Treemap: An O(log n) Algorithm for Indoor
Simultaneous Localization and Mapping

Udo Frese

°
?SPATIAI. COGNITION

SFB/TR 8 Report No. 006-03/2006

Report Series of the Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition
Universitat Bremen / Universitat Freiburg

Contact Address:

Dr. Thomas Barkowsky
SFB/TR 8

Universitat Bremen
P.O.Box 330 440

28334 Bremen, Germany

© 2006 SFB/TR 8 Spatial Cognition

Tel +49-421-218-8625

Fax +49-421-218-8620
barkowsky@sfbtr8.uni-bremen.de
www.sfbtr8.uni-bremen.de

Treemap: An O(logn) Algorithm for Indoor
Simultaneous Localization and Mapping

Udo Frese ufrese@informatik.uni-bremen.de*!
FB 3, Mathematik und Informatik,
SFB/TR 8 Spatial Cognition,
Universitat Bremen
http://www.informatik.uni-bremen.de/ ufrese/

March 28, 2006

Abstract

This article presents a very efficient SLAM algorithm that
works by hierarchically dividing a map into local regions and sub-
regions. At each level of the hierarchy each region stores a matrix
representing some of the landmarks contained in this region. To
keep those matrices small, only those landmarks are represented
that are observable from outside the region.

A measurement is integrated into a local subregion using O(k?)
computation time for k landmarks in a subregion. When the robot
moves to a different subregion a full least-square estimate for that
region is computed in only O(k®logn) computation time for n
landmarks. A global least square estimate needs O(kn) compu-
tation time with a very small constant (12.37ms for n = 11300).
Furthermore, the proposed hierarchy allows the rotation of indi-
vidual regions to reduce linearization errors.

The algorithm is evaluated for map quality, storage space and
computation time using simulated and real experiments in an office
environment.

1 Introduction

The problem of building a map from local observations of the environ-
ment is a very old one, as old as maps themselves. While geodesy, the
science of surveying in general, dates back to 8000 B.C., it was C.F.

*Sections 1-5, 7-10 have appeared in Autonomous Robots (Frese, 2006b).
tThis article is based on the authors studies at the German Aerospace Center.

Gauss who first formalized the problem from the perspective of sta-
tistical estimation in his article “Theoria combinationis observationum
erroribus minimis obnoziae”! (1821).

In the much younger realm of robotics, the corresponding problem
is that of simultaneous localization and mapping (SLAM). It requires
the robot to continuously build a map from sensor data while exploring
the environment. It has been a subject of research since the mid 1980s
gaining enormous popularity in recent years. Most approaches adhere
to the Gaussian formalization. They estimate a vector of n features,
e.g. landmarks or laser scan reference frames, by minimizing a quadratic
error function, i.e. by implicitly solving a linear equation system. With
this well established methodology the main question is how to compute
or approximate the estimate efficiently. To make this more explicit,
we have proposed three important requirements which an ideal SLAM
algorithm should fulfill (Frese and Hirzinger, 2001; Frese, 2006a).

(R1) Bounded Uncertainty The uncertainty of any as-
pect of the map should not be much larger than the minimal
uncertainty that could theoretically be derived from the mea-
surements.

(R2) Linear Storage Space The storage space of a map
covering a large area should be linear in the number of land-
marks.

(R3) Linear Update Cost Incorporating a measurement
nto a map covering a large area should have a computational
cost at most linear in the number of landmarks.

(R1) binds the map to reality and limits approximations. (R2) and (R3)
regard efficiency, requiring linear space and time consumption. We feel
that one should aim at (R1) rather than at the much weaker criterion
of asymptotic convergence. Even after going through the environment
only a single time, a useful map is desirable. Most sensor data allows
this and, according to (R1) so should the SLAM algorithm.

The contribution of this article is treemap, a hierarchical SLAM al-
gorithm that meets the requirements (R1)-(R3). It works by dividing
the map into regions and subregions. When integrating a measurement
it needs O(k?) computation time for updating the estimate for a re-
gion with k landmarks, O(k®logn) when the robot moves to a different
region, and O(kn) to compute an incremental estimate for the whole
map. The algorithm is landmark based and requires known data associ-
ation. It has two drawbacks. First, it requires a “topologically suitable
building” (Sec. 4); and second, its implementation is relatively complex.

L«Theory of the combination of observations least subject to error.”

(R1) (R2) (R3)
UDA non- map memory update global loop
linear quality update

ML C Vv V4 moo... (n+p)3......
EKF C Vi n? n?o..
CEKF C v ns K2 . kns....
Relaxation Vv Vv kn ... kn...... kn?
MLR Vv Vv kn ..ol kn........
FastSLAM Vv v see§2 Mn o Mlogn......
SEIF kn ..ol K2

w. full update Vv kn ... kn...... kn?
TJTF C v v k*n ki
Treemap C Vv Vv kn k2 . K3logn ..

w. global map C Vv Vv kn ..ol kn........

Table 1: Performance of different SLAM algorithms with n landmarks,
m measurements, p robot poses and k landmarks local to the robot (cf.
§2). UDA stands for 'Uncertain Data Association’. A / means the
algorithm can handle landmarks with uncertain identity. A C means
covariance is available for performing x? tests.

