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Preface

Automated deduction aims at formalizing diverse aspects of reasoning and has many
application areas from software verification to mathematical theorem proving. It is
originally based on algorithmic methods derived from mathematical logics. In con-
trast, human reasoning cannot be completely described by classical logical systems.
Sources of explanations are incomplete knowledge, incorrect beliefs, or inconsisten-
cies. Still, humans have an impressive ability to derive acceptable conclusions. From
the very beginning of Al research, there has been a strong emphasis on incorporating
mechanisms of human rationality and cognition into reasoning systems.

This workshop continues a series of successful workshops initiated by the Special
Interest Group “Cognition” in the GI. This fifth workshop, which is held in conjunc-
tion with KI 2012, aims at bringing together researchers from Al, Automated Deduc-
tion, Computational Logics, and Cognitive Science to foster a multi-disciplinary ex-
change and to discuss possibilities to overcome the historic separation. The call was
open for different topics and we received a variety of papers: contributions which are
strongly focused on non-monotonic logical approaches as a new and vibrant possibil-
ity to explain human reasoning and as a bridging function to inspire both fields, on
using cognitive systems for moral reasoning, on manipulation tasks in cognitive ro-
botics, and on human reasoning in abstract and social contexts. Taken together, we
are surprised by the already existing inter- and transdisciplinary work, and we see that
both fields are not as distinct as we initially thought. Our wish is that new inspirations
and collaborations will emerge from this workshop.

The organizers of this workshop would like to thank the organizers of the KI 2012
conference, the Spatial Cognition Research Center SFB/TR 8 and the Special Priority
Program “New Frameworks of Rationality” (SPP 1516) for their support. We also
would like to thank the members of the Program Committee for their help in selecting
and improving the submitted papers, and finally all participants of the workshop for
their contributions.

Thomas Barkowsky
Marco Ragni
Frieder Stolzenburg
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A Simple Model for the Wason Selection Task

Emmanuelle-Anna Dietz*, Steffen Holldobler*, Marco Ragni**

International Center for Computational Logic, Technische Universitit Dresden
D-01062 Dresden, Germany
Center for Cognitive Science, Friedrichstrafe 50
D-79098 Freiburg, Germany

Abstract. The Wason selection task is probably the most famous and best inves-
tigated research paradigm in the psychology of reasoning. In the classical abstract
version people are presented with cards and have to check a conditional state-
ment. Numerous psychological studies have shown that most people do not solve
this task in terms of classical logic correctly and tend to make similar reasoning
errors. When the same reasoning problem is framed within a social setting, most
people solve the task correctly. All major reasoning theories have tried to explain
the logical errors and the differences between the abstract and the social framing.
In this paper we present a new computational logic approach based on the three-
valued Lukasiewicz logic. According to Kowalski’s representation, we formalize
the abstract and the social case, and show that when reasoning towards the cor-
responding representations, our computational approach adequately reflects the
psychological results.

1 Introduction

In the last century the classical (propositional) logic calculus has played an im-
portant role as a normative concept for psychologists investigating human rea-
soning. Psychological research, however, showed that humans systematically
deviate from the logically correct answers. Some attempts to formalize this be-
havior are already made in the field of Computational Logic such as in non-
monotonic logic, common sense reasoning or three-valued logics, where in-
complete information is expressible. Furthermore, the field of Artificial Neu-
ral Networks and Cognitive Science focus on challenging problems that aim to
simulate and understand human reasoning. Their results are important for our
purpose as they give detailed insight about reasoning processes relative to hu-
man behavior.

Computational approaches which aim at explaining human reasoning should
be cognitively adequate. Usually, the concept of adequacy is measured by dis-
tinguishing between conceptual and inferential adequacy [1]. Conceptual ad-
equacy deals with the representational part of the system. The aim is to have
a representation of the given information such that it captures the structure of
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how it appears in human knowledge. Inferential adequacy measures whether the
computations behave similarly to human reasoning.

Accordingly, Stenning and van Lambalgen [2] argue that human reasoning
should be modeled by, first, reasoning towards an appropriate representation
and, second, by reasoning with respect to this representation. As appropriate
representation for the suppression task, Stenning and van Lambalgen propose
logic programs under completion semantics based on the three-valued logic
used by Fitting [3]. Holldobler and Kencana Ramli [4] have shown that this
approach contains some mistakes but can be corrected by proposing the three-
valued Lukasiewicz [5] logic.

Based on [6] which follows the approach of [4] and models the suppres-
sion task as logic programs together with their weak completion, we apply this
formalization to the Wason selection task [7]. The following section explains
the Wason selection task in detail. After that, we give the necessary definitions
for the formalization of this task which is then presented in Section 4. The last
section discusses implications.

2 Wason Selection Task

The Wason selection task was first published in [7], where subjects had to check
a given conditional statement on some instances. If the problem was presented
as a rather abstract description then almost all subjects made the same logical
mistakes. Griggs and Cox [8] developed an isomorphic representation of the
problem in a social context, and surprisingly almost all of the subjects solved
this task logically correctly.

The Abstract Case Consider the conditional
If there is a D on one side of the card, then there is 3 on the other side.

and four cards on a table showing the letters D and F' as well as the numbers 3
and 7. Furthermore, we know that each card has a letter on one side and a num-
ber on the other side. Which cards must be turned to prove that the conditional
holds? Assume the conditional is represented in classical propositional logic by
the implication

3+ D,! (1)

where the propositional variable 3 represents the fact that the number 3 is shown
and D represents the fact that the letter D is shown. Then, in order to verify the
implication one must turn the cards showing D and 7. However, as repeated
experiments have shown consistently (see Table 1), subjects believe differently.

!'We prefer to write implications in the form conclusion if condition as it is common in logic
programming.



D F 3 7
89% 16% 62% 25%

Table 1. The results of the abstract case of the Wason selection task.

beer coke 22years 16 years
95% 0.025% 0.025%  80%

Table 2. The results of the social case of the Wason selection task.

Whereas 89% of the subjects correctly determine that the card showing D must
be turned (a number other than 3 on the other side would falsify the implication),
62% of the subjects incorrectly suggests to turn the card showing 3 (no rele-
vant information can be found which would falsify the implication). Likewise,
whereas only 25% of the subjects correctly believe that the card showing 7 need
to be turned (if the other side would show a D, then the implication is falsified),
16% incorrectly believe that the card showing F' needs to be turned (no relevant
information can be found which would falsify the implication). In other words,
the overall correctness of the answers for the abstract selection task if modeled
by an implication in classical two-valued logic is pretty bad.

The Social Case Griggs and Cox [8] adapted Wason selection task to a social
case. Consider the conditional
If a person is drinking beer, then the person must be over 19 years of age.

and again consider four cards, where on one side there is the person’s age and
on the other side of the card what the person is drinking: drinking beer, drink-
ing coke, 22 years old and 16 years old. Which drinks and persons must be
checked to prove that the conditional holds? If the conditional is represented by
the implication

0+ b, 2)

where o represents a person being older than 19 years and b represents the person
drinking a beer, then in order to verify the implication one must turn the cards
drinking a beer and 16 years of age. Subjects usually solve the social version of
the selection task correctly. Table 2 shows the results represented in [8] for the
social case.

The Problem 1s there a formalization which adequately models the answers
provided by subjects on the abstract as well as on the social case of the task?

In the last chapter of [2], Stenning and van Lambalgen give a detailed overview
of various explanations for the problem addressed. Wason [7] proposed a de-
fective truth table to explain how humans reason with conditionals. When the
antecedent of a conditional is false, then normally people consider the whole
conditional as irrelevant and ignore it for further reasoning. Evans [9] describes
a phenomenon called the matching bias, where people tend to consider only the
present values in the conditional. For instance, in the abstract case, card D is the



easiest one to solve because this rule is only true when both values present in
the rule are on the card. On the other hand, card 7, is the most difficult one, be-
cause people have to make a double mismatch, that is, they have to consider the
situation where not 3 is on the card and therefore not D has to be on the other
side. Most people would give the correct conclusion when explicitly generating
an impossible situation: If there is D on one side and there is not 3 on the other
side, then false. Why do people not make these mistakes in the social case?

3 Preliminaries

We define the necessary notations we will use throughout this paper and restrict
ourselves to propositional logic as this is sufficient to solve the selection task.

3.1 Licenses for Implications

As already mentioned in the introduction, Stenning and van Lambalgen dis-
tinguish between two steps when modeling human reasoning. We adopt the first
step, in particular, the idea to represent conditionals by licenses for implications.
This can be achieved by adding an abnormality predicate to the antecedent of
the implication. Applying this idea to the Wason selection task we obtain

3« D A —ab 3)

instead of (1) and
0 < b A —aby (@Y)

instead of (2), where —ab; and —ab are used to express that the corresponding
rules hold unless there are some abnormalities.

3.2 Logic Programs

A logic program P is a finite set of expressions of the form A < Bi A...AB,,
where n > 1, A is an atom, and each B;, 1 < i < n, is either a literal, T, or
1. Aiscalled head and By A ... A\ By, is called body of the clause. A clause of
the form A < T is called positive fact, whereas a clause of the form A < L is
called negative fact.
Consider the following transformation for a given program P:
1. All clauses with the same head A < body;, A < bodys, ... are replaced
by A < body; V bodya V . . ..
2. If an atom A is not the head of any clause in P then add A < 1.
3. All occurrences of < are replaced by <.
The resulting set is called completion of ‘P (c’P). If step 2 is omitted, then the
resulting set is called weak completion of P (wcP).
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Table 3. The truth tables of the three-valued Lukasiewicz logic.

3.3 Three-Valued Logics

In Table 3 the truth tables of the three-valued Lukasiewicz logic [5] are depicted,
where T, L, and U denote true, false, and unknown, respectively. Based on these
truth tables the notions of logical equivalence =31, and logical consequence =1,
can be defined in the usual way. One should also note that the replacement
theorem holds for the f.ukasiewicz logic as well, i.e. a subformula of a formula
can be replaced by an equivalent one without changing the semantics of the
formula. We will represent three-valued interpretations by tuples of the form
(I, I'+), where I contains all atoms which are mapped to T, I contains all
atoms which are mapped to L, I T and I are disjoint, and all atoms which occur
neither in 77 nor in I are mapped to U. A model for P is an interpretation I
where each clause occurring in P is mapped to T.

3.4 Computing Least Models

Stenning and van Lambalgen [2] devised an operator to compute the least fixed
point for programs discussed herein:
Let I be an interpretation in ®p(I) = (J ', J*), where

JT = {A | there exists A < body € P with I(body) = T},
J+ = {A | there exists A + body € P and
for all A <— body € P we find I (body) = L}.

