469
470
471

472
473
474
475
476
477
478

479
480
481
482
483
484
485
486
487
488

CHAPTER 5. SCHEMA

<extension base="xls:AbstractManeuverType”>
<sequence>
<element name="ChunkedManeuver” type="xls:AbstractManeuverType”
minOccurs="2" maxOccurs="unbounded”>
<annotation>
<documentation>
List of the chunked maneuvers.
</documentation>
</annotation>
</element>
<element name="ChunkingElement” type="
xls:AbstractChunkingElementType”>
<annotation>
<documentation>
Element specifying the end of the chunk.
</documentation>
</annotation>
</element>
<element name="LastIntersection” type="xls:AbstractJunctionType
” minOccurs="0">
<annotation>
<documentation>
Structure and turn at last intersection
</documentation>
</annotation>
</element>
<element name="ChunkedSegments” type="
xls:RouteSegmentExtendedType”>
<annotation>
<documentation>
Informations about the covered segments
</documentation>
</annotation>
</element>
</sequence>
<attribute name="NumberOfPassedDP” type="positivelnteger” use="
required”>
<annotation>
<documentation>
Attribute for the number of passed decision points.
</documentation>
</annotation>

</attribute>
<attribute name="Streetname” type="string” use="optional”>
<annotation>
<documentation>

Attribute for the streetname, for example
ifstreetname—chunking is used
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<element name=" ChunkManeuver” type="xls:ChunkType” substitutionGroup="
xls:_Manuever”>
<annotation>
<documentation>
A chunked travel maneuver.
</documentation>
</annotation>
</element>
<complexType name=" AbstractChunkingElementType” abstract="true”>
<annotation>
<documentation>
Abstract type for a description of a chunking element

64

489 </documentation>

490 </annotation>

491 </complexType>

492 <complexType name=" RoadHierarchyChunkType”>

493 <annotation>

494 <documentation>

495 Abstract type for a description of an intersection

496 </documentation>

497 </annotation>

498 <complexContent>

499 <extension base="xls:AbstractChunkingElementType”>

500 <sequence>

501 <element name="ChunkingElement” type="
xls:AbstractChunkingElementType”>

502 <annotation>

503 <documentation>

504 Identifying the end of the chunk

505 </documentation>

506 </annotation>

507 </element>

508 </sequence>

509 <attribute name="LevelName” type="string” use="required”>

510 <annotation>

511 <documentation>

512 Name of the street hierarchy level

513 </documentation>

514 </annotation>

515 </attribute>

516 </extension>

517 </complexContent>

518 </complexType>
519 <complexType name="NElementLMChunkType”>

520 <annotation>

521 <documentation>

522 Chunking using a linear landmark

523 </documentation>

524 </annotation>

525 <complexContent>

526 <extension base="xls:AbstractChunkingElementType”>

527 <sequence>

528 <element name="ChunkingElement” type="
xls:AbstractChunkingElementType” minOccurs="0">

529 <annotation>

530 <documentation>

531 Identifying the end of the chunk

532 </documentation>

533 </annotation>

534 </element>

535 <element name="ChunkingLM” type="xls:AbstractNElementLMType”>

536 <annotation>

537 <documentation>

538 Identifying the chunk with a n—elments—landmark

539 </documentation>

540 </annotation>

541 </element>

542 </sequence>

543 </extension>

544 </complexContent>

545 </complexType>
546 <complexType name="PointLMChunkType”>

547 <annotation>

548 <documentation>

549 Abstract type for a description of an intersection
550 </documentation>

551 </annotation>

552 <complexContent>

65

553
554
555
556
957
558
559
560
561
562
963
564
565
566
567
568
569
570
571
572
973
574
975
576
577
578
579
580
581
082
583

584
585
586
587
588
589
590
591
592
593
594
995
596
997
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

CHAPTER 5. SCHEMA

<extension base="xls:AbstractChunkingElementType”>
<sequence>
<element name="ChunkingLM” type="xls:AbstractlIEDPLMType”>
<annotation>
<documentation>
Identifying the end of the chunk
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name=" StructureChunkType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>

<complexContent>
<extension base="xls:AbstractChunkingElementType”>
<sequence>
<choice>
<element name=" TIntersection” type="xls:TIntersectionType”>
<annotation>
<documentation>