The article is organized as follows. After a brief review of related
work (Sec. 2), we derive the algorithm (Sec. 3-7). It follows with a
comparison to the closely related Thin Junction Tree Filter (Sec. 8)
by Paskin (2003) and an investigation of map quality and computation
time based on simulations (Sec. 9) and experiments in a 60m x 45m
office building (Sec. 10). Finally, we discuss a nonlinear extension that
reduces the linearization error caused by error in the robot orientation
(Sec. 11). The appendix provides the algorithm’s pseudocode (App. A)
and a worked out example (App. B). This report is an extended version
of an article with the same title appearing in Autonomous Robots (Frese,
2006Db).

2 State of the Art

After the fundamental article by Smith et al. in 1988 most work on
SLAM was based on the Extended Kalman Filter (EKF) that allows
SLAM to be treated as an estimation problem in a theoretical frame-
work. However, the problem of large computation time remained. The
EKF maintains the posterior distribution of the robot pose and n land-
marks as a 3 + 2n dimensional Gaussian with correlations between all
landmarks. This is essentially for SLAM but requires to update the
EKF’s covariance matrix after each measurement, taking O(n?) time.

This limited the use to the order of hundreds of landmarks.

Recently, interest in SLAM has increased dramatically and several
more efficient algorithms have been developed. Many approaches exploit
the fact that observations are local in the sense that from a single robot
pose only a few (k) landmarks are visible. In the following the more
recent contributions will be briefly reviewed (Tab. 1). An overview is
given by Thrun et al. (2005) and a discussion by Frese (2006a).

To meet requirement (R1) an algorithm must maintain some form
of correlations in the whole map. To my knowledge the first SLAM al-
gorithm achieving this with a computation time below O(n?) per mea-
surement was the relaxation algorithm (Duckett et al., 2000, 2002). The
algorithm employs an iterative equation solver called relazation to the
linear equation system appearing in maximum likelihood estimation.
One iteration is applied after each measurement with O(kn) computa-
tion time and O(kn) storage space. After closing a loop, more iterations
are necessary leading to O(kn?) computation time in the worst case.
This was later improved by the Multilevel Relaxation (MLR) algorithm
(Frese et al., 2004). This algorithm optimizes the map at different levels
of resolution, leading to O(kn) computation time.

Montemerlo et al. (2002) derived an algorithm called FastSLAM
from the observation that the landmark estimates are conditionally inde-
pendent, given the robot pose. Basically, the algorithm is a particle filter
(M particles) in which every particle represents a sampled robot trajec-
tory plus a set of n Kalman filters estimating the landmarks conditioned
on the trajectory. The number of particles M is a difficult tradeoff bet-
ween computation time and map quality. However, the algorithm can
handle uncertain landmark identification (Nieto et al., 2003), which is
a unique advantage over the other algorithms discussed. Later Eliazar
and Parr (2003) as well as Stachniss and Burgard (2004) extended the
framework to using plain evidence grids as particles (in a compressed
representation). Their approach constructs maps in difficult situations
without landmark extraction or scan matching.

Guivant and Nebot (2001, 2003) developed the Compressed EKF
(CEKF) that allows the accumulation of measurements in a local region
with k landmarks at cost O(k?) independent from n. When the robot
leaves this region, the accumulated result is propagated to the full EKF
(global update) at cost O(kn?). The global update can be approximated
more efficiently in O(kn3/2) with O(n®?) storage space needed.

Thrun et al. (2004) presented a “constant time” algorithm called
the Sparse Extended Information Filter (SEIF), which represents un-
certainty with an information matrix instead of a covariance matrix.
The algorithm exploits the observation that the information matrix is
approximately sparse requiring O(kn) storage space. This property has

later been proven by Frese (2005). To compute a map estimate, a system
of n linear equations has to be solved. Thrun et al. use relaxation but
update only O(k) landmarks after each measurement (using so-called
amortization). This can derogate map quality, since in the numerical
literature, relaxation is reputed to need O(kn?) time for reducing the
equation error by a constant factor (Press et al., 1992). Imagine closing
a loop of length n and going around that loop a second time. Still the
estimate will not have reasonably converged because only O(k?n) time
has been spent. If all landmarks are updated each step (SEIF w. full
update) performance is asymptotically the same as with relaxation.

Leonard and Feder (2001) avoid the problem of updating an estimate
for n landmarks by dividing the map into submaps. Their Decoupled
Stochastic Mapping (DSM) approach represents each submap in global
coordinates by an EKF and updates only the current local submap. The
approach is very fast (O(k?)) but, as they note, can introduce overcon-
fidence when passing the robot pose between submaps.

Bosse et al. (2004) in contrast make submaps probabilistically inde-
pendent in their Atlas framework by using a local reference frame. Then,
links between adjacent frames are derived by matching local maps. From
the resulting graph an estimate is computed. A similar approach is taken
by Estrada et al. (2005). Both systems are heterogenous. On the local
level a full least square solution is obtained. But on the global level
the complex probabilistic relation between submaps is aggregated into
a single 3-DOF link between their reference frames.

Paskin (2003) derived the Thin Junction Tree Filter (TJTF) from
viewing the problem as a Gaussian graphical model. This approach
is closely related to treemap although both have been independently
derived from different perspectives. They are compared in Section 8.

In the following the treemap algorithm will be introduced. It can be
used in the same way as CEKF providing an estimate for k landmarks of
alocal region but with only O(k? log n) computation time when changing
the region instead of O(kn3/?) for CEKF. Alternatively the algorithm
can also compute a global estimate for all n landmarks. Computation
time is then O(kn), but with a constant so small that this can be done
for almost “arbitrarily” large maps (12.37ms for n=11300, Intel Xeon
2.7GHz). This is the main contribution from a practical perspective.
Note, that while treemap can also provide covariance information, this
requires additional computation in contrast to CEKF.