Holldobler and Kencana Ramli [4] have shown that the least fixed point of &p
is identical to the least model of the weak completion (Imywc) of P and can be
computed by iterating ®@p starting with the empty interpretation I = (), ().

As shown in [4], programs as well as their weak completions admit the
model intersection property under the Lukasiewicz logic and, hence, each weakly
completed program wc P has a least model. Consider the social case where the
person is drinking beer and nothing abnormal is known, that is Ppee,, = {abs <
1,b < T}. The least fixed point of &p, _ is computed starting with interpre-
tation Iy = (0, 0):

Il = épbecr (IO) = <{b}’ {ab2}> = ¢Pbecr (Il)
where ({b}, {abs}) is the least model of the weak completion of Ppee, under
Lukasiewicz logic.



3.5 Abduction

Following [10] we consider an abductive framework consisting of a program P
as knowledge base, a set A of abducibles consisting of the (positive and nega-
tive) facts for each undefined predicate symbol in P and the logical consequence
relation =", where A is undefined in P if and only if PP does not contain a
clause of the form A < body and P |=I""¢ F if and only if Im,wc P(F) = T
for the formula F'. As observations we consider literals.

Let (P, A, =M%} be an abductive framework and O an observation. O is
explained by £ if and only if £ C A, P U £ is satisfiable, and P U £ EImWe O,
Usually, minimal explanations are preferred. In case there exist several minimal
explanations, then two forms of reasoning can be distinguished. F' follows scep-
tically from program P and observation O (P, O |=, F') if and only if O can be
explained and for all minimal explanations £ we find P UE E=m“e O, whereas
F follows credulously from P and O (P, O =, F) if and only if there exists a
minimal explanation £ such that P U £ =mwe O,

4 Modeling the Selection Task

According to Kowalski [11], people view the conditional in the abstract case as a
belief. For instance, the subjects perceive the task to examine whether the rule is
either true or false. On the other hand, in the social case, the subjects perceive the
rule as a social constraint, a conditional that ought to be true. People intuitively
aim at preventing the violation of such a constraint, which is normally done by
observing whether the state of the world complies with the rule.

In [12] psychological experiments with several variations of the so called
abstract deontic selection task are carried out. The authors show that the per-
formance of the abstract case can significantly be improved when introducing a
deontic notion. This seems to support Kowalski’s interpretation, which we will
adopt in the following and model our formalism accordingly.

The Social Task In this case most humans are quite familiar with the conditional
as it is a standard law. They are also aware — it is common sense knowledge —
that there are no exceptions or abnormalities and, hence, aby is setto L.

Let us assume that conditional (4) is viewed as a social constraint which
must follow logically from the given facts. Now consider the four different
cases: One should observe that in the case /6 years old the least model of the
weak completion of P, i.e. (0, {0, absa}), assigns U to b and, consequently, to
both, b A —aby and (4), as well. Overall, in the cases drinking beer and 16 years
old the social constraint (4) is not entailed by the least model of the weak com-
pletion of the program. Hence, we need to check these cases out and, hopefully,



case program P Imgwe P

drinking beer {abs < L,b<+ T} ({b},{ab2}) WFr (
drinking coke {abz < L,b<« L} (0,{b,ab2}) Er (
16 yearsold  {abs < L0+ L} (0,{o,ab2}) Fr (
22yearsold {abs < Lo+ T} ({o},{ab2}) EFr (4

Table 4. The computational logic approach for the social case of the selection task.

observation O explanation £ Imgwec (P UE)

D {D«+ T} ({D,3},{ab1}) ~ turn
F {F« T} ({F}, {ab1}) ~> o turn
3 {D+ T} ({D,3},{ab1}) ~ turn
7 {7+ T} {7}, {ab1}) ~> 1o turn

Table 5. The computational logic approach for the abstract case of the selection task.

find that the beer drinker is older than 19 and that the 16 years old is not drinking
beer.

The Abstract Task In this case the conditional is artificial. There is no common
sense knowledge about such a case.

Let us assume that conditional (3) is viewed as a belief. As there are no
known abnormalities, ab; is set to L. Furthermore, let D, F', 3, and 7 be propo-
sitional variables denoting that the corresponding symbol or number is on one
side. Altogether, we obtain the program

P = {3 «— D A —aby, aby + J_}
Its weak completion is
wcP = {3 < DA —\ab1, ab; < J_}

and admits the least model
(0,{ab1})

under Lukasiewicz semantics. Unfortunately, this least model does not explain
any symbol on any card. In order to explain an observed card, we need to con-
sider abduction, where the set of abducibles is

{D+<T, D+ 1L, F+ T, F+ L, 7« T,7«+ 1}.

Remember, the set of abducibles is defined as all undefined facts. Now consider
the four different cases, where the explanations £ are minimal and basic. In the
cases where F' or 7 were observed, the least model of the weak completion of
P U & simply confirms the observation; no further action is needed. In the case
where D was observed, the least model maps also 3 to T; however, this can
only be confirmed if the card showing D is turned. Likewise, in the case where
3 is observed, D is also mapped to T in the least model, which can only be
confirmed if the card is turned.



5 Conclusion

We have presented a computational logic approach for modeling human reason-
ing in the Wason selection task. It is based on a previously proposed approach
that adequately models another psychological study, the suppression task. We
extended our approach with an idea from Kowalski’s task representation: in or-
der to solve the social case correctly, the conditional is seen as a social con-
straint, whereas the abstract case is correctly represented when the conditional
is seen as a belief. The second case can be modeled by extending the formal-
ization to sceptical reasoning within an abductive framework. Taken together,
the use of a non-monotonic ternary logic seems to be more appropriate for hu-
man reasoning (especially in explaining human decisions) than classical logic
approaches.
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MoralLISA — An Extension of the Analogy
Model LISA for Moral Decision Making

Peter GroBmann and Michael Siebers and Ute Schmid*

Faculty Information Systems and Applied Computer Science, University of Bamberg

Abstract. A well known empirical finding in moral decision making is
that moral judgements often are guided by so called sacred values and
that such values can be specific to a certain cultural background. We
present preliminary work where we explore an extension of the analogy
model LiSA to model moral decision making based on sacred values. The
model is applied to stories used in a psychological experiment.

1 Introduction

In decision making, typically it is pesupposed that an agent selects an ac-
tion which satisfies his/her goals best. Moral decision making takes into
account criteria such as kindness and fairness. As in general decision mak-
ing, psychological theories of moral decision making are often modelled in
an utilitarian, rational framework — that is, it is assumed that a decision
is the outcome of a reasoning process (Waldmann, Nagel, & Wiegmann,
2012). In contrast, there are deontological approaches to explain moral
decision making which highlight the emotional and intuitive aspect of
decision making (Paxton & Greene, 2010).

There exist some computational models of moral decision making:
ACORDA (Pereira & Saptawijaya, 2011) is a an example of a computa-
tional approach within the utilitarian framework. The system is realized
in PROLOG using prospective logic. Wallach, Franklin, and Allen (2010)
use the artificial general intelligence system LIDA to take into account
rational as well as emotional aspects of moral decision making.

A special aspect of moral decisions is that they can be strongly dom-
inated by so called sacred values (Waldmann et al., 2012; Tetlock, 2003),
that is, values which people find impossible to violate. Such values as
“do not kill a human being” are often researched in the context of moral
dilematta such as the trolley dilemma (Hauser, Cushman, Young, Jin, &
Mikhail, 2007). In this scenario, a trolley is threatening to kill five people.

* MoralLLISA was realized by Peter Grofimann in his master thesis, supervised by Ute
Schmid. Corresponding author: Ute Schmid, ute.schmid@uni-bamberg.de.



If this can be prevented by redirecting the trolley to another track where
one person is standing and gets killed, subjects will decide to change the
track and save the five people. However, if the only solution is to push
one person in front of the trolley, subjects will avoid this act — although
in both alternatives one person gets killed.

There is some evidence that sacred values are specific to culture (Tet-
lock, 2003). Dehghani, Gentner, Forbus, Ekhtiari, and Sachdeva (2009)
argue that typical stories which are known to everybody in a specific cul-
tural setting have a strong impact on moral decision making when sacred
values are involved. The authors propose that such stories serve as base
analogies and that moral decisions are felled based on analogical mapping
and transfer from such cultural narratives to new situations. Furthermore,
Dehghani (2009) proposed a cognitive model — MORALDM — for analogy
based moral decision making which is based on the structure-mapping
engine (SME, Falkenhainer, Forbus, & Gentner, 1989).

However, because the analogy process of SME is based on syntactical
structural similarity, sacred values need to be dealt with in a different
module. Nevertheless, in our opinion, analogical reasoning is a convincing
approach to explain how sacred values guide the mental process of moral
decision making which is currently not taken into account in computa-
tional models of machine ethics (Pereira & Saptawijaya, 2011; Wallach
et al., 2010). Therefore, we investigated an alternative cognitive model
for analogical reasoning, namely the hybrid system LISA (Hummel &
Holyoak, 1997, 2003). In LISA, nodes of the base and target structure
are mapped by an activation spreading mechanism. The structual infor-
mation is complemented by semantic units which are shared by base and
target. We believe that LISA offers a more natural architecture to deal
with sacred values in analogy-based moral decision making.

In the following, we first describe the analogy model LiSA. Afterwards
we introduce our extension MorallLiSA. Then we present the moral deci-
sion problems investigated by Dehghani et al. (2009) and we show how
MorallLISA can be applied to these problems.

2 The Analogy System LISA

In standard reasoning, a chain of rules is applied to derive a conclusion.
In contrast, in analogical reasoning a new (target) problem is mapped
with a known base problem and information from the base is transfered
to the target. That is, inference is realized by transfer. Analogical reason-
ing is based on structured representations — typically terms or directed
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Fig. 1. (a) Illustration of the representation of loves (Bill, Mary) in LISA. (b) A time-
series illustration of the representation of loves (Bill, Mary). Each graph corresponds
to one unit (a). The abscissa of the graph represents time and the ordinate represents
the corresponding units activation.(Figure 3 from Hummel & Holyoak, 2003)

acyclic graphs. Nodes between base and target are mapped in a structure
perserving way. If a node in the base is connected to a substructure which
has non correspondence in the target, this substructure is carried over.
There are different cognitive models of analogical reasoning: The struc-
ture mapping engine (SME, Falkenhainer et al., 1989) is one of the most
well-known systems. An alternative approach is LiSA which is a hybrid
system combining structural representations with semantic features.!
Representations in LiSA are based on propositions and consist of four
kinds of entities (see Figure la): (1) A proposition such as loves(Bill,
Mary) is composed of (2) bindings between roles and role-fillers (“sub-
propositions”). For example, Bill is the filler of the role lover. These bind-
ings are constructed over (3) objects (such as Bill) and relations (such
as lover). Finally, (4) there are sematic units which represent features of
objects and relations (such as male for Bill and emotion-strong for lover).