Identifying the end of the chunk
</documentation>
</annotation>
</element>
<element name=" ForkIntersection” type="
xls:ForkIntersectionType”>
<annotation>
<documentation>
Identifying the end of the chunk
</documentation>
</annotation>
</element>
<element name=" SRoundabout” type="xls:SmallRoundaboutType”>
<annotation>
<documentation>
Identifying the end of the chunk
</documentation>
</annotation>
</element>
<element name="LRoundabout” type="xls:LargeRoundaboutType”>
<annotation>
<documentation>
Identifying the end of the chunk
</documentation>
</annotation>
</element>
</choice>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name=" NumericalChunkingTurnType”>
<annotation>
<documentation>
Abstract type for a description of an intersection
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractChunkingElementType”>

66

617

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

<attribute name="TurnDirection” type="xls:TurnDirectionChunkType”
use="required”>
<annotation>
<documentation>
Name of the street hierarchy level
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name=" NumericalChunkingStraightType”>
<annotation>
<documentation>
Indicates to chunk straight turns
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractChunkingElementType”>
</extension>

</complexContent>
</complexType>
<!—— Landmarks —>

<complexType name=" AbstractLMDescriptionType” abstract="true”>
<annotation>
<documentation>
Abstract type for a description of a landmark
</documentation>
</annotation>
</complexType>
<complexType name="LMDescriptionExampleType”>
<annotation>
<documentation>
Example type for a description of a landmark
</documentation>
</annotation>

<complexContent>
<extension base="xls:AbstractLMDescriptionType”>
<sequence>
<choice>
<element name=”"PictureData” type="base64Binary” minOccurs="0"
>
<annotation>

<documentation>

Picture of the landmark encoded with base64
</documentation>
</annotation>
</element>
<element name="PictureUrl” type="string” minOccurs="0">
<annotation>
<documentation>
Url of a picture of the landmark.
</documentation>
</annotation>
</element>
</choice>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name=" AbstractLandmarkType” abstract="true”>
<annotation>
<documentation>
The super type of all landmarks
</documentation>
</annotation>

67

CHAPTER 5. SCHEMA

681 <sequence>

682 <element name="Description” type="xls:AbstractLMDescriptionType”>
683 <annotation>

684 <documentation>

685 Every landmark has to be described.

686 </documentation>

687 </annotation>

688 </element>

689 </sequence>

690 <attribute name="Name” type="string” use="optional” />

691 </complexType>
692 <complexType name="StartingPointLMType”>

693 <annotation>

694 <documentation>

695 Landmark for orientation at a starting point.

696 </documentation>

697 </annotation>

698 <complexContent>

699 <extension base="xls:AbstractLandmarkType”>

700 <choice>

701 <element name=" PointPosition” type="gml:PointType”>

702 <annotation>

703 <documentation>

704 A starting point landmark can have a point—like geometry

705 encoded as gml:PointType.

706 </documentation>

707 </annotation>

708 </element>

709 <element name="LinePosition” type="gml:LineStringType”>

710 <annotation>

711 <documentation>

712 A starting point landmark can have a linear—like geometry

713 encoded as gml:LineStringType.

714 </documentation>

715 </annotation>

716 </element>

717 <element name=" AreaPosition” type="gml:PolygonType”>

718 <annotation>

719 <documentation>

720 A starting point landmark can have a area—like geometry

721 encoded as gml:PolygonType.

722 </documentation>

723 </annotation>

724 </element>

725 </choice>

726 <attribute name=" Orientation” type="gml:CompassPointEnumeration”
use="required”>

727 <annotation>

728 <documentation>

729 Orientation of landmark respective the starting point

730 using gml:CompassPointEnumeration.

731 </documentation>

732 </annotation>

733 </attribute>

734 <attribute name=" SpatialRelation” type="xls:StartLMRelationType”
use="optional”>