A exew

L1—

Il4 ag ah an au
av bi bmbp
bq ek el es
et

L2—

L2

(b)

ev eu et es er eq epeh
ey
eo en em el ek €ej ei ef
X M
ey 7
bz by bx b ! ch cg cf
ca c ee
ez afy b j ed
cb ec ebq
cced bth k cl cm cn coJ
aa - } dj
ag bl bk bj bh bg ea
bf
ah bm bn bo bp bqg br bs bb
ab X \
da cz did s cr cq cpl
db ba beq
ac aij d t az
dc cy- bd4
dd de df d u cv cw cx
ad h x = T
aJ as at av aw ax ay
beA
ae ak al am ao ap aq ar
L
(a)

L2

nrz

L2

Figure 1: Geometric View. (a) A building hierarchically decomposed
in two levels (L1, L2) and (b) respective tree representation with 7 nodes
(n;. 7). The region corresponding to a node is shown next to the node.
Landmarks inside a region that are visible from outside are listed in the
node. Only the marginal distribution of these landmarks is needed if
the robot is outside the respective region.

3 Treemap Data Structure

3.1 Motivating Idea

We will first discuss the general idea that motivates the treemap ap-
proach. The description differs slightly from the actual implementation
but provides a large-picture understanding of the algorithm.

Imagine the robot is in a building (Fig. 1a) that is virtually divided
into two parts A and B. Now consider the following question here:

If the robot is in part A, what is the information needed about B?

Some of B’s landmarks are observable from A and involved in mea-
surements while the robot is in A. The algorithm must have all previ-
ously gathered information about these landmarks explicitly available.
This information is more than just the measurements that directly in-
volve those landmarks. Rather all measurements in B can indirectly
contribute to the information. So probabilistically speaking, the in-
formation needed about B is the marginal distribution of landmarks
observable from A conditioned on measurements taken in B2.

The idea can be applied recursively by dividing the building into a
binary? tree of regions (Fig. 1). The recursion stops when the size of a
region is comparable to the robot’s field of view.

The marginal distribution for a region can be computed recursively.
The marginals for the two subregions are multiplied and landmarks are
marginalized out that are not visible from the outside of that larger re-
gion anymore. This core computation is the same as employed by TJTF.
The key benefit of this approach is that for integrating a measurement
only the region containing the robot and its super-regions need to be
updated. All other regions remain unaffected.

Treemap consists of three parts: Core propagation of information
in the tree (Sec. 3-4); preprocessing to get information into the tree
(Sec. 5-6); and hierarchical tree partitioning to find a good tree (Sec. 7).

3.2 Formal Bayesian View

In a preprocessing step the original measurements are converted into
probabilistic constraints p(X|z;) on the state vector of landmark posi-
tions X. At the moment, let us take an abstract probabilistic perspective
as to how treemap computes an estimate & from these constraints. We
will subsequently describe the Gaussian implementation as well as how
to get the constraints z; from the original measurements.

2This only holds strictly when there is no odometry (cf. Sec. 5).
3Using a binary hierarchy simplifies bookkeeping.

-
‘—

/\ ~~~

‘.--- - ‘~ ~

[. ~
] n . . Sa
. ~
! _t . ~o
/---\ ‘s ~~“
~
N * ‘~ .~.
W PN N A
p N 2 * ’ .)
Jzn: /] o z[n:]\ ‘ z[n: 1] s
.) l \)

>

- '@ 04O 0" ©@ 0 0.

E/\ '/ /\®/\@/

X[n:// Xln\]
Figure 2: Bayesian View. In this example landmarks z, g are ob-
served. They are connected by constraints zo_ 7 between consecutive
landmarks and two absolute constraints zi, zg. The arrows and circles
show this probabilistic input as a Bayes net with observed nodes in gray.
The dashed outlines illustrate the information from the view of a single
node n. It divides the tree into three parts, left-below /, right-below \
and above T (more precisely not below). Hence the constraints z are
disjointly divided into z[n: /] = 212, z[n:\] = 234 and z[n: 7] = 25_s.
The corresponding landmarks X[n: /] = X, p, X[n:\] = X} 4 and
X[n:1] = Xq. g however overlap (X[n: /\] = Xy, X[n:T\] = z4). The
key insight is, that X[n: [7] = X[n: /T V \\T] = X4 separates the con-
straints z[n: |] and landmarks X[n: | 1] below n from the constraints
z[n: 1] and landmarks X[n: {1] above n, so both are conditionally inde-
pendent given X[n: |1].

The constraints are assigned to leaves of the tree with the intention
to group constraints that share landmarks. With respect to the motivat-
ing idea each leaf defines a local region and correspondingly each inner
node a super-region. However formally a node n just represents the set
of constraints assigned to leaves below n without any explicit geometric
definition. For a node n, the left and right child and the parent are de-
noted by n/, n\ and ny, respectively. We often have to deal with subsets
of observations or landmarks according to where they are represented
within the tree relative to the node n (Fig. 2). Thus, let z[n: |], z[n: /],
z[n:\], and z[n: 1] denote the constraints assigned to leaves below (),
left-below (/), right-below (\), and above (1) node n, respectively. The
term above n refers to all regions outside the subtree below m (!). As
a special case, for a leaf n, let z[n: /\] denote all constraints at n.
Analogous expressions X[n:...|] denote the landmarks involved in the
corresponding constraints z[n:...]. While constraint sets for different
directions {/,\,1} are disjoint, the corresponding landmark sets may
overlap because different constraints may involve the same landmark.
These shared features dictate the computations at node n as the tree
is updated. With the assumptions presented in Section 4, their num-
ber is small (O(k)) and, thus, the overall computation involves many
low-dimensional distributions instead of one high-dimensional.