L' A Python implementation of LisA by John Hummel is available at

http://internal.psychology.illinois.edu/ jehummel/models.php.
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Fig. 2. LISAs representations of two analogs. The source states that Bill loves Mary
(P1), Mary loves Sam (P2), and Bill is jealous of Sam (P3). The target states that
Tom loves Cathy (P1) and Cathy loves Jack (P2). (Figure 5 from Hummel & Holyoak,
2003)

Entities between adjoining levels share bidirectional excitatory connec-
tions.

LisA allows higher-order relations to represent more complex state-
ments. For example, knows (Mary, loves (Bill, Mary)) can be represented
as top-level proposition with the role filler Mary and the role Knower and
the proposition loves(Bill, Mary) as further role filler and role know. That
is, the proposition loves(Bill, Mary) is object for the higher-order expres-
sion and simultaneously a proposition which is further decomposed as
given in Figure 1la.

Nodes in a representation are synchronous are asynchronous activated
over discrete time steps (see Figure 1b): When a filler is bound to a role,
the connected elements fire in synchrony with one another. For example,
male fires with Bill, adult fires with Bill and Mary.

For a base (“driver”) and target (“recipient”) analog mapping con-
nections are established between nodes of corresponding type (that is
roles can only be mapped to roles, objects to objects). If nodes in the
base and target representation are activated simultaneously, the weight
of the mapping connection is incremented, otherwise decremented (see
Figure 2). The process starts with random or specifically set values for
the driver analog and is run over a fixed number of time steps. When pro-
cessing is finished, the connections with heigh positive values constitute
the mapping hypothesis.



The weights are updated by a simple Hebbian rule Ah;; = a; X a;
with a; as activation of a unit ¢ in the driver (base) and a; as activation
of unit j in the recipient (target).

Finally, transfer from base to target is realised by “self-supervised”
learning: If a subset of nodes from the driver has no correspondence to
nodes in the target, all recipient nodes which are mapped to other driver
nodes are inhibited and no other nodes will be excited. This is used as a
cue to create new entities in the target. For example, in Figure 2, LisA
infers that Sally will be jealous of Cathy.

3 MoralLISA

An obvious way to apply LISA to moral decision making including sacred
values is the following: (1) Representing a well-known culture specific
narrative as a propositional base representation, (2) representing a new
moral decision making problem as propositional target representation,
and (3) representing the sacred values as semantic features. Because the
sacred values should strongly influence the decision, we planned simply to
initialize them with high activation values. In principle, LiSA allows that
specific units are initialized with specific activation values at starting time.
However, the available implementation of LISA resets the activations the
standard values during mapping.

A similar effect can be obtained by increasing the weights of mapping
relations when sacred values are involved. Therefore, we modified the
formula which LISA uses to calculate the increase of the weight of a
mapping relation (see above) to

Ahij:aixaj—i-sxy

where a; and a; are the current activations of a unit ¢ in the base and
a unit j in the target, s is the number of shared sacred values and v €
[0, ..., 1] modifies the influence of the sacred values. For our test setttings
we set v = 0.1.

Besides the inclusion of sacred values, we extended LISA to iden-
tify synonymous expressions for the semantic units. This allows a more
natural transfer of stories represented in natural language to the LISA
representation.

4 To Lose or Not to Lose a Wrestling Match

Dehghani et al. (2009) used the following story which is very well known
in the Iranian culture as a base problem:



Pourya Vali was the most famous wrestler of his time. The morning before
wrestling with a young athlete from another province, he goes to a mosque
and sees the mother of the young athlete praying and saying “God, my son is
going to wrestle with Pourya Vali. Please watch over him and help him win
the match so he can use the prize money to buy a house”. Pourya Vali thinks
to himself that the young wrestler needs the money more than he does, and
also winning the match will break the heart of the old mother. He has two
choices, he can either win the match and keep his status as the best wrestler
in the world or he could lose the match and make the old mother happy. Even

though he was known not to ever lose a match, he loses that one on purpose.

In an experiment with students in Iran and students in North-America
he presupposed that the Iranian students are all acquainted with this
story while the American students are not. He presented to each subject
one of four target problems:

Surface Change: wrestling — ping-pong, house — marriage,

Structure Change: house — expensive clothes,

Surface and Structure Change: wrestling — ping-pong, house — ex-
pensive clothes,

Sacred Value Change: not Pourya Vali, but his opponent is the most
famous wrestler.

When presented with the story which has a change on the surface,
significantly more Iranian than North-American students answered that
Pourya Vali should lose on purpose. The authors explain these findings by
analogy making between the well-known base-story in Iran and the target
for the Iranian students. The North-American students either have their
own base story embedding the values of “fair play” and “the best may
win” or use a rule-based reasoning approach to reach their decision.

5 Reasoning with Sacred Values in MoralLISA

We presented the base problem and the four different target problems to
MoralLi1sA. The base problem consists of three relations: praying(Mother),
fighting(Vali, Son) and losing(Vali). The third relation is modelled as
effect of the other relations. Instead of a graphical representation as above
we give a representation in the LISA syntax as illustration in Figure 3.
The target stories only contain two relations. The third relation should
be inferred by MoralLISA.

In correspondence to the empirical findings, MorallLISA only inferred
that Vali should deliberately lose the match for the target with the surface



Analog ValiBase
Defpreds
Praying 1 positive;
Fighting 2 harmful;
Losing 1 altruistic;
end;
Defobjs
Vali wrestler famous;
Son wrestler notfamous;
Mother sympathetic;
end;
DefProps
P1 Praying ( Mother );
P2 Fighting (Vali Son);
P3 Losing (Vali);
end;
DefGroups
G1 Props: P1 P2;
Semantics: cause;
G2 Props: P3;
Semantics: effect;
G3 Groups: G1 G2;
Semantics: cause-relation
end;
done;

Fig. 3. Representation of the Base Story

change. Furthermore, MorallL1SA also could infer the third relation when
the semantic features in the base were synonyms such as famous/notable,
harmful/adverse, sympathetic/likeable.

6 Conclusions

We presented a simple extension of the analogy system LiSA to model
moral decision making based on sacred values. The hybrid LisA architec-
ture combines the structure sensitivity of symbolic approaches with the
flexibility of connectionist approaches. It allows to include the impact of
sacred values in a natural way. Guidance by sacred values, however, is
only one aspect of moral decision making. A more comprehensive cogni-
tive model needs to take into account additional reasoning strategies such
as rule-based and heuristic approaches (Waldmann et al., 2012; Paxton
& Greene, 2010).
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Abstract. Humans have an excellent ability to reason about the conse-
quences of their own actions which often prevents them from ending up
in undesired situations. If robot assistants are to accomplish everyday
manipulation tasks like humans, they should be equipped with a similar
capability for making temporal projections. In this paper, we investigate
how robots can infer the effects of their own actions, in particular when
dealing with liquids. The proposed system allows robots to determine
the appropriate action parameters by envisioning the outcome of their
own actions based on detailed physics-based simulations.

1 Introduction

Modern robotics attempts to go beyond simple pick-and-place scenarios and
equip robots with the capabilities for executing more complex tasks like, for
example, making pancakes. While preparing pancakes, ingredients for the dough
have to be mixed, stirred and poured into a pan. Accomplishing such everyday
manipulation tasks successfully requires robots to predict the consequences of
their parameterized actions and to reason about them. In this work we place our
emphasis on robots performing everyday manipulation tasks which involve the
handling of liquids. For example, a robot about to pour a pancake mix onto a
pancake maker has to decide where to hold the container, at what angle and for
how long without spilling something.

Humans are able to reason about these physical processes and to estimate the
right parameterization intuitively based on both their experiences and common
sense. Understanding everyday physical phenomena, that is representing and
reasoning about them, is an endeavor in the field of Artificial Intelligence which
dates at least back to the work of Hayes [5]. More recently, there has been work
on physical reasoning problems like “Cracking an egg” ([10]) which is listed on
the common sense problem page®. In [1], Davis presents a formal solution to
the problem of pouring liquids and in his work on the representation of matter
[2], he investigated the advantages and disadvantages of various representations

3 http://www.commonsensereasoning.org/problem_page.html



including those for liquids. In [3], he says that it is tempting to use simulations for
spatial and physical reasoning. But he argues that simulations are not suitable
for the interpretation of natural language texts because many entities in texts are
underspecified. However, in the context of robotics entities in the environment
can often be sufficiently recognized and represented using internal models.

In this work, we build on the concept of simulation-based temporal projec-
tions as proposed in [8,7]. Everyday robot manipulation tasks are simulated
with varying parameterizations, world states of the simulation are monitored
and logged, and the resulting logs are translated into a first-order representa-
tions called timelines. These timelines are then used to answer logical queries
on the resulting data structures in order to investigate an understanding of the
robot of the executed task. The main contribution of this work is the design and
implementation of data structures and algorithms for representing and reasoning
about liquids within this framework.

2 Simulation-Based Temporal Projection Framework

This section gives a brief overview of the simulation-based temporal projection
framework introduced in [8, 7] and describes the contributions of this work.

The overall framework is depicted in Figure 1. It is based on state-of-the-art
technologies such as ROS*, the Gazebo simulator® and the point cloud library
PCLS. Within the simulation (a) a robot can freely navigate and interact with
objects. The behavior of the robot is specified in a robot control program (b). In
the simulator we represent, e.g., a pancake mix as particles using the data struc-
tures of Gazebo. Given that we are in particularly interested in analyzing the
behavior of liquids we group the simulated particles by an Euclidean clustering
technique. Having obtained information of clusters makes it possible to reason
about the fusion or division of volumes or chunks of liquids. The clustering is re-
alized as node located at an intermediate layer (c). As Gazebo uses ODE which is
only capable of dealing with rigid bodies a simulation of liquids in the simulator
is only an approximation. Therefore we use the information about the clusters
to initialize a more accurate simulation of liquids by considering physical aspects
such as diffusion and convection (d). The robot’s actions, its interactions with
the objects, the state of the liquid, the clusters and the state of the environment
(world) are crucial information for the reasoning framework. In order to process
this knowledge in a subsequent processing step, controllers and monitors are used
to access the data. A monitor (e) is a set of programs that listen (subscribe) to a
topic published by various components. For example, the information about the
world state is retrieved by accessing a topic published by a controller attached to
the description of the world and logged by a monitor (f,g). These logs are then
translated into interval-based first-order representation, called timelines, which
can be processed by the logical programming language Prolog (h) and are then
used to identify failures or success scenarios of the robot simulation.