735 <annotation>

736 <documentation>

737 Spatial relation of landmark and starting point.

738 </documentation>

739 </annotation>

740 </attribute>

741 </extension>

742 </complexContent>

743 </complexType>
744 <complexType name=" EndPointLMType”>

68

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778

779
780
781
782
783
784
785
786

787
788
789
790
791
792
793

794
795
796

797
798
799
800
801
802
803
804
805
806

<annotation>
<documentation>
Landmark for orientation at a end point.
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractLandmarkType”>
<choice>
<element name=" PointPosition” type="gml:PointType”>
<annotation>
<documentation>
A end point landmark can have a point—like geometry
encoded as gml:PointType.
</documentation>
</annotation>
</element>
<element name="LinePosition” type="gml:LineStringType”>
<annotation>
<documentation>
A end point landmark can have a linear—like geometry
encoded as gml:LineStringType.
</documentation>
</annotation>
</element>
<element name=" AreaPosition” type="gml:PolygonType”>
<annotation>
<documentation>
A end point landmark can have a area—like geometry
encoded as gml:PolygonType.
</documentation>
</annotation>
</element>
</choice>
<attribute name=" Orientation” type="gml:CompassPointEnumeration”
use="required”>
<annotation>
<documentation>
Orientation of landmark respective the starting point
using gml:CompassPointEnumeration.
</documentation>
</annotation>
</attribute>
<attribute name=" SpatialRelation” type="xls:EndLMRelationType”
use="optional”>
<annotation>
<documentation>
Spatial relation of landmark and end point.
</documentation>
</annotation>
</attribute>
<attribute name="SideOfRoad” type="xls:SideOfRoadType” use="
optional”>
<annotation>
<documentation>
Specifying on which side of the road the end point landmark
is
located . Using an OpenLS simple type
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name="AbstractlElementLMType” abstract="true”>
<annotation>
<documentation>

69

807

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

CHAPTER 5. SCHEMA

The super type of all landmarks identifying only one route
element .
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractLandmarkType” />
</complexContent>
</complexType>
<complexType name="AbstractIEDPLMType” abstract="true”>
<annotation>
<documentation>
The super type of all point—landmarks
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractlElementLMType” />
</complexContent>
</complexType>
<complexType name="AreaLM1Type”>
<annotation>
<documentation>
The super type of all l1—element areal landmarks
</documentation>
</annotation>

<complexContent>
<extension base="xls:AbstractlIEDPLMType”>
<sequence>
<element name="PolygonPosition” type="gml:PolygonType”>
<annotation>
<documentation>

Position encoded as a gml:PolygonType
</documentation>
</annotation>
</element>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="AbstractNElementLMType” abstract="true”>
<annotation>
<documentation>
The super type of all landmarks identifying only one route
element .
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractLandmarkType” />
</complexContent>
</complexType>
<complexType name="AreaLMNType” >
<annotation>
<documentation>
The super type of all n—elements areal landmarks
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractNElementLMType”>
<sequence>
<element name=" PolygonPosition” type="gml:PolygonType”>
<annotation>
<documentation>
Position encoded as a gml:PolygonType
</documentation>
</annotation>
</element>
</sequence>

70

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

</extension>
</complexContent>
</complexType>
<complexType name=" AbstractLineLMType”>
<annotation>
<documentation>
The super type of all type representing a landmark
with a linear—like function.
</documentation>

</annotation>

<complexContent>
<extension base="xls:AbstractNElementLMType”>
<sequence>
<choice>
<element name="PolygonPosition” type="gml:PolygonType”>
<annotation>
<documentation>

Position encoded as a gml:PolygonType
</documentation>
</annotation>
</element>
<element name=" LinePosition” type="gml:LineStringType”>
<annotation>
<documentation>
Position encoded as a gml:LineStringType
</documentation>
</annotation>
</element>
</choice>
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="IdentifyingLLType”>
<annotation>
<documentation>
Representing a landmark with a linear—like function,
which identifies the last DP.
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractLineLMType”>
<attribute name=" SpatialRelation” type="
xls:SpatialRelationLinearIdentType” use="required”>
<annotation>
<documentation>
Spatial relation of the linear landmark to the route
</documentation>
</annotation>
</attribute>
</extension>
</complexContent>
</complexType>
<complexType name=" NotldentifyingLLType”>
<annotation>
<documentation>
Representing a landmark with a linear—like function,
which identifies the last DP.
</documentation>
</annotation>
<complexContent>
<extension base="xls:AbstractLineLMType”>
<sequence>
<element name="Landmark” type="xls:AbstractlElementLMType”>
<annotation>
<documentation>

71

CHAPTER 5. SCHEMA

936 Landmark that identifies the end of the relation
937 between route and linear function landmark.

938 </documentation>

939 </annotation>

940 </element>

941 </sequence>

942 </extension>

943 </complexContent>

944 </complexType>
945 <complexType name="NonDPPLMType”>

946 <annotation>

947 <documentation>

948 Representing a landmark with a linear—like function,

949 which identifies the last DP.