3.3 Update (upwards)

Figure 3 depicts the data flow in treemap that consists of integration
(®) and marginalization (@), i.e. multiplying and factorizing probability
distributions. We will now derive and prove the computation.

As input, treemap receives a distribution pl defined as
p(X [n: le[n: l]) at each leaf. It is computed from the probabilistic
model for the constraints assigned to n. The output is the integrated
information p, = p(X [n: le) at each leaf. During the computation,
intermediate distributions p¥ and pS are passed through the tree and
stored at the nodes, respectively. In general, pl, pM pg, and py refer to
distributions actually computed by the algorithm, whereas all distribu-
tions p(X[.. Hz[..]) refer to the distribution of the landmarks X7|...]
given the constraints z|[...] according to the abstract probabilistic input
model shown in Fig. 2. With this notion proving the algorithm means
to derive equations p;; = p(X[...]|2[...]) expressing that the computed
result equals the desired distribution from the input model.

Let us first consider the update operation that begins at the leaves
and is recursively applied upwards. The update computes the marginal
pﬁ/‘[and conditional pg either from the input distribution p{l or from the

Figure 3: Data flow view. The probabilistic computations performed
in the tree shown in figure 1b. The leaves store the input constraints p{l.
During updates (black arrows) a node n integrates (®) the distributions
p% and pﬁ/{ passed by its children. Then the result is factorized (@) as

the product of a marginal p passed to the parent and a conditional p&
stored at the node. To compute an estimate (gray arrows) each node
n receives a distribution py, from its parent, integrates (©) it with the
conditional p¢, and passes the result p, down to its children. In the end
estimates T, for all landmarks are available at the leaves.

10

children’s marginals p% and pﬂ{.

pa = p(X[n: [7]|2[n: |]) (1)
pS = p(X[n: /\1]| X [n: 1], 2). (2)

The marginal distribution (1) describes the posterior for the landmarks
both above and below X[n: | 1] conditioned upon the constraints z[n: |]
below n. These landmarks are by definition also involved in constraints
which are not yet integrated into p}. So pM is passed to the parent for
further processing. In contrast, pg contains those landmarks X [n: /\ 1]
for which n is the least common ancestor of all constraints involving
them. These constraints have already been integrated, so pg needs no
more processing and can be finally stored at n. Overall, a landmark is
passed upwards in pM up to the node where all constraints involving
that landmark have been integrated and then it is stored in p§.

We now derive the recursive computation of p}! and p{ proving (1)
and (2) by induction. An inner node n multiplies (®) the marginals pﬁ/‘[[

and pf‘l{ passed by its children. Assuming (1) for n\ we get

Pay, = p(X[ny: L1]]2[ny: 1]). 3)

Being above n\ means either to be above n or to be left-below n.

= p(X[n:\1V /\][2[n:\]) (4)

To multiply pf‘fj and pﬁ{ we must formally interpret both as a distribu-
tion for the union of landmarks. This is possible, since X[n: /X 1] are
by definition not involved in z[n:\] at all.

= p(X[n:\TV ATV /%T]|20:\]) (5)
=p(X[n: 11V /\1]]2[n:\]) (6)
This argument may appear rather technical at first sight but it ensures
that in defining p}/ by (1) we actually found that part of p(X|z[n: |])
that cannot be fully processed below m and has to be passed to the

parent. Certainly a symmetric result holds for pan, so both can be
multiplied (®) gathering all information below n.

p%'pﬂizp(n: 1TV A\ T]|z/]) - p(X[n: 1TV /\T]|zm:\]) (7)
=p(X[n: [TV /\1]|2nl]) (8)

Let Y = X[n: [TV /\ 1] be the vector of landmarks involved in p% or

pﬁ/{. Treemap divides ¥ = (g) into those landmarks V' = X[n: |1]
involved in constraints above n and those U = X[n: /\ 1] for which n is

11

the least common ancestor of all constraints involving them. Landmarks
U are marginalized out (@) factorizing the distribution as the product

Pl (%) - pal (4) =pa(v) - p§(ulv) (9)

of the marginal pM (V') passed to the parent and the conditional pS (U|V)
stored at n. We can verify, that p} satisfies (1) and p§ satisfies (2) by
marginalizing respectively conditioning both sides of (8).

P = p(Xm: | 1]|z[nl]) (10)
pS = p(X[n: /\1]| X [n: 1], 2[n]]) (11)
= p(X[n: /\1]| X [n: 1], 2) (12)

The second step (12) is the formal key point of the overall approach.
In Bayes net terminology (Fig. 2) X[n:|7] separates the constraints
z[n: |] and landmarks X [n: | 7] below n from the constraints z[n: 1] and
landmarks X [n: {1] above n. So X[n: /\ f], which is part of X[n: | 1],
is conditionally independent from the remaining constraints z[n: 7].

Now we have established that if (1) holds for a given nodes children,
then (1) and (2) hold for pM and p§ computed by the node. We still
have to verify these equations for leaves. Then by induction they hold
for all nodes. At a leaf n all original constraints that were assigned to
that leaf are multiplied and stored as input distribution

= [l »(Xlz)=p(Xm:1]]z0:1]) (13)
i assigned to n
=p(X[n: 11TV /\1]]z[n: 1]). (14)

For a leaf n we defined X[n: /\| as those landmarks involved in con-
straints assigned to that leaf. So for a leaf, pl satisfies the same condi-
tion (8) as pnMJ -pr for an inner node. Hence, after marginalization (1)
and (2) hold for leaves with the same arguments as for inner nodes.