4 http://www.ros.org
® http://www.gazebosim.org
S http://www.pointclouds.org
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Fig. 1. The simulation-based temporal projection framework.

3 Simulation of Liquids

Simulating liquids is of great interest in physics and chemistry. As some processes
occur very fast, events might not be observable in all its details in reality. The
purpose of simulating liquids in our work is to observe the impact of the robot’s
action with respect to the liquid’s behavior, which is of great importance when,
e.g., mixing liquids. Different approaches have been incorporated when trying
to simulate liquids depending on the required level of accuracy needed. In this
work we propose two complementary approaches for simulating liquids, (1) as
a graph-based model similar to [6] and (2) as a Monte-Carlo simulation for
modeling diffusion and convection [4]. Both do not simulate a liquid in all its
exactness but provide enough information for making logical inference about
qualitative phenomena.

3.1 Representing the Pancake Mix as Graph-based Model

The model for the pancake mix (or liquid) was adapted from the work of John-
ston in [6]. Originally, it was designed to simulate a wide range of physical
phenomena including diverse domains such as physical solids or liquids as hyper-
graphs where each vertex and edge is annotated with a frame that is bound to a
clock and linked to update rules that respond to discrete-time variants of New-
ton’s laws of mechanics. Our pancake mix model can be in two states: first, the
mix is liquid, and second, the mix becomes a deformable pancake after cooking.
In the Gazebo simulator, we use a set of particles in the form of a sphere with an



associated diameter, mass and visual definition. The benefit of this model is that
it is realized as graph with no connection between the vertices. This means that
the individual particles could move freely to some extent. This was useful for
performing the pouring task. Due to the fact of the particles not being connected
with joints, the simulated liquid can be poured over the pancake maker where
it dispenses due to its round shape. A controller was attached to the spheres
that applies small forces to the particles in order to simulate the viscosity of the
pancake mix. Currently, we do not consider heat as the trigger of transforming
the liquid to a solid pancake but simply assume the event to occur after constant
time. We identified all particles on the pancake maker and created the pancake
based on a graph traversal algorithm starting at the cluster center.

Clustering of Particles The analysis of the behavior and contact information
of liquids in an everyday manipulation task is of particular interest, as one might
use this dynamic change of a liquid to reason about possible causes of failures.
For example if a liquid is classified as one single cluster we can assume that this
liquid represents one volume. Now let us assume the state of the system changes
and from that one cluster we obtain two, meaning an event has occurred that has
caused the volume to be split. We have designed the behavior of the clustering
strategy (Euclidean Clustering) as illustrated in Figure 2.

,
)
_ (-\‘

Fig. 2. Basic idea of the clustering approach: during simulation we identify clusters
of particles. For example, after pouring, one cluster resides still in the mug, a second
is on the pancake maker and a third is spilled onto the table. We are able to extract
information including contacts, position, extension, and size of the individual clusters.

3.2 A More Sophisticated Model

Deformable bodies are seen as a big challenge in simulation and usually require a
lot of computational power. The physical simulation approach [4] uses a Monte-
Carlo process to simulate diffusion of liquids. Molecular movement is either pro-
voked from heat or from a difference in potential. The rate of change depends on
the diffusion coefficient and its respective change. This is a well known concept
in physics described by equation 1 and denoted as the macroscopic diffusion
equation or Fick’s second law of diffusion. This differential equation takes into
consideration a change of concentration over time.

2
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It can be shown [4] that Random Walk gives one particular solution for the above
partial differential equation. Motivated by this idea we applied Algorithm 1 pro-
posed by Frenkel et al. to simulate this physical effect. The algorithm follows the
Metropolis scheme and uses a probability function to decide if a particle is going
to be displaced or not. The Leonnard-Jones Potential Function (Equation 2) was

Algorithm 1 Metropolis Scheme.

1) Select a particle r at random and calculate its energy potential U(r™)
2) Give the particle a random displacement, ' = r + A
3) Calculate the new energy potential U(r'™)

3) Accept the move from state rN to v’V with probability

acc( rN = r'N) = min (l,exp (75 [U(T/N) — U(TN)}))

used to model the interaction among the particles in the liquid, i.e., to model
the particles’ behavior according to the concentration of particles in their neigh-
borhood. The parameters o and € are used to shape the function and r is the
distance to neighboring particles.

V(r) =4e[(£") - (£°)] (2)
Stirring a material is another type of mass transfer called convection. Con-
vection is the movement of mass due to forced fluid movement. Convective mass
transfer is a faster mass transfer than diffusion and happens when stirring is
involved. The faster the fluid moves, the more mass transfer and therefore the
less time it takes to mix the ingredients together. We simulated this physical
property by simply introducing an impulse in stirring direction to the particles
in the point cloud that are in reach of the cooking spoon. In this way, we could
achieve with this simple model the behavior of molecular motion due to forced
fluid movement.

Measuring the Homogeneity Particular interest is the homogeneity of the
liquid when stirred was involved in the conducted experiments. It was decided
to use the local density of the particles represented as point cloud as a measure
of divergence, while using the assumption that the inverse of this is a measure of
homogeneity. This distance measure [9] is known as the Jensen-Shannon diver-
gence and used widely in information theory. The Jensen-Shannon divergence is
defined as:

JS(P,Q) = 35 (P.759) + 15 (Q, 52) (3)

where S(P, Q) is the Kullback divergence shown in equation 4, and P and @ two
probability distributions defined over a discrete random variable x.

S(P,.Q) =Y, Px)log (54) (4)

We propose the division of the point cloud in a three-dimensional grid. Each cell
of the grid represents a discrete probability distribution x defined on the mixed
probabilities of the two classes P and @, computed as the relative frequency.
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Fig. 3. PR2 pours two ingredients in a bowl and stirs them.

4 Preliminary Experimental Results

In this section we are going to highlight the results of the conducted experiments,
namely mixing ingredients together in a bowl while measuring the level of ho-
mogeneity”, and second, pouring the mix onto a pancake maker and reasoning
about whether some liquid was spilled®.

4.1 Mixing Liquids — Analysis of Homogeneity

For mixing the liquids, we used the previously described model (Section 3.2) to
simulate the physical effects when stirring with different trajectories. Figure 3
shows the PR2 performing the task.

We selected the coefficients to represent two viscous liquids. Figure 4 shows
the course of homogeneity without stirring and as we expect: the ingredients
do not mix very well. We repeated the same experiment by assuming (1) an
elliptic trajectory, (2) an up-and-down movement and (3) a spiral trajectory. The
result of the experiment confirms our hypothesis: Stirring does indeed increase
the homogeneity of mixed liquids. The result furthermore showed that with an
elliptic trajectory the best result could be achieved. Given the knowledge of
homogeneous and inhomogeneous regions in the liquid a robot could adapt its
parameterization to increase performance.

4.2 Pouring Liquids — Reasoning about Clusters

In this experiment we address
the scenario of pouring some Table 1. Contact information of clusters.
pancake mix located in a con-

N Position Angle Time Mug Pan Table PR2 S pilled
tainer onto a pancake maker: .0 1 93,105 - - -
2.0944 1.5 119,1 1,79 - - -
the robot grasps a mug con- 20 125 74 1 - Yes
.. . 1.0 18,1 2,1,1,177 -
taining pancake mix from the 0.1 244346 1.5 31 1A
] 3 2.0 19 179,1 - - -
table, lifts it and pours the = 3 s L
content on a pancake maker 201799 1.8 AL 1861 oo Yes
(Figure 5). In this experiment T0 1351, 10 5811 Yes
. . 2.0944 1.5 113,1,1 15 64,1,1,1,1 - Yes
we used the resulting time- 20 1,1,197 11,57 11 Yes
: : 1.0 25 50,1 124 - Yes
lines to analyze the qualita- 0.2 2.44346 1.5 24,2 23,1,1 1,1,1,146 - Yes
tive outcome of the executed T e
action. The parameterization 2.61799 1.5 11 42 1461 - Yes
2.0 1,11 19,1 167,1 - Yes

of the task included the grip-
per position, the pouring angle and the pouring time. The task was considered

" http://www.youtube.com/watch?feature=player_embedded&v=ccHXmkKTSCE#!
8 http://www.youtube.com/watch?feature=player_embedded&v=tzQk7S5PRaY
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Fig. 4. Left: Homogeneity over time of different stirring trajectories. Right: The color
coded images show the spatial distribution of homogeneity of two liquids (without
stirring). Black stands for uncovered regions, red and blue for inhomogeneous liquids
of corresponding classes and purple homogeneous regions.
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Fig. 5. PR2 pours mix onto pancake maker.

to be successful if no pancake mix has been spilled, i.e. the liquid resides on the
pancake maker or in the container and not on other objects such the kitchen
table after the pouring action ends. We used the resulting clusters and their
corresponding contact information to examine the outcome. Some results are
summarized in Table 4.2 where the numbers for Mug, Pan, Table, and PR2
denote the number of particles of clusters in contact with the respective mod-
els. The following Prolog expression shows exemplarily how information about
clusters can be retrieved from timelines 7L

?7- holds_tt(occurs(pouring(Params)),Interval,TL), [_,End] = Interval,
part0f (X,pancake_mix), holds(on(X,table),Time,TL),
after(Time,End),
simulator_value(size(X,Size),Time,TL),
simulator_value(mean(X,Mean) ,Time,TL),
simulator_value(var(X,Var),Time,TL).

where X denotes a cluster of pancake mix in contact with the table after the
pouring action has been carried out.

5 Conclusions

The present work can be considered as interdisciplinary research of two fields:
Robotics and Artificial Intelligence. With our approach we enable robots to rea-
son about the consequences of their own actions. We equip them with the capa-
bility of making appropriate decisions about their parameterizations throughout



their activity using well-established methods of Al and detailed physical simu-
lations. We have developed a system that simulates robot manipulation tasks
involving liquids, monitors all relevant states and actions, and translates this
information into first-order representations, called timelines. Then, we use the
logic programming language Prolog within the previously developed framework
[7] to answer queries based on the timeline data structures of the temporal pro-
jections. The main contribution of this work is the extension of the framework
with respect to liquids. We have developed one representation within the simula-
tor Gazebo and another as additional software layer used for simulating physical
characteristics such as diffusion and convection.

We believe that the concept of simulation-based temporal-projections can be
used to equip robotic agents with the ability to understand physical consequences
of their actions which allows them to adjust their behavior.
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How (grant number 288533) and the cluster of excellence Cognition for Technical
Systems (Excellence Initiative of the German Research Foundation (DFQ)).