950 </documentation>

951 </annotation>

952 <complexContent>

953 <extension base="xls:AbstractlElementLMType”>

954 <sequence>

955 <choice>

956 <element name="PointPosition” type="gml:PointType”>

957 <annotation>

958 <documentation>

959 Position encoded as a gml:PointType

960 </documentation>

961 </annotation>

962 </element>

963 <element name="LinePosition” type="gml:LineStringType”>

964 <annotation>

965 <documentation>

966 Position encoded as a gml:LineStringType

967 </documentation>

968 </annotation>

969 </element>

970 <element name=" PolygonPosition” type="gml:PolygonType”>

971 <annotation>

972 <documentation>

973 Position encoded as a gml:PolygonType

974 </documentation>

975 </annotation>

976 </element>

977 </choice>

978 </sequence>

979 <attribute name="SpatialRelation” type="
xls:SpatialRelationNonDPType” use="required”>

980 <annotation>

981 <documentation>

982 Spatial relation between landmark and route segment.

983 </documentation>

984 </annotation>

985 </attribute>

986 </extension>

987 </complexContent>

988 </complexType>
989 <complexType name="GSOLMType”>

990 <annotation>

991 <documentation>

992 Representing a landmark with a point—like function,
993 which belongs to the categroy general salient object.
994 </documentation>

995 </annotation>

996 <complexContent>

997 <extension base="xls:AbstractlEDPLMType”>

998 <sequence>

999 <choice>

1000 <element name=" PointPosition” type="gml:PointType”>

72

1001 <annotation>

1002 <documentation>

1003 Position encoded as a gml:PointType

1004 </documentation>

1005 </annotation>

1006 </element>

1007 <element name="LinePosition” type="gml:LineStringType”>

1008 <annotation>

1009 <documentation>

1010 Position encoded as a gml:LineStringType

1011 </documentation>

1012 </annotation>

1013 </element>

1014 <element name=" PolygonPosition” type="gml:PolygonType”>

1015 <annotation>

1016 <documentation>

1017 Position encoded as a gml:PolygonType

1018 </documentation>

1019 </annotation>

1020 </element>

1021 </choice>

1022 </sequence>

1023 <attribute name=" SpatialRelation” type="
xls:SpatialRelationGSOType” use="required”>

1024 <annotation>

1025 <documentation>

1026 Spatial relation between landmark and route segment.

1027 </documentation>

1028 </annotation>

1029 </attribute>

1030 </extension>

1031 </complexContent>

1032 </complexType>
1033 <complexType name=" StreetnameLMType”>

1034 <annotation>

1035 <documentation>

1036 Representing a landmark with a point—like function,

1037 which belongs to the categroy streetname.

1038 </documentation>

1039 </annotation>

1040 <complexContent>

1041 <extension base="xls:AbstractlEDPLMType”>

1042 <sequence>

1043 <element name=" PositionAtIntersection” type="gml:AngleType”>
1044 <annotation>

1045 <documentation>

1046 Position at intersection encoded as a gml:AngleType
1047 </documentation>

1048 </annotation>

1049 </element>

1050 </sequence>

1051 </extension>

1052 </complexContent>

1053 </complexType>
1054 <complexType name="StructureLMType”>

1055 <annotation>

1056 <documentation>

1057 Representing a landmark with a point—like function,
1058 which belongs to the categroy structure.

1059 </documentation>

1060 </annotation>

1061 <complexContent>

1062 <extension base="xls:AbstractlEDPLMType”>

1063 <sequence>

1064 <element name="Intersection” type="xls:AbstractJunctionType”>
1065 <annotation>

73

CHAPTER 5. SCHEMA

1066 <documentation>

1067 Type of intersection encoded as a AbstractJunctionType
1068 </documentation>

1069 </annotation>

1070 </element>

1071 </sequence>

1072 </extension>

1073 </complexContent>

1074 </complexType>
1075 <!—— Simple Types —>
1076 <simpleType name="RoadDirectionType”>

1077 <annotation>

1078 <documentation>

1079 Enumeration of possible turn directions along a road
1080 at the start of a route.

1081 </documentation>

1082 </annotation>

1083 <restriction base="string”>

1084 <enumeration value="straight” />
1085 <enumeration value="left” />
1086 <enumeration value="right” />
1087 </restriction>