As a final remark, pX! . = () is empty by (1), because there is nothing
above root. So it is the end of the upward update-arrows and the start
of the downward state-recovery arrows (Fig. 3).

3.4 State Recovery (Downwards)

Now let us consider how to compute a state estimate from the p§ (gray
arrows pointing downwards). Here the goal is that every node n passes

pn=p(X[n: [TV /\1]|2) (15)

down. Hence a leaf computes the marginal of landmarks involved since
X[n: [TV /\ 1] equals X[n: |]. The final estimate &, is computed as

in = E(pn) = E(X[n: l]!z). (16)

12

Since every update changes py,, it is computed on the fly and not stored.
Now we derive (15) by induction. Let us assume a node n receives

pn; = p(Xnp: 1TV A\ 1]|2) (17)

from its parent. A landmark below n; is either below n or below the
sibling of n. The latter ones are marginalized out resulting in

p(X[n: 11]]2). (18)

This step is not shown in figure 3 because it is implicitly done in the
actual Gaussian implementation (cf. Sec. 3.5). The result is multiplied
(®) with the conditional p§ stored at n and passed downwards as py.

Pn = p(X[n: 1]]2) - p§ (19)
=p(X[n: 1]|z) - p(X[n: /\1]|X[n: |1],2) (20)
=p(X[n: [TV /\1]|2) (21)

We have shown, that if node n receives py with (15) it passes a dis-
tribution p, to its children holding (15) too. As the induction start
X[root: | 1] in (18) is empty, so by induction (15) holds for all py,.

3.5 Gaussian Implementation

Treemap uses Gaussians for all probability distributions. Thereby the
probabilistic computations reduce to matrix operations and the algo-
rithm becomes an efficient linear equation solver for a specific class of
equations. The performance is much improved by using different rep-
resentations for updates (pl, pM), for state recovery (pn), and for the
conditional pS linking both. We will now derive formulas for the three
operations ® (update), @, and ® (state recovery) involved.
Distributions pl, and p) are stored in information form as

—log pnM(y) = yTAny + yTbn + const . (22)

Update (Upwards)

If treemap is used directly with landmark-landmark constraints, p! is
computed as usual by linearizing the constraints, expressing the approx-
imated x? error by an information matrix and vector and adding these
for all constraints assigned to the leaf n (Thrun et al., 2005, §11.4.3). In
Section 5 we will discuss how to derive pfl in a preprocessing step from
robot-landmark and robot-robot constraints.

To perform the multiplication ® at node n, first (A, ,>bn) as well as
(An, ,bn,) are permuted and extended with 0-rows/columns such that

13

the same row/column corresponds to the same landmark in both. Addi-
tionally landmarks of X[n: /\ {] are permuted to the upper rows / left
columns and landmarks of X[n: |7] to the lower rows / right columns.
This will help later for marginalization. Then they are added.

—log (pnM, (y) Pht (y)) = —logpy (y) — log py! (v) (23)
= yT(Anl + An)y + yT(an + bn,) + const (24)

To perform the marginalization @, An, + An, is viewed as a 2 x 2 block
matrix and by, + bn, as a 2 block vector

= (T(BE) (W) + (4)7(§) + const. (25)

The first block row / column corresponds to landmarks U = X[n: /\ {]
to be marginalized out and stored in p{. The second block row / column
corresponds to landmarks V' = X[n:|]] to be passed in pnM . By a
straight-forward but rather lengthy calculation it follows that

= ol (S — RP_lRT)U + ol (—RP_lc + d) + const

+ (Hv+h—u)TP(Hv+h—u),
with H = —P7'RT and h = —P~!¢/2. (27)

(26)

The first line of (26) defines a Gaussian for v in information form not
involving w at all. The second line defines a Gaussian for u with co-
variance P~! and mean Hv + h. The first does not contribute to the
conditional p(U|V') and the second not to the marginal p(v). Thus

—logpp! (v) = 0" (S - RP_lRT)v + UT(—RP_lc + d) + const (28)
—logpg(uh)) = (Hv+h—u)TP(Hv+h—u) (29)

holds. Algorithmically treemap computes the information matrix AM
and vector bM of pM by

AM — g _RpP7IRT, oM = _RPlc+d (30)
and passes it to the parent node. This is the well known marginalization
formula for Gaussians (Thrun et al., 2005, Tab. 11.6) which is also
known as Schur-complement (Horn and Johnson, 1990). Equation (29)
is remarkable. It represents p(u|v) in terms of v as a single Gaussian in

u with mean Hv + h. For general distributions no such simple relation
will hold. Treemap stores p$ as (P~1, H,h).

14

State Recovery (Downwards)

With this representation for p§ state recovery ® can be implemented
very efficiently in covariance form. The mean © = F(v|z) is passed by
the parent node and the mean of u is correspondingly

g _ (g), 0 = E(u!z) Gau;sian E(

ulv = E(v|z),z) = Ho+h. (31)
Note, that E(ulz) = E(ulv = E(v|z)) only holds for Gaussians. In
general the full distribution p(v|z) is necessary to compute E(u|z) from
E(ulv, z). So for recovering the global state estimate & = FE(X]|z), it
suffices to propagate the mean downwards — it is not necessary to prop-
agate covariances at all. In this case, state recovery requires only a single
matrix-vector product in each node and is extremely efficient.