References

1. E. Davis. Pouring liquids: A study in commonsense physical reasoning. Artif.
Intell., 172(12-13):1540-1578, Aug. 2008.

2. E. Davis. Ontologies and representations of matter. In M. Fox and D. Poole, edi-
tors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAT Press, 2010.

3. E. Davis. Qualitative spatial reasoning in interpreting text and narrative. Spatial
Cognition and Computation, 2012. Forthcoming.

4. D. Frenkel and B. Smit. Understanding Molecular Simulation, Second Edition:
From Algorithms to Applications (Computational Science). Academic Press, 2
edition, Nov. 2001.

5. P. Hayes. The naive physics manifesto. In D. Michie, editor, Ezpert Systems in
the Micro Electronic Age, pages 242-270. Edinburgh University Press, 1979.

6. B. Johnston and M.-A. Williams. Comirit: Commonsense reasoning by integrating
simulation and logic. In Proceedings of the 2008 conference on Artificial Gen-
eral Intelligence 2008: Proceedings of the First AGI Conference, pages 200-211,
Amsterdam, The Netherlands, The Netherlands, 2008. IOS Press.

7. L. Kunze, M. E. Dolha, and M. Beetz. Logic Programming with Simulation-based
Temporal Projection for Everyday Robot Object Manipulation. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), San Francisco,
CA, USA, September, 25-30 2011.

8. L. Kunze, M. E. Dolha, E. Guzman, and M. Beetz. Simulation-based temporal
projection of everyday robot object manipulation. In Yolum, Tumer, Stone, and
Sonenberg, editors, Proc. of the 10th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2011), Taipei, Taiwan, May, 2-6 2011. IFAAMAS.

9. A. P. Majtey, P. W. Lamberti, and D. P. Prato. Jensen-shannon divergence as
a measure of distinguishability between mixed quantum states. Phys. Rev. A,
72:052310, Nov 2005.

10. L. Morgenstern. Mid-Sized Axiomatizations of Commonsense Problems: A Case
Study in Egg Cracking. Studia Logica, 67(3):333-384, 2001.



A structural base for conditional reasoning

Gabriele Kern-Isberner and Christian Eichhorn

Department of Computer Science
Technische Universitdt Dortmund, Germany
gabriele.kern-isberner@cs.uni-dortmund.de
christian.eichhorn@tu-dortmund.de

Abstract. There are several approaches implementing reasoning based on
conditional knowledge bases, one of the most popular being System Z [1].
We look at ranking functions [2] in general, conditional structures and c-
representations [3] in order to examine the reasoning strength of the different
approaches by learning which of the known calculi of nonmonotonic reason-
ing (System P and R) and Direct Inference are applicable to these inference
relations. Furthermore we use the recently proposed Enforcement-postulate
[4] to show dependencies between these approaches.

1 Introduction

Default reasoning is often based on uncertain rules of the form “if A then usu-
ally B” representing semantically meaningful relationships between A and
B that may serve as guidelines for rational decision making. Such rules are
denoted as conditionals and formally written as (B|A). Conditionals are dif-
ferent from material implications A = B in that they can not be interpreted
truth functionally but need richer epistemic structures to be evaluated. Ordi-
nal conditional functions, or ranking functions [2] provide a most convenient
way for evaluating conditionals. Here, a conditional (B|A) is accepted if the
rank of its verification AA B is more plausible than the rank of its falsification
AN-B. However, it is often not clear where the numerical ranks come from,
and people might be reluctant to accept conditionals just due to a compar-
ison of numbers. In this paper, we show how the acceptance of conditionals
can be based on structural arguments that emerge from elaborating system-
atically the three-valued nature of conditionals. More precisely, we assume
a knowledge base of conditionals to be explicitly given, and investigate in-
ferences that can be drawn from this knowledge base in a rational way, like
in the well-known penguin example: Let A = {(f]b), (f |p), (b|p)} be the set
of conditionals (f|b) ~ “birds usually fly”, (f |b) ~ “penguins usually do not
fly” and (b|p) ~ “penguins are usually birds”. Commonsense deliberations
tell us that from these conditionals we should be able to infer that birds fly
if they are not penguins, but penguin-birds not. The intricacy of this ex-
ample lies in the nonmonotonic inheritance from a superclass to a subclass:
albeit being birds, penguins do not inherit the flight capacity of birds.

We briefly recall the conditional structures approach [3] which allows us to
define a preference relation between possible worlds and henceforth a non-
monotonic inference relation between formulas. We prove results on the qual-
ity of this inference relation but also illustrate its limits. Fortunately, con-
ditional structures can be linked to ranking functions via c-representations,
and together with the novel Enforcement postulate adapted from belief revi-
sion, we are able to show that rank based inferences may respect structural
(i-e., non-numerical) information.



2 Preliminaries

Let ¥ = {V4,...,V,} be aset of propositional atoms. A literal is a positive or
negative atom. The set of formulas £ over X', with the connectives A (and),
V (or) and — (not) shall be defined in the usual way. Let A, B € £, we will in
the following omit the connective A and write AB instead of AA B as well as
indicate negation by overlining, i.e. A means —A; the symbol “=" is used as
material implication, i.e., A = B is equivalent to AV B. Interpretations, or
possible worlds, are also defined in the usual way; the set of all possible worlds
is denoted by (2. We often use the equivalence between worlds and complete
conjunctions, i.e. conjunctions of literals where every variable V; € X ap-
pears exactly once. A model w of a propositional formula A € £ is a possible
world that satisfies A, written as w = A. The set of all models of A is de-
noted by Mod(A). For formulas A, B € £, A entails B, written as A = B,
iff Mod(A) C Mod(B), i.e. iff for all w € 2, w = A implies w = B. For sets
of formulas A C £ we have Mod(A) = (., Mod(A). A conditional (B|A)
encodes a defeasible rule “if A then usually B” with the trivalent evaluation
[(B]A)]w = true if and only if w = AB (verification), [(B|A)]. = false if
and only if w = AB (falsification) and [(B|A)]. = undefined if and only
if w = A (non-applicability). The language of all conditionals over £ is de-
noted by (£ | £). Let A = {(B1|A1),...,(Bn|An)} C (£ ] £) be a finite set
of conditionals. A conditional (B|A) is tolerated by A if and only if there is a
world w € {2 such that w = AB and w |= A; = B; for every 1 <i¢ <n. Ais
consistent if and only if for every nonempty subset A’ C A there is a condi-
tional (B|A) € A’ that is tolerated by A’. We will call such a consistent A a
knowledge base and it shall represent the knowledge an agent uses as a base
for reasoning. In this paper, we will only consider A that are consistent.

3 Properties of qualitative conditional reasoning

We consider inference relations |~ between sets of formulas A C £ and
single formulas A. A~ A means that A can be inferred defeasibly fom A.
Contrary to |=, |~ will usually be nonmonotonic, i.e. we may have Ap A
but AU {B} |¢ A. The various possible inference relations can be judged by
certain quality criteria that have been designed for describing rational hu-
man reasoning. From this set of criteria, calculi are subsets of the quality
criteria canon used to classify inference relations. The usual calculi are Sys-
tem O, C, P and R, where System C and O are included in System P, thus
we present the most established systems, Systems P and R.

Definition 1 (System P). /5]
System P consists of the following conditions

— Reflezivity (REF): From A defeasibly infer A, resp. A~ A,
— Right Weakening (RW): A B and B = C imply A~C,
— Left Logical Egivalence (LLE): ApRC and A = B imply B~C,
— (Cut): Al B and ABpC imply AC,
— Cautious Monotony (CM): A B and AR C imply AB~C,
— (Or): A C and Bi~C imply (AV B) ~C.

As well as being an important quality criterion for nonmonotonic reasoning
systems, empirical studies show that human reasoning makes use of the
conditions of System P (c.f. [6]) which renders the inspection of System P
especially worthwhile.

The calculi are syntactical and should be based on semantics to be evalu-
ated. A very general one is preferential satisfaction that uses the notion of
preferential models which we will introduce with the next two definitions.

Definition 2 ((Classical) Preferential model). [7]
Let M = {m1, ma, ...} be an arbitrary set of states, which could be, but is not



limited to, a set of interpretations of a logical language. Let = be an arbitrary
relation FC M x £ called satisfaction relation and < an arbitrary relation
<C M x M called preference relation. If mi1 < ma then m. is preferred to
ma. The triple M = (M,+, <) is called a preferential model. A preferential
model is called classical if < is transitive, and for all m € M it holds that
mEAiffmi/Aandmb-AVBiffmbk A ormb B.

Definition 3 (Preferential satisfaction). [7/

Let AC £, M = (M,+, <) be a preferential model and m € M be a state.
We say that m satisfies A (m = A) iff m &= A for every A € A, and m
preferentially satisfies A (written m < A) iff m b A and there isnom’ € M
such that m' = A and m’ < m. We define [A] = {m € M |m + A} and say
m is <-minimal in [A] iff mF< A.

Preferential satisfaction is based on a notion of minimality. Since < is defined
to be an arbitrary relation, it is possible for [A] not to have a minimal element
(e.g. because [A] is infinite or contains circles mi1 < ma < -+ < my). The
following definition ensures that an associated minimal element exists.

Definition 4 (Stoppered preferential models). [7]
We call a preferential model M = (M,F, <) stoppered if and only if for
every set A C £ and every m € M if m € [A] then there is a <-minimal
element m’' in [A] such that either m' =m or m’ < m.

Having defined preferential models, one can now define an entailment rela-
tion on preferential models that facilitates reasoning.

Definition 5 (Preferential entailment ). [7]
Let (M,F, <) be a preferential model, m,m’ € M and A, B € £. We define
B to be preferentially entailed by A (written A~ B) in the following way:

AN B iff VmeM : mb< A implies mEB (1)

Preferential entailment complies with various properties, [7] has shown that
if the underlying preferential model is stoppered, these relations fulfil the
properties of System P which we will stress in the following proposition.

Proposition 1. [7] All preferential entailment operations that are generated
by a classical stoppered preferential model comply with System P.

For classical stoppered preferential models, equation (1) is equivalent to
ArB iff Vm': m'F AB Im: mFAB with m<m'.

The second calculus we announced to inspect was System R which is basi-
cally System P with the additional (non-Horn) property Rational Monotony.

Definition 6 (System R). /8]
System R is composed of (REF), (Cut), (CM), (RW), (LLE), (Or) and
— Rational Monotony (RM) A B and A C implies ACh B.

As given in section 2, a conditional (B|A) stands for the defeasible rule “A
usually entails B” and therefore suggests for each (B|A) € A that ApaB
holds if |~ is based on A. This is claimed by the next property.