1088 </simpleType>
1089 <simpleType name="StartLMRelationType”>

1090 <annotation>

1091 <documentation>

1092 Enumeration of possible spatial relations of a start landmark to
1093 the starting point of a route.

1094 </documentation>

1095 </annotation>

1096 <restriction base="string”>

1097 <enumeration value="towards” />

1098 <enumeration value="away” />

1099 </restriction>

1100 </simpleType>
1101 <simpleType name="EndLMRelationType”>

1102 <annotation>

1103 <documentation>

1104 Enumeration of possible spatial relations of a end landmark to
1105 the destination of a route.
1106 </documentation>

1107 </annotation>

1108 <restriction base="string”>

1109 <enumeration value="opposite” />
1110 <enumeration value="left” />
1111 <enumeration value="right” />
1112 </restriction>

1113 </simpleType>
1114 <simpleType name=" SpatialRelationLinearldentType”>

1115 <annotation>

1116 <documentation>

1117 Enumeration of possible spatial relations of a linear—function
1118 landmark to the route.

1119 </documentation>

1120 </annotation>

1121 <restriction base="string”>

1122 <enumeration value="along” />

1123 <enumeration value="after” />

1124 </restriction>

1125 </simpleType>
1126 <simpleType name="SpatialRelationNonDPType”>

1127 <annotation>

1128 <documentation>

1129 Enumeration of possible spatial relations of a linear—function
1130 landmark to the route.

1131 </documentation>

74

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

</annotation>

<restriction base="string”>
<enumeration value="pass” />
<enumeration value="cross” />
<enumeration value="through” />

</restriction>

</simpleType>
<simpleType name="SpatialRelationGSOType”>
<annotation>
<documentation>

Enumeration of possible spatial relations of a linear—function
landmark to the route.
</documentation>
</annotation>
<restriction base="string”>
<enumeration value="at” />
<enumeration value="after” />
<enumeration value="before” />
</restriction>

</simpleType>
<simpleType name="TurnDirectionTFType”>
<annotation>
<documentation>

Enumeration of possible spatial relations of a linear—function
landmark to the route.
</documentation>
</annotation>
<restriction base="string”>
<enumeration value="left” />
<enumeration value="right” />
</restriction>

</simpleType>
<simpleType name="TurnDirectionSIType”>
<annotation>
<documentation>

Enumeration of possible spatial relations of a linear—function
landmark to the route.
</documentation>
</annotation>
<restriction base="string”>
<enumeration value="left” />
<enumeration value="right” />
<enumeration value="straight” />
<enumeration value="slightLeft” />
<enumeration value="slightRight” />
<enumeration value="sharpLeft” />
<enumeration value="sharpRight” />
</restriction>

</simpleType>
<simpleType name=" TurnDirectionCType”>
<annotation>
<documentation>

Enumeration of possible spatial relations of a linear—function
landmark to the route.
</documentation>
</annotation>
<restriction base="string”>
<enumeration value="left” />
<enumeration value="right” />
</restriction>

</simpleType>
<simpleType name="TurnDirectionSRType”>
<annotation>
<documentation>

Enumeration of possible spatial relations of a linear—function
landmark to the route.

75

CHAPTER 5. SCHEMA

1198 </documentation>

1199 </annotation>

1200 <restriction base="string”>

1201 <enumeration value="left” />
1202 <enumeration value="straight” />
1203 <enumeration value="right” />
1204 </restriction>

1205 </simpleType>
1206 <simpleType name="TurnDirectionChunkType”>

1207 <annotation>

1208 <documentation>

1209 Enumeration of possible spatial relations of a linear—function
1210 landmark to the route.

1211 </documentation>

1212 </annotation>

1213 <restriction base="string”>

1214 <enumeration value="left” />

1215 <enumeration value="right” />

1216 </restriction>

1217 </simpleType>
1218 </schema>

76

Bibliography

1]

Bychowski, T. (2003): OpenGIS Location Services (OpenLS): Part 6 —
Navigation Service. OGC Implementation Specification 03-007r1 (Version
0.5.0). Open GIS Consortium Inc.

Cox, S., Daisey, P., Lake, R., Portele, C., Whiteside, A. (2004): OpenGIS
Geography Markup Language (GML) Implementation Specification 03-
105r1 Version 3.1.0. Open Gis Consortium Inc.