If the covariance is desired, it can be propagated the same way. If
cov(v) = C, is passed by the parent node, cov () can be computed as

C = covj = cov (i) = cov ((Hyth) — (Hoth=u)) (32)
_ (HC,HT HC, -1 _ (HC,HT+P~!' HC
< [T HC)+(P0 8)(s cu)‘ (33)

The last equation follows from pg defining a P~! covariance Gaussian
on Hv + h —u by (29). This Gaussian is independent from the one
passed by the parent node, since the marginalization (@) factorizes into
two independent distributions pnM and pg. The result of recursive prop-
agation is a covariance matrix for each leaf yielding correlations between
all landmarks involved in measurements at the same leaf.

3.6 Performance and Discussion

As evident from the description in this section, there is no approzimation
involved in the update and state-recovery operations computing & from
the different pZ. The estimate & computed by this core part of treemap
is the same as the one provided by linearized least square or EKF when
using the same linearization point. Approximation errors are introduced
by linearization in computing p’ from the original non-linear landmark-—
landmark constraints. When, as usual, the input are robot-landmark
and robot-robot constraints, a further preprocessing step is necessary
(cf. Sec. 5). This step marginalizes out old robot poses and in doing
so creates further landmark constraints. To avoid getting too many
constraints, a so called sparsification is necessary, which is a second
source of error. No further approximations are involved.

Local and global levels are treated conceptually the same way by
least square estimation on landmarks. This is different from Atlas and
the algorithm by Estrada et al. (2005), that use a graph over relations

15

of reference frames on the global level. So as with CEKF and TJTF the
division into submaps is mostly transparent for the user.

There are three key ideas that make this computation fast.

e Many small matrices instead of one large matrix. This is
the motivation. For the matrices actually to be small the build-
ing must have a hierarchical partitioning with limited overlap (cf.
Sec. 4) and the partitioning subalgorithm must actually find one
(cf. Sec. 7.3).

e Only a single path from leaf to root needs to be updated
after a new constraint is added to that leaf. Since p} and p¢
depend only on z[n: |] all other nodes still remain valid*. So if the
tree is balanced, only O(logn) nodes are updated.

e State-recovery is fast, because it needs only a single matrix-
vector product per node (31) to propagate the mean. Alternatively
two matrix products are needed to propagate the covariance (33).
This makes computing a global estimate extremely fast, because
then recursive propagation is the dominant operation O(n).

Appendix B shows a worked out example for propagation of distri-
butions in the tree corresponding to the example in figure 2.

4 Assumptions on Topologically Suitable
Buildings

The time needed for computation at a node n depends on the size of
the matrices involved, which is determined by the number of landmarks
in Xm: [TV /\1] = X[n,:|TVvn:]7]. So for each node only few
landmarks should at the same time be involved in constraints below and
in constraints above n. Or intuitively speaking, the region represented
by a node should only have a small border with the rest of the building.

As the experiments in Section 10 and the following considerations
confirm, typical buildings allow such a hierarchical partitioning as a tree
because they are hierarchical themselves, consisting of floors, corridors
and rooms. Different floors are only connected through a few staircases,
different corridors through a few crossings and different rooms most often
only through a single door and the adjacent parts of the corridor. Thus,
on the different levels of the hierarchy natural regions are: rooms, part
of a corridor including adjacent rooms, one or several adjacent corridors
and one or several consecutive floors (Fig. 4).

Let us formally define a “suitable hierarchical partitioning” and thus
a “topologically suitable building” having such a partitioning.

4An exception is discussed in Section 7 but does not affect the O(logn) claim.

16

Figure 4: DLR Institute of Robotics and Mechatronics — A typical topo-
logically suitable building with the first three levels (L1, L2, L3) of a
suitable hierarchical partitioning. It has been mapped in the experi-
ments (Sec. 10), with the dashed line sketching the robots trajectory.
The start and finish are indicated by small triangles.

17

Definition 1 (Suitable Hierarchical Partitioning) Let the mea-
surements z be assigned to leaves of a tree. Let k be the maximum
number of landmarks involved in measurements from a single robot pose.
Then the tree is a suitable hierarchical partitioning, if

1. For each node n the number of landmarks in X[n: |1] is O(k).

2. For each leaf n the number of leaves n' for which X[n:|] and
X|[n': |] share a landmark is O(1).

Definition 2 (Topologically suitable building) A topologically
suitable building is a building where a suitable hierarchical partitioning
exists regardless how the robot moves.

The parameter k is small, since the robot can only observe a few
landmarks simultaneously because its field of view is limited both by
walls and sensor range. In particular, £ does not increase when the
map gets larger (n — o0). Although by this argument & = O(1), the
asymptotical expressions in this article explicitly show the influence of
k. All expressions hold strictly if two heuristic assumptions are valid.

e The encountered building is topologically suitable, i.e. a suitable
partitioning exists.

e The hierarchical tree partitioning (HTP) subalgorithm (Sec. 7.3)
succeeds in finding such a suitable partitioning.

If definition 1 is restricted only to leaves, it is mostly equivalent to
general sparsity in the information form as exploited by SEIF and other
algorithms. In general it is stronger since it demands O(k) connections
even between large regions. Still it is compatible with loops and nested
loops as evident from the experiments (Fig. 10 contains 200 medium
loops nested in 10 large loops) but it does preclude grid-like structures.
So large open halls as well as most outdoor environments are not topo-
logically suitable. If for instance an [x | square with n landmarks is
divided into 2 halves, the border involves O(l) = O(y/n) landmarks. So
there will be an \/n x y/n matrix at the root node increasing update time
to O(n®/?). Estimation quality will not be affected. However, if the goal
is to explore rather than to “mow the lawn” the robot will operate on a
network of paths. Treemap can still be reasonable efficient then.