Definition 7 (Direct Inference (DI)). [9]
Let A C (£]£), let poa be an inference relation based on A. f~a complies
with (DI) iff for every (B|A) € A it holds that ApaB.



4 Ranking Functions (OCF)

An ordinal conditional function (OCF, [2]), also called ranking function, is a
function s : 2 — N§° with k~*(0) # @ which maps each world w € 2
to a degree of implausibility x(w); ranks of formulas A € £ are calcu-
lated as k(A) = min {k(w) |w = A}. For conditionals (B|A) we have ranks of
k(B|A) = k(AB) — k(A) and x = (B|A) iff. k(AB) < k(AB), i.e. iff. AB is
more plausible than AB. In this case, we call x a (ranking) model of (B|A).
A ranking function induces a preference relation <, on worlds such that
w <, W iff k(W) < K(W). We write w <, ' iff w <, W and W' £, w.
OCF-reasoning uses the <-relation on natural numbers and the classical
inference relation = which implies immediately that (2, =, <.) is a classical
stoppered preferential model. The inference relation |, turns out to be

Apw B iff K(AB) < k(AB) iff K = (B|A).

For a conditional knowledge base A = {(B1]|A1),...,(BnlAn)} C (£] L) a
ranking function k is A-admissible iff k |= (B;|A;) for every 1 < ¢ < n.
We write k4 to illustrate that x is A-admissible. Note that for |, (DI) is
equivalent to A-admissability of k.

Proposition 1 immediately yields the following statement:

Corollary 1. |~ complies with System P.

System R is no consequence of proposition 1. [1] has shown that every ka
complies with (RM), by which the next proposition arises:

Proposition 2. |~ complies with System R.

5 Reasoning with conditional structures

Our intention is to focus on reasoning mechanisms based on the informa-
tion contained in the knowledge base. By OCF, we have high qualitative
reasoning, but the ranks of the worlds need to use the knowledge base as
information source. In the following we will examine an approach using the
structural information induced by the conditionals in a knowledge base.

Given a conditional knowledge base A = {(B1]A1),...,(Bn|An)} C (£] L)
we assign a pair of abstract symbols a] and a; to each (B;|A4;) € A
to illustrate the effect of conditionals on worlds. With these,
we define the free abelian group Fa = (a],a;,...,a},a,) on
A with generators af,af, ...,af,a, consisting of all products
(@)t (ay) -...- (&))" (a, )’ with a;,8; € Z for all 1 < i < n [3].
We will keep in mind that in abelian groups commutativity holds, e.g.
aa; = ayal. To connect a world and the effect of a conditional to this
world we define the function o; : 2 — Fa by os(w) = aj’ iff. w = AB,
oi(w) :=a; iff. w = AB and 0y(w) := 1 iff. w = A for each 1 < i < n. So,
T (a;) indicates that w verifies (falsifies) (B;|A;), and the neutral group

a; i

element 1 corresponds to non-applicability of the conditional.

Definition 8 (Conditional structure). /3]

Let A ={(B1]A1),...,(Bs]|An)} C(£| L), $a = (a],a;,...,a},a,) and
oi be as defined above. The conditional structure oa of a world regarding A
is the function oa : 2 — Fa defined as

n

oaw)=[Joiw = ] a - [[ a

i=1 =1 i=1
wEA;B; wEA,

iBi

For every world w the conditional structure oa(w) indicates formally which
conditionals in A are verified, or falsified by, or not applicable to this world.
Note that the group structure allows an elegant way of encoding this.



Ezample 1. We use the introductory example A = {(f|b), (f |p), (b|p)}. The
conditional structures with respect to A are shown in the following table.

w oa(w) w oa(w) w  oa(w) w oa(w)
pbf afayay  pbf ayajaj  pbf  af pf  ay
pbf aya;  pbf aja;  pbf 1 pbf 1

With oA we define a preference relation on worlds based on structural infor-
mation by o-preferring a world w to a world w’ iff w falsifies less conditionals
than w’ and w’ falsifies at least the conditionals falsified by w.

Definition 9 (<,-preference). [4/

A world w shall be o-preferred to a world W', in terms w <, W', if and only
if for every 1 <i < n, o;(w) =a; implies o;(w') = a; , and there is at least
one i such that o;(w) € {a},1} and o;(') = a; .

The triple (2, =, <o) is a preferential model (cf. definition 2) and hence
allows to define nonmonotonic inference of some quality. We show that o-
preferential reasoning follows the lines of System P for which the following
preliminaries have to be deployed.

Since it is quite obvious that <, is stoppered and transitive, we have the
following lemma:

Lemma 1. (2,=, <) is a stoppered classical preferential model.

Using the preference relation <, we define a structual entailment relation
according to definition 5.

Definition 10 (o-structural inference).

Let A, B be formulas in £ and A = {(B1]A1),...,(BnlAn)} C (£ £). B can
be structurally inferred, or o-inferred, from A, written as

ARSB  iff VWi W EAB  Jw: wEAB  with w=<.w.
We see that A o-infers B if and only if for every world w’ € Mod(AB) there
is a o-preferred world w € Mod(AB).

Ezample 2. We use the knowledge base A from example 1. By o-structural

inference, we find that flying birds are no penguins (bf~3p) since for every
world w’ which is a model of pbf, namely w’ = pbf, there is a world w which

is a model of pbf, namely w = pbf, for which we see, that o1(w’) = a;,
o1(w) = aff, o2(W’) = a;, 02(w) = 1, 03(w’) = a and o3(w) = 1 and

therefore by the above definition it holds that w <, w’'.
From lemma 1 and proposition 1, we obtain:
Proposition 3. |7 satisfies System P.

However, there ist an odd finding, shown by the next example, which sug-
gests that |~ 7 may violate System P.

Example 3 (Counterexzample to System P-compliance of |~} 2). We use the
running example with the conditional structures from example 1. We would
expect that pp3b since (blp) € A, and pp3f since (flp) € A, there-
fore by (CM) it should follow that pbj~ % f. But oa(pbf) = afa;a; and
oa(pbf) = ayafay, so pbf Ao pbf, hence pb L5 f.

Example 3 is, of course, no counterexample to the System P compliance of
classical stoppered preferential models but to the assumption, that we may
always conclude A~ B if (B|A) € A, which we formalised as property (DI).

Proposition 4. |~] does not comply with (DI)

Proof. Example 1 is a counterexample for p%and DI: We see that for the
world w’ = pbf there is no w |= pf with w < w’. So p~3 f does not hold.

By this, we see that pj~%f does not hold for the running example and
because of that, example 3 is no counterexample to proposition 3.

It is apparent that this problem arises due to the incomparability of “alter-
nating symbols” i.e. if for worlds w,w’ we have o;(w) = a}, 0;(w’) = a; and
0j(w) = a;, gj(w') = aj for at least one pair of 1 <i,j <n,i# j. In this
case, w and w’ are stucturally incomparable.



6 Reasoning with c-representations

To solve the problem of structurally incomparable worlds that became evi-
dent in the previous section, we need to introduce some kind of weights for
conditionals to compare the falsification of different conditionals.

Definition 11 (c-representations). A c-representation [3] of a knowledge
base A = {(B1]A1),...,(BnlAn)} C (£] £) is defined as an OCF of the form

Kaw) = Y &, ki €N (2)
=1
wE=A;B;

where the values k; are penalty points for falsifying conditionals and have
to be chosen to make k% A-admissible, i.e. for all 1 < i < n it holds that
kA | (B;|As) which is the case if and only if

§ K E Ky

. j . j

Ki > min i#£j — min_ i£j . (3)
wE=A;B; wi=A,B; wEA;B; | wE=A;B;

A minimal c-representation is obtained by choosing k; minimally according
to (8) for alli, 1 <i<n.

Example 4 (c-represented penguins). We use, from the introductory exam-
ple, the knowledge base A = {(f|b), (f|p), (b|p)}. For the ; values of a
c-representation we get, according to (3), k; > 0, k5 > min{x], x5 } and
ks > min{k], k5 }. A minimal c-representation for A is calculated with
Ky =1, k5 = k3 = 2 and the resulting ranking of worlds is shown in the
following table.

w  Ka(w) w  Kaw) w  kaw) w  Ka(w)
pbf 2 pb f 4 pbf 0 pbf 0
pbf 1 pb f 2 pbf 1 pbf 0

For c-representations, we make use of the preference relation <, and the
inference relation v, defined for general OCF’s k (see section 4).

Definition 12 (Preference and inference by c-representation).

A world w € 2 is k% -preferred to a world w' € 2 (w <re, w') if and only
if K5 (w) < kS (W'). For a knowledge base A, a formula B is k% -inferrable
from A (Apvwg B) if and only if kA (AB) < k% (AB).

C-representations elaborate conditional structures in a more sophisticated
way than structural inference and provide an inference relation that sur-
passes, e.g., System Z. For the axiomatic derivation of c-representations
from conditional structures, the abelian group property of §a is needed, for
further information, please see [3].

Since every c-representation is an OCF, |'an inherits the properties of |v.

Corollary 2. }N"Z complies with System P and R.

We introduced c-representations to solve the problem of structually incom-
parable worlds which arose in section 5. Indeed, c-representations employ
numerical penalty values that may play the roles of weights. However, it
is not at all clear that }'\'”2 refines |~7. By the following example we see
that A~} B does not necessarily imply AP‘%Z B. So, with c-representations
we have a different, high-quality inference, but the relevance for solving the
addressed problem of |~ }is not obvious.

Proposition 5. There are knowledge bases A such that A3 B does not
imply Apvys B.



Ezample 5. Let A = {(bla), (bcla)}. A minimal c-representation is obtained
from k; = 0, kK, = 1. Ranks and conditional structures are shown below,
we see that ach1b but ag [ b.

w KaW) oaw) w Ka(w)oa(w) w KA(W) oalw) w KA(W) oa(w)
+ +

abc 0 afaf abc 1 afa; abc 0 1 abc O
abc 1 aja, abc 1 aja; abc O 1 abec O 1

The problem arises because the second rule, (bc|a), also establishes the first
rule, (bla), hence k7 = 0. To approach this problem we examine the re-
cently proposed postulate of Enforcement (ENF) [4]. This was proposed for
revisions of ranking functions in the belief revision framework. We recall the
necessary preliminaries from [4] in the following:

Let k be a ranking function and A = {(B1]A1),...,(Bn|An)} C (£] L) be
a knowledge base. Let k* = k * A be the ranking function which results
from revising the epistemic state x by the new information A. As a quality
criterion, (ENF) postulates that if for two worlds w,w’ € (2 it holds that
w <o w', then w <, W’ implies w <.+ w’. To use this postulate for inductive
reasoning we revise the uniform ranking function k., that is the ranking
function for which x.(w) = 0 for all w € {2, with the knowledge base A
which we want to rely our reasoning on. For this special case, w <., w’ is
trivially fulfilled for all w,w’ € 2 and (ENF) boils down to the following
postulate:

Definition 13 (Enforcement for inductive reasoning (Ind-ENF)). Let
A ={(B1]A1),...,(BnlAn)} C (£] £). A A-admissible ranking function ka
respects (Ind-ENF) if w <, w’ implies w <, , w' for all w,w’ € 2.

