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Abstract

We present a qualitative positional calculus which uses oriented points as basic
entities. In contrast to often-used simple points, we consider objects that have
an intrinsic direction. Having an intrinsic orientation is an important property of
natural objects.

1 Introduction
Qualitative Reasoning about space abstracts from the physical world and enables com-
puters to make predictions about spatial relations, even when a precise quantitative
information is not available [2]. The two main trends in Qualitative Spatial Reason-
ing are topological reasoning about regions [2, 9] and positional reasoning about point
configurations [3, 11]. Especially positional reasoning is important for robot navigation
[8].
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Figure 1: An oriented point and its qualitative spatial relative directions

In the aforementioned approaches about orientations objects and locations are rep-
resented as simple, featureless points. In contrast, our paper presents a positional calcu-
lus which uses more complex basic entities. It is based on objects which are represented
as oriented points. It is closely related to a previously designed calulus which is based
on straight line segments (dipoles) [7]. Conceptually our new calculus can be viewed
as a transition from oriented line segements with concrete lenght to line segments with
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infinitely small length. In this conceptualisation the length of the objects is of no im-
portance any longer. So only the direction of the objects is modelled. O-points, how
we termed these oriented points, may be specified as pair of a point and a direction on
the 2D-plane.

2 Reasoning with coarse o-point relations
In the coarsest representation a single o-point induces the sectors depicted in figure 1.
“Front” and “Back” are linear sectors. “Left” and “Right” are half-planes. The posi-
tion of the point itself is denoted as “Same”. A qualitative spatial relative orientation
relation between two o-points is represented by the sector in which the second o-point
lies with respect to the frist one and by the sector in which the first one lies with respect
to the second one.

For the general case of the two points having differnt positions we use the concate-
nated string of both sector names as relation symbol. Then the configuraton shown
on figure 2 is expressed with the relationA RightLeft B. If both points share the same
position the relation symbol starts with the word “Same” and the second substring de-
notes the direction of the second o-point with respect to the first one as shown on figure
3.

The goal of identifying different relations is to obtain a set of jointly exhaustive
and pairwise disjoint atomic relations such that between any two o-points exactly one
relation holds. If these relations form a relation algebra it is possible to apply standard
constraint-based reasoning mechanisms which were originally developed for temporal
reasoning [1] and which have also proved valuable for spatial reasoning.

A
B

Figure 2: Qualitative spatial relation relation between two oriented points on different
positions. The qualitative spatial reltions depicted here is A RightLeft B

Altogether we obtain 20 different atomic relations (four times four general relations
plus four with the o-points at the same position) . These relations are jointly exhaustive
and pairwise disjoint. The relation SameFront is the identity relation. We use OP 1 to
refer to the set of 24 atomic relations, and OPRA1 to refer to the powerset of OP1

which contains all 220 possible unions of the atomic relations.
For reasoning about the o-point relations we apply constraint-based reasoning tech-

niques which were originally introduced for temporal reasoning [1] and which also
proved valuable for spatial reasoning [9, 4]. In order to apply these techniques to a set
of relations, these relations must form a relation algebra [5], i.e. they must be closed
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Figure 3: Qualitative spatial relation relation between two oriented points on the same
position. The qualitative spatial reltions depicted here is A SameRight B

under composition (◦), intersection (∩), complement (.), and converse (^) and there
must be an empty relation, a universal relation, and an identity relation. While the
converse, the complement, and the intersection of relations can be computed from the
set-theoretic definitions of the relations, the composition of relations must be computed
based on the semantics of the relations. The compositions are usually computed only
for the atomic relations which are then stored in a composition table. The composition
of compound relations can be obtained as the union of the compositions of the corre-
sponding atomic relations. The compositions of the atomic relations can be deduced
directly from the geometric semantic of the relations. The composition table (as well
as the converse table) for the atomic relations of theOPRA1 calculus can be obtained
at [12].

O-point constraints are written as xRy where x, y are variables for o-points and R
is a OPRA1 relation. Given a set Θ of o-point constraints, an important reasoning
problem is deciding whether Θ is consistent, i.e., whether there is an assignment of all
variables of Θ with dipoles such that all constraints are satisfied (a solution). We call
this problem OPSAT. OPSAT is a Constraint Satisfaction Problem (CSP) [6] and can
be solved using the standard methods developed for CSPs with infinite domains (see,
e.g. [5]).

A partial method for determining inconsistency of a set of constraints Θ is the path-
consistency method which enforces path-consistency on Θ [6]. A set of constraints
is path-consistent if and only if for any two consistent variable instantiatons, there
exists an instantiation of any third variable such that the three values taken together are
consistent. It is necessary but not sufficient for the consistency of a set of constraints
that path-consistency can be enforced. A naive way to enforce path-consistency is to
strengthen relations by successively applying the following operation until a fixed point
is reached:

∀i, j, k : Rij ← Rij ∩ (Rik ◦Rkj)
where i, j, k are nodes and Rij is the relation between i and j. The resulting set of
constraints is equivalent to the original set, i.e. it has the same set of solutions. If the
empty relation occurs while performing this operation Θ is inconsistent, otherwise the
resulting set is path-consistent.
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3 Finer grained o-point calculi
The design principle for OPRA1 can be generalized to calculi OPRAm. Then an
angular resulution of 360

2m degree is used for the representation (a similar scheme for
absolute direction instead of relative direction was recently designed by Renz and Mitra
[10]).
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Figure 4: OPRA2 granularity
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Figure 5: OPRA4 granularity

For formally specifying the o-point relations we use two-dimensional continuous
space, in particular R2. Every o-point S on the plane is an ordered pair of a point pS
represented by its Cartesian coordinates x and y, with x, y ∈ R and and a direction φS .

S = (pS , φS) , pS = ((pS)x, (pS)y)

We distinguish the relative locations and orientations of the two o-points A and
B expressed by a calculus OPRAm according to the following scheme. We use the
symbol ϕAB for tan−1 (pB)y−(pA)y

(pB)x−(pA)x
(tan−1 has two arguments, the numerator, and

the denominator, and maps to the interval [0, 2π]). If pA 6= pB the relation A m∠ij B
represents the following set of configurations:
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Using this notation a simple manipulation of the parameters yields the converse opera-
tion (m∠ij)^ = m∠ji . If pA = pB the relation A m∠i B represents the following set
of configurations:

((
i+ 1

2
∈ N ∧ i ≥ 1

)
∧
(
φB − φA = 2π

i− 1

4m

))

∨
((

i

2
∈ N ∧ i ≥ 2

)
∧
(

2π
i− 2

4m
< φB − φA < 2π

i

4m

))

Using this notation a simple manipulation of the parameters yields the converse oper-
ation (m∠i)^ = m∠(4m− i) . The composition tables for the atomic relations of
the OPRAm calculi can be generated using a schemata which is based on the param-
eters m, i, j of the corresponding relations (analogous to the generating scheme for the
converse operation). The schemata for the composition operation can be obtained at
[12].

4 Conclusion
We presented a calculus for representing and reasoning about qualitative relative ori-
entation information. Oriented points serve as the basic entities since they are the sim-
plest spatial entities that have an intrinsic orientation. We identified systems of atomic
relations on different granularity levels between o-points and identified a scheme for
computing the calculi’s operation tables based on their geometric semantics, which
allows for applying constraint-based reasoning methods.
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