4.1 Computational Efficiency

By definition 1 there are O(%) nodes in the tree (part 2) and each stores
matrices of dimension O(kxk) (part 1). Thus, the storage requirement of
the treemap is O(k? - %) = O(nk) meeting requirement (R2). Updating
one node takes O(k3) time for (30) and (27). State-recovery by (31)

needs O(k?) time (mean only) and by (33) O(k?) time (covariance).

18

Figure 5: Bayesian View. (a) A part of the example shown in (Fig. 2)
with landmarks X; (a...d) and robot poses X, (1...4). The odometry
constraint between pose 2 and 3 (shown outside both regions) is ignored.
In this manner the robot poses are involved only in their respective
region and are marginalized out. (b) The result for each region is a
single Gaussian (big circle) on all landmarks in that region.

So after integrating new constraints into p}, at some leaf n O(k3 log n)
time is needed for updating. An estimate for the landmarks involved at
some leaf n’ can be provided in the same computation time. This way
treemap can be used the same way as CEKF maintaining only local
estimates but replacing CEKF’s O(k‘n3/ 2) global update with treemap’s
O(k3logn) update. As long as n = n’ we skip the treemap update and
proceed as CEKF using the EKF equations in O(k?) time.

In order to compute an estimate for all landmarks, (31) must be
applied recursively taking O(k*%) = O(kn) (mean only). It will turn
out in the experiments in Section 9 that the constant factor involved
is extremely small. So while the possibility to perform updates in sub-
linear time is most appealing from a theoretical perspective, in practice
treemap can compute a global estimate even for extremely large maps.

Overall, definition 1 is both the strength and weakness of treemap.
The insight that buildings have such a loosely connected topology distin-
guishes indoor SLAM from many other estimation problems and enables
treemap’s impressive efficiency. On the other hand it precludes dense
planar mapping mainly ruling out outdoor environments.

5 EKF based Preprocessing Stage

The part of treemap discussed so far is very general. It can estimate ran-
dom variables with any meaning given some Gaussian constraints with
suitable topology. However it cannot marginalize out random variables
that are not needed any more, i.e. old robot poses.

In this section we will derive an EKF based preprocessing stage. It
receives landmark observations and odometry measurements and con-

19

verts these into information on the current robot pose and information
on local landmarks marginalizing out old poses. The information on
landmarks is passed into the treemap as a Gaussian constraint.

In each moment there is one local region, i.e. one leaf c that is active
corresponding to where the robot currently is. New landmark infor-
mation is multiplied into p. and the EKF maintains an estimate for all
landmarks involved there. In this sense, the framework is similar to that
of the CEKF, Atlas, and Feder’s submap algorithm. Unlike Atlas and
Feder’s algorithm treemap employs a full least square estimator on top of
this local estimate, namely the tree discussed so far. So as with CEKF,
the EKF’s local estimate includes information from all measurements
not just from measurements in the current region.

We will first derive a simple solution where no robot pose information
is passed across regions. It follows the relocation idea by Walter et al.
(2005) as well as Frese and Hirzinger (2001) and sacrifices odometry
information to preserve sparsity when marginalizing out old robot poses.
The next section discusses a more sophisticated sparsification scheme
that passes the robot pose between regions at the expense of sacrificing
some landmark information. While the experiments used that scheme,
relocation is much easier and works very convincingly as we recently
observed (Frese and Schroder, 2006).

5.1 Bayesian View

Figure 5 shows an example as a Bayes net with landmarks and robot
poses for two regions. The odometry measurement that connects poses
in both regions is ignored. Then all poses are only involved inside one
region and can be marginalized out. This means, that whenever the
robot enters a new region, its position is only defined by the measure-
ments made there. The regions are however connected by overlapping
landmarks. Note, though, that odometry can still be used for data
association, so this does not mean the robot is actually “kidnapped”.
Odometry is only ignored in the sense that no constraint is integrated.

5.2 Data Flow View

This process can be conveniently implemented as a preprocessing EKF
(Fig. 6). When entering a region c, treemap computes the marginal p.
(mean and covariance) of landmarks X|c: |] involved there.

pEKF = pe = p(X|e: |]]2-) (34)

We write z_ to indicate that the distribution is conditioned on the mea-
surements made before entering ¢. The EKF is initialized with this

20

treemap

| | (Fig. 3) | ||
11y g ny |
| ph, Pl pL. |
L 1% ,,,,,,,,,,,,,,, Pe T ,,,,,,,,,,,,, ¢ !
o I
PEKF
leave operate ¢ enter
l PkF
() EKF
PEKF = Pc
R o

Figure 6: Data flow view. The figure’s top shows the lower part of
the treemap (i.e. leaves) as depicted in figure 3. It illustrates how infor-
mation is passed from the treemap into the preprocessing EKF and vice
versa. When entering region ¢ the EKF is initialized with the marginal
pe from the treemap. When leaving ¢ again, the new information pEMKF
on landmarks is multiplied into p£ integrating it into the treemap. Each
time the robot pose is discarded and redefined by the next measurement.

distribution and an oo-covariance prior for the robot pose. While the
robot stays in the region, the EKF maintains

PEKF :p(XT,,X[c:le). (35)