Dale, R., Geldof, S., Prost, J.-P. (2003): CORAL: Using natural language
generation for navigational assistance. In: Oudshoorn, M. (Ed.), Proceed-
ings of the 26th Australasian Computer Science Conference (ACSC2003),
Adelaide, Australia.

Denis, M. (1997): The description of routes: A cognitive approach to the
production of spatial discourse. Cahiers de Psychologie Cognitive, 16:409-
458.

Denis, M., Pazzaglia, F., C.Cornoldi & Bertolo, L. (1999): Spatial dis-
course and navigation: An analysis of route directions in the city of Venice.
Applied Cognitive Psychology 13:145-174.

Freed, N., Borenstein, N., (1996): Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. Internet Engineer-
ing Task Force.

Hansen, S., Richter, K.-F., Klippel, A. (2006): Landmarks in OpenLS -
a data structure for cognitive ergonomic route directions. In M. Raubal,
H. Miller, A. U. Frank, M. F. Goodchild (Eds.), Geographic Information
Science - Fourth International Conference, GIScience 2006 (pp. 128-144).
Springer, Berlin.

International Organization for Standardisation (ISO), (2001): ISO 19118
Draft International Standard: Geographic Information — Encoding. Doc-
ument ISO/TC211 N1136, Technical Committee 211, ISO Secretariat,
Geneva, Switzerland.

Klippel, A, Dewey, C., Knauff, M., Richter, K.-F., Montello, D. R., Freksa,
C., Loeliger, E.-A. (2004): Direction Concepts in Wayfinding Assistance
Systems. In: Baus, J., Kray, C., Porzel, R. (Eds.), Workshop on Artifi-
cial Intelligence in Mobile Systems 2004 (AIMS’04), SEFB 378 Memo 84,
Saarbriicken, pp. 1-8.

7

Bibliography

[10]

[16]

[17]

Klippel, A., Hansen, S., Davies, J., Winter, S. (2005): A High-Level Cog-
nitive Framework For Route Directions. Proceedings of SSC 2005 Spatial
Intelligence, Innovation and Praxis: The national biennial Conference of

the Spatial Science Institute. September 2005. Melbourne:Spatial Science
Institute. ISBN 0-9581366-2-9

Klippel, A., Richter, K.-F., Hansen, S. (2005): Structural salience as a
landmark. Workshop Mobile Maps 2005, Salzburg, Austria.

Klippel, A., Tappe, T., Habel, C. (2003): Pictorial representations of
routes: Chunking route segments during comprehension. In C. Freksa, W.
Brauer, C. Habel, and K.F. Wender (Eds.), Spatial Cognition III. Routes
and Navigation, Human Memory and Learning, Spatial Representation
and Spatial Learning (pp. 11-33). Springer, Berlin.

Klippel, A., Tappe, T., Kulik, L., Lee, P.U. (2005): Wayfinding choremes
- A language for modeling conceptual route knowledge. Journal of Visual
Languages and Computing, 16(4):311-329.

Klippel, A. Tenbrink, T., Montello, D. R. (submitted): The role of struc-
ture and function in the conceptualization of directions.

Lovelace, K. L., Hegarty, M., and Montello, D. R. (1999). Elements of
good route directions in familiar and unfamiliar environments. In C. Freksa
& D. M. Mark (eds.), Spatial Information Theory - Cognitive and Com-
putational Foundations of Geopraphic Information Science, (pp. 65-82).
International Conference COSIT, Berlin: Springer.

Mabrouk, M. (2005): OpenGIS Location Services (OpenLS): Core Ser-
vices. OGC Implementation Specification 05-016 Version 1.1. Open GIS
Consortium Inc.

Michon, P.-E., Denis, M. (2001): When and why are visual landmarks
used in giving directions? In: Montello, D.R. (Ed.), Spatial Information
Theory. Foundations of Geographic Information Science (pp. 292-305). In-
ternational Conference, COSIT 2001. Springer, Berlin.

The Open Geospatial Consortium (OGC). http://www.opengis.org.

Richter, K.-F., Klippel, A. (2005): A model for context-specific route
directions. In: Freksa, C., Knauff, M., Krieg-Briickner, B., Nebel, B.,
Barkowsky, T. (Eds.), Spatial Cognition IV. Reasoning, Action, and In-
teraction: International Conference Spatial Cognition 2004 (pp. 58-78).
Springer, Berlin.

78