So a A-admissible ranking function ka respects (Ind-ENF) if the structural
preference induced by oa is respected by ka. This leads to establishing
conditional dependencies more thoroughly: (Ind-ENF) ensures that when
learning (b|a), also both conditionals (blac) and (blac) are established, as
long as no other conditional in the knowledge base inhibits this. So, the
problem shown in Example 5 does not occur.

Lemma 2. If a A-admissible ranking function ka respects (Ind-ENF), then
AR AB implies Ap,  B.

Proof. By definition Apvg Bifffor allw’ |= AB there is anw = AB such that
w <o w'. If (Ind-ENF) holds, then also w <, , w’. Hence ka(AB) < ka(AB)
and so have A, B. O

We see that the OCF from example 5 does not respect (Ind-ENF) since
abc <, abc but abc ;(HCA abc. The next proposition gives a simple criterion
to check if a given c-representation satisfies (Ind-ENF).

Proposition 6. Let A= {(B1]41),...,(Bn]4n)} C(£| L) be a condi-
tional knowledge base. A c-representation k% with k; >0 for all1 <i<n
respects (Ind-ENF).

Proof. Let A = {(Bi1|A1),...,(BnlAs)} C (£] £) with c-representation k% .
We define Z(w) = {i | w E A;B;} = {i | 0s(w) = a; }. If w <, w’, we have
Z(w) G Z(w') and the difference k% (w') — k% (w) for these worlds is

RaW) —kaw) = Y w = Y k= > K >0,
i€T(w’) i€T(w) 1€(Z(w )\Z(w))
since k; > 0 for all 1 < ¢ < n. Hence, (Ind-ENF) holds. O

Note, however, that postulating x; > 0 for each conditional (B;|A;) in the
knowledge base A is usually too strong, since A may contain equivalent
conditionals.



Conclusion

In this paper, we presented an approach to base inductive conditional reason-
ing on structural arguments by observing which conditionals of the knowl-
edge base are verified or falsified, respectively, by possible worlds. This in-
duces a preference relation between possible worlds, and allows us to define
a preferential entailment relation with nice properties. We also drew atten-
tion to the property of Direct Inference which links inference relations to
conditional knowledge bases, and formalized an enforcement postulate for
inductive reasoning which claims that structural differences between worlds
must be reflected appropriately by the preference relation underlying prefer-
ential entailment. We applied these ideas to c-representations which allow for
inductive conditional reasoning of high quality. A more thorough evaluation
of c-representations that obey (Ind-ENF) is part of our ongoing research.
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Abstract. Stenning and van Lambalgen introduced an approach to
model empirically studied human reasoning with nonmonotonic logics.
Some of the research questions that have been brought up in this con-
text concern the interplay of the open- and closed-world assumption, the
suitability of particular logic programming semantics for the modeling
of human reasoning, and the role of three-valued logic programming se-
mantics and three-valued logics. We look into these questions from the
view of a framework where logic programs that model human reasoning
are represented declaratively and are mechanizable by classical formulas
extended with certain second-order operators.

1 Introduction

When humans are presented with reasoning tasks, typical “fallacies” can be ob-
served, conclusions that are not sound in a naive classical logic understanding.
Such patterns of human reasoning are researched in cognitive science, with [1]
being a landmark work. Recently, an approach to model such empirical obser-
vations by means of logic programs has been presented [18,19]. It involves a
two-step process, first the construction of a logic program from, for example,
natural language statements and the choice of a logic programming semantics.
Second, the actual reasoning, straightforwardly performed with respect to the
program and chosen semantics. For modeling the findings from [1], a variant of
the three-valued Fitting operator semantics had been originally suggested in [18]
and corrected and developed further in [6-8, 2]. The following research questions
were brought up, among others, by these works:

Q1: A particular variant of the Fitting operator semantics, along with a related
variant of predicate completion, is required to model the results from [1].
What exactly are the roles of these variants? Are there analogue variants
of other logic programming semantics?

Q2: Which logic programming semantics can be applied to model human rea-
soning according to the approach of [19]?

Q3: What are the roles of three-valued logic programming semantics and three-
valued logics in the modeling of human reasoning?

We approach these questions here from a particular point of view where the logic
programs that model human reasoning are represented by formulas of classical
logic, extended by second-order operators for specific application patterns of
predicate quantification [22]. A particular such pattern is predicate circumscrip-
tion [14,11], which allows to express formulas that have as models only those
models of the argument formula which are minimal with respect to the exten-
sions of a given set of predicates. For a formula with second-order operators, in
many cases an equivalent formula without such operators can be computed by



eliminating these operators. With this approach, the relations between the non-
monotonic logic programming semantics and classical logic are established not by
syntactic transformations, but by semantically defined second-order operators.
Typically, in logic programming the meaning of a predicate occurrence de-
pends on its syntactic context, that is, whether it is in the head or in the body
of a rule, or is subject to negation as failure. In our classical representations of
programs, we distinguish these meanings by letting each original predicate p cor-
respond to several predicates p¥, p!, ..., one for each relevant such non-classical
context. With this framework, several established logic programming semantics
can be characterized as patterns in which circumscription and other second-
order operators are applied, based on characterizations by means of syntactic
translations, in particular, of predicate completion in terms of circumscription
[10], stable models semantics in terms of circumscription [13,12], and partial
stable models semantics [16] in terms of two-valued stable models [9]. Consider
for example the following normal logic program:
| < e, not ab. (i)
e « true.
It can be represented by the classical propositional formula (1° < e® A=ab*) Ae?,
where its stable model semantics can be rendered by the second-order formula
renamel\o(circ(ompos)m((l0 — P A=ab') A el)). (ii)
The second-order operator rename;\o expresses systematic renaming of pred-
icates with superscript 1 to their counterparts with superscript 0. The other
second-order operator circionpos)u1 expresses parallel predicate circumscription
[11] of the predicates with superscript 0 while leaving predicates with super-
seript 1 fixed. (See [20] for precise specifications of these operators.) Eliminat-
ing the second-order operators in (ii) yields the classical propositional formula
(€ A1 A =ab®) which is equivalent to (ii) and whose models correspond to the
stable models of the original program (i), that is, the single stable model {e, [}.
Envisaged benefits of this approach, in particular in the context of modeling
human reasoning, include the following:

— The second-order formulas that express logic programs which in turn model
human reasoning tasks provide a declarative view of human reasoning. With
these formulas, different operational methods to construct them and to per-
form reasoning can be associated, in analogy to calculi. Calculi follow differ-
ent paradigms, such as “model-based” versus “rule-based”. Similarly, differ-
ent paradigms in human reasoning such as “mental models” versus “rules”
or neural approaches can be related to a single declarative representation.

— The framework allows mechanization at all levels, not just execution of the
logic program in a way that simulates human reasoning. Also the meta-
level of the characterizations of nonmonotonic semantics is mechanizable.
Automated deduction systems can be applied to reason about features of
human reasoning and to systematize them.

— Humans apply different ways of reasoning. The proposed approach allows to
take this into account by allowing to express different nonmonotonic seman-
tics within a single framework, where they can be used together. In addition,
features like disjunctive heads, negation as failure in the head and first-order
quantification can straightforwardly be incorporated.



— With the proposed approach, nonmonotonic semantics are in essence reduced
to combinations of a few general operators and principles, like circumscrip-
tion applied to predicate occurrences. It may be of interest to investigate
whether patterns at this level of combination of general operators match
observed patterns of human reasoning.

The rest of the paper is organized around the three mentioned research questions:
Question Q1 is addressed in Section 2, Integration of Open- and Closed-World
Reasoning, question Q2 in Section 3, Logic Programming Semantics for Modeling
Human Reasoning, and question Q3 in Sections 4 and 5 about three-valued
logic programming semantics and three-valued logics, respectively, for modeling
human reasoning.

2 Integration of Open- and Closed-World Reasoning

According to the approach of [19], it is essential for the application of logic pro-
gramming to model human reasoning that some predicates are subject to the
closed-world assumption and others to the open-world assumption. With predi-
cate circumscription, selective closed-world reasoning can be expressed naturally
by specifying which predicates are to be minimized and which are fixed. Other
nonmonotonic semantics have to be generalized such that they allow selective
closed-word reasoning. Consider the following program, which models the two
conditionals “if she has an essay to write she will study in the library” and “if
she has a textbook to read she will study in the library” from [1] according to
[19], where [ stands for “she will study in the library”, e for “she has an essay to
write”, and t for “she has a textbook to read”.

l < e, not ab.

[ < t, not abs. (iif)
According to [19], abnormality predicates (aby, abs) and predicates occurring
in a rule head (1) are considered closed-world, and the remaining predicates (e,
t) open-world. Now, the negative fact “she does not have an essay to write” is
added to the human reasoning scenario. Thus e should be set to false. Since
this can not be expressed in the syntax of normal logic programs, in [19] a
special syntax for negative facts is provided that allows to write e « false. If
we want to stay within normal logic programs, the negated e can be expressed
simply by considering e as subject to the closed-world assumption, leaving just ¢
open-world. The stable model of program (iii) with respect to ¢ considered as
open-world can be expressed by the following second-order formula:

. 0 0 1 0 0 1 :
rename \ o (Circ onpos)u1ugeo} (I <= € A =aby) A (17 < t7 A =aby))). (iv)
The open-world predicate t is passed as parameter to the circumscription opera-
tor to the effect that ¢ is considered with respect to the circumscription as fixed.
Elimination of the second-order operators in (iv) yields
(P At A =e® A =abd A=abd) v (210 A=t0 A= A—abl A—aby), (V)
corresponding to two stable models: {l,¢} and {}. Thus -, is not a consequence
of program (iii) under stable models semantics with ¢ considered open-world,

matching the empiric results reported in [1], where in that scenario only 5% of
the subjects conclude she will not study in the library.



Further logic programming semantics can be generalized to take open-world
predicates into account analogously to the stable models semantics. This holds
in particular for the supported models semantics and for three-valued general-
izations of these two-valued semantics: the partial stable models semantics [16],
the related well-founded semantics, and semantics based on the Fitting operator
[4]. In all cases, the open-world predicates are passed as fixed predicates to an
occurrence of the circumscription operator [20].

There are alternate ways of expressing the incorporation of the required open-
world reasoning into logic programs: In [19], a variant of predicate completion is
used, called weak completion in [6], where predicates that do not occur in a head
are exempt from completion. This works for the completion based semantics
such as supported models and the three-valued semantics based on the Fitting
operator, however it is not straightforwardly adaptable to rules with first-order
variables [20]. Another possibility is to use the standard versions of the logic
programming semantics and extended programs by special rules to encode that
certain predicates are open-world: For the completion based semantics this can
be achieved by adding p < p for each open-world predicate p. For the stable and
the partial stable models semantics, and for the completion based semantics as
well, this can be achieved by adding two rules p « —not_p and not_p < —p, where
not_p is a fresh predicate, for each open-world predicate p. Existential predicate
quantification can be applied to the newly generated not_ predicates, such that
they do not occur in the final results. For all these variants, equivalence to the
circumscription based representation can be shown [20].

3 Logic Programming Semantics for Modeling Human
Reasoning

In the literature, so far only a single logic programming semantics has been inves-
tigated in the context of modeling human reasoning according to [19]: The least
fixed point of the Fitting operator (modified to take open-world predicates into
account) and its rendering as least model of the program completion viewed as
formula in a three-valued logic. The program representation of a human reason-
ing scenario is considered adequate with respect to the empiric results if certain
conclusions drawn or not drawn by a significant number of human subjects cor-
respond to facts that are entailed or not entailed, respectively, by the program,
like —[ in the example above.

In Section 2 we already have seen an example that has been evaluated with a
different logic programming semantics, the two-valued stable models semantics,
generalized to take open-world predicates into account. It can be shown that
for the scenarios from [1] studied in [19] with this semantics the same adequacy
results as for the three-valued Fitting operator based semantics can be obtained.
For the logic programs according to [19], the supported models semantics, again
generalized to take open-world predicates into account, yields exactly the same
models as the stable models semantics. Considering three-valued semantics, the
adequacy results obtained for the Fitting operator based semantics can also
be obtained with the partial stable models semantics and the well-founded se-
mantics, when these are generalized to take open-world predicates into account.
These correspondences have been shown for “forward-reasoning” tasks, that is,



modus ponens and denial of the antecedent in [20]. Combining this with results
from [8,21], they are expected also to hold for abduction based “backward rea-
soning”, that is, modus tollens and affirmation of the consequent.

That the stable models semantics yields the same models as the supported
models semantics does not come as a surprise, since by Fages’ theorem [3] both
semantics are identical for programs that are tight, that is, do not involve “pos-
itive loops”. The experiments discussed in [19] all lead to tight programs. It is
not difficult to transfer Fages’ theorem to a three-valued setting, where for tight
programs the models represented by the fixed-points of the Fitting operator are
exactly the partial stable models. Accordingly, the model represented by the
least fixed-point of the Fitting operator is the well-founded model.

It seems currently unclear whether there are interesting scenarios of human
reasoning that would lead to logic programs which are not tight or to programs of
richer classes, for example by permitting disjunctive rules, where the completion
based semantics might differ from those based on stable models.

4 Three-Valued Logic Programming Semantics for
Modeling Human Reasoning

In human reasoning positive and negative knowledge is apparently not handled
symmetrically. The Fitting operator [4] represents a particular asymmetric way
of inferring positive information (heads of rules whose body is verified) and
negative information (negated heads in case the bodies of all rules with the
atom as head are falsified). As shown in [19], this matches the empirical results
from [1] about the suppression task when open-world predicates are properly
considered.

The Fitting operator semantics and the partial stable models semantics can
be expressed with second-order operators in two-valued classical logic [20], where
the representation of the partial stable models semantics is based on a translation
into the two-valued stable models semantics [9]. The following formulas show how
the Fitting operator semantics is rendered in our framework for the example
program (iii), with ¢ considered as open-world:

circyem (fitting 0 1 424 (10 = €2 A =abi) A (I° 2 A —ab3))) (1)
= circyyemin (CONS A (12 = €% A =abt) A (10 < t° A —abg) A (2)
(1 = (e' A=ab?) v (t' A=abd)) A
(e' — false) A (ab] — false) A (abl — false))
= circyypn (—ab? A —abl A —abl A —ab3 A —e® A —e' A (3)
(I°AT* AP ALY v (vi)
(OAN A=t ALY v
(RN A= ALY v
(FOA-P A= At v
(=10 A=t A=t A StY)))
= —ab? A —abi A —aby A —ab3 A —e® A—et A=l AP AP AL (4)
In the classical representation of the logic program in formula (1), three roles of
predicate occurrences are distinguished: In the head, subjected to negation as
failure, and in the positive body, superscripted by 0, 1, 2, respectively. The op-
erator fitting is a shorthand for a certain combination of second-order operators
that renders the semantics of the Fitting operator. Its subscript argument in (1)
specifies that ¢ is to be considered open-world. (See [20] for precise definitions.)



Step (2) shows the formula (1) after eliminating fitting, which can be considered
as the result of a program transformation: CONS, a shorthand for an axiom that
excludes certain unwanted models as discussed below, a classical representation
of the program with head and positive body superscripted with 0 and the neg-
ative body with 1, and the converses of the completion of the latter variant of
the program with superscripts flipped.

The predicate superscripts now indicate the contribution to three-valued
models: An interpretation assigns the “three-valued” truth value TRUE to an
atom p if it is a model of p° A p'. It assigns FALSE to p if it is a model of
—pY A—p!, and it assigns UNDEFINED to p if it a model of —p° Ap'. The remain-
ing possibility that it is a model p° A =p' is excluded by the axiom CONS. In
step (3) the argument formula of the circumscription is syntactically simplified,
indicating its five three-valued models. Finally, in step (4) the circumscription
operator is eliminated, rendering the selection of the least model of the Fitting
operator. The symbol INFMIN is a shorthand for a parameter that specifies that
predicates with superscript 0 are minimized while those with superscript 1 are
maximized (our version of predicate circumscription allows maximization, dual
to minimization [22]). A model of a formula circumscribed in this way is an
informationally minimal model of the circumscribed formula, since viewed as
three-valued, there is no other model of the formula whose assignments of atoms
to FALSE and to TRUE (but not to UNDEFINED) are properly contained in those
assignments of the first model.

With this approach, “positive” and “negative” aspects correspond to dif-
ferently superscripted predicates. In combination they yield three-valued truth
values. The same combinations are obtained for the partial stable models se-
mantics based on the translation in [9], where it is suggested to consider the
predicates superscripted with 1 as representing potential truth. It may be of
interest to investigate whether there are correspondences to observed human
reasoning at the level of this “lower layer” of components with different status,
representing “true” and “potentially true” knowledge.

5 Three-Valued Logics for Modeling Human Reasoning

The least model of the Fitting operator applied to a normal logic program is
the unique informationally minimal model of the program’s completion under a
certain three-valued logic [4]. This also applies to the considered generalizations
in which open-world predicates are taken into account. In the corresponding
three-valued logic the semantics of the biconditional must yield TRUE if and only
if both argument formulas have the same truth value. This is the case for the
semantics of the biconditional considered in [4], where FALSE is the value in all
other cases, and also for the biconditional derived from Lukasiewicz’s implication,
considered in [6], where UNDEFINED is the value if the truth value of exactly
one argument is UNDEFINED, and FALSE is the value in the remaining cases.
With both variants of the three-valued biconditional, formulas with the syntactic
form of a completed normal logic program have exactly the same three-valued
models. Similarly, if normal logic programs themselves are considered as three-
valued formulas, the models with respect of the implication seqs [5], the analogue
to the mentioned biconditional considered in [4], used in [15] for logic programs,
are exactly the models obtained with Lukasiewicz’s implication.



In Section 4 we have seen an assignment of three-valued truth values to
atomic formulas, by two-valued interpretations over atoms decorated with su-
perscripts 0 and 1. This principle can be extended to complex formulas of certain
three-valued logics. In [20] such an extension is given for the three-valued logic S
[17], the logic applied in [4] to render the semantics of the Fitting operator: A
valuation function from S3 formulas and two-valued interpretations over atoms
with superscripts 0 and 1 onto three truth values is specified, where the values of
atoms are assigned as described in Section 4 and the values of complex formulas
according to the involved three valued connectives. The valuation function is
complemented by a translation function that maps an Ss-formula to a classical
propositional formula whose predicates are decorated with superscripts 0 and 1
in a compatible way. That is, an interpretation over the superscripted atoms is a
model of the translated Sz formula if and only if the valuation function applied
to the formula and the interpretation yields TRUE. In the following example, the
part of the argument formula of the circumscription that follows CONS is the
value of this translation function, applied to the completion of the program (iii),
extended by the rule ¢ « ¢ which expresses that t is open-world, viewed as an
Ss-formula:

circ;yemin (CONS A

(1° < (e° A=abl) v (t° A=abd)) A (0 < t°) A (e° & false) A

(ab <> false) A (ab3 ¢ false) A (vii)

(1" < (e* A=ab?) Vv (11 A—abd)) A (! < t1) A (e > false) A

(ab} <> false) A (ab} < false)).
The translation function yields two instances of classical representations of the
completed program, with superscripts distinguishing predicate occurrences sub-
jected to negation as failure, flipped in the two instances. It can be shown that
the formula (vii) is equivalent to (vi) [20]. The translation extends the composi-
tional view of three truth values in terms of two values and superscripted atoms
outlined in Section 4 to complex logic formulas.

6 Conclusion

We have looked into the modeling of human reasoning tasks by logic programs
proposed in [18,19] and developed further in [6-8, 2] from the perspective of a
framework where nonmonotonic semantics are represented in classical logic ex-
tended by some second-order operators. These classical formulas provide a view
on logic programming and the modeled human reasoning that is not tied to
a particular way of processing, that allows to represent the interplay of differ-
ent nonmonotonic semantics, and that allows formalization and mechanization
not only on the “object-level” by computing outcomes of human reasoning, but
also on the “meta-level” of reasoning about features and principles of human
reasoning.

The framework lets general features and requirements of the approach to
model human reasoning by logic programming become apparent, such as the
interplay of open- and closed-world assumption, which can be straightforwardly
expressed by parameterizing circumscription appropriately, from where it trans-
fers to several other logic programming semantics by expressing them in terms
of circumscription. The inspection of three-valued logic programming seman-
tics and three-valued logics applied to model human reasoning leads to “lower



level” representations, where combinable pieces of knowledge (atomic formulas)
are associated with different aspects, like being true versus being potentially
true. This suggests future investigations in the area of human reasoning to see
whether some of its features can be analogously explained by combination of
related primitives.
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