After leaving c, information must be passed from the EKF to the
treemap. For that purpose we take the EKF’s marginal on landmarks

p(X[c:le) :/ p(XT,,X[c: le) (36)
= i p(X[c: le_) ‘p(Xr,X[C:l]‘Z+) (37)
—p(Xlesllf) [p(Xlelll) (39

X
:p(X[c:le_) -p(X[c:leJr). (39)

This equation relies on the odometry constraint being removed, because
otherwise X, would be involved in both factors and neither one could
be moved out of the integral. The marginal is then divided (®) by pe
the information already stored in the treemap. The result is

v e Pekr p(Xe:l]|z1) - p(Xe: |]|2-)
|

| . = C: z
DEKF = e p(Xe 1]|=) = p(X[e: 1]|24) (40)

21

Figure 7: Bayesian View. The same example as in figure 5 but with
passing robot pose information. In the old region (left) robot poses have
already been marginalized out. The resulting conditional (r) is passed
into the new region (big gray arrow) and used there to define the robot
pose X3.

the information obtained by new measurements. It is independent
from z_ and can be multiplied into p. passing that information to the
treemap.

6 Passing the Robot Pose

Discarding all information on the robot pose when entering a new region
is a useful but not completely satisfying approach. So in the following we
will discuss a method for passing the robot pose information on to the
new region. The method is statistically consistent but sacrifices some
information on landmarks. This is not surprising because marginalizing
out old robot poses is well known to lead to a dense information ma-
trix (Thrun et al., 2004). Since the tree defines a sparse matrix some
approximation is needed. Thrun et al. observed and Frese (2005) later
proved that most entries of the information matrix are small. This jus-
tifies the approximation of it by a sparse matrix.

6.1 Bayesian View

Figure 7 provides a general depiction of the distributions involved in
passing the robot pose. In contrast to the simpler approach described in
the previous section, we want to have some prior (shown as @) on the
robot pose when entering the new region. Since we marginalize out the
robot pose in the old region cprey by

p(Xra X[Cprcv: H ‘Z) = p(X[Cprcv: H |Z) : p(XT‘X[Cprcv: Ha Z), (41)

an immediate idea would be to pass the corresponding conditional (dot-
ted circle). This distribution is independent from the marginal and thus

22

treemap

| (Fig. 3)
g g
Iy vl AN By v ' S W S W
- [
PEKF Pe
leave operate ¢ enter
% §
/
M S) @ PEKF EKE PEKF
t0 Cpext pEKF PSkr from cprey

Figure 8: Data flow view. Before multiplying the obtained infor-
mation into the treemap as in figure 6 the robot pose is marginalized
out (®). The resulting conditional p(XT‘X[C:l],z, 8_1) is passed to
the next region cpext. There it is multiplied into the new EKF state
(®). Before that sparsification (®) removes couplings between X, and
X[c: | A cpext: ¢] discarding information (®). So the conditional is
p(XT‘X[c:l A cnext:l],z,s_l) and can indeed be multiplied (®) into
the new EKF.

from the treemap. Hence it can be used as if it was new information
even though it is derived from measurements taken in the old region.

If we did so directly, ® was conditioned on all landmarks in the old
region. So multiplying it into the new region ¢, we would end up with
a region involving all landmarks seen so far. For example in figure 7 @
would involve X,, X}, and so would the new region.

To avoid this, before marginalization all couplings of the robot pose
are removed by sparsification except those with landmarks in the new
region. This sacrifices some landmark information. Then the robot pose
is marginalized out and the resulting conditional is only conditioned on
landmarks also involved in the new region c. Thus it can be directly
integrated there. In figure 7 @ is conditioned only on X} not on Xj,.

6.2 Data Flow View

Figure 8 shows the data flow between EKF and treemap when passing
robot pose information to the next region. It is the same as in figure 6
except for the sparsification (®) and marginalization step (@).

The approach unfortunately is difficult to write down in p(...|...)
notation. The are two notational complications: First, since we sparsify,
distributions are not conditioned on ...|z) but rather on “...|z except
discarded information)” instead. We will denote this by ...|z,s™!) with

23

s referring to the distributions discarded. This notation suggests
p(X[z,s71) - p(X|s) = p(X|2,57 1, 5) = p(X]2) (42)

and actually the original distribution is the product of the approximated
distribution and the distribution(-s) we discarded by sparsification. As
the notation implies, p(X|s) is a proper distribution, in our case a
Gaussian with positive semidefinite information matrix. So the approx-
imation is probabilistically consistent and the covariance reported by
treemap is at least as large as the exact one without sparsification.

Second piL.. is formally different than in (40) because it is also
conditioned on the robot pose information passed from the previous re-
gion, not only on z;. We symbolically denote this as p(X [c: leJr,r)
since r can indeed be treated as a probabilistic constraint (Fig. 7). The
constraint r is derived from previous measurements z_ but is still in-
dependent from the landmark-marginal in the treemap. Thus it can
be formally included in the constraints z[c: |] assigned to leaf ¢ in the
treemap. Computationally this is no difference anyway, because treemap
just stores pl = p(X[n: le[n: l]) as a single Gaussian at each leaf. It
does not keep track of which measurement is integrated there.

After these preliminaries we will derive the probabilistic computa-
tions. When entering region c, c,ev passes the robot pose constraint

pgKF = p(XT‘X[cpreV: LAne]z, sil) (43)

which is shown as @ in figure 7. It is multiplied (®) with p. resulting
in the initial EKF state

PEKF = De - Pixp = p(X[e:)|2—,s2") - p(Xp| X[e: 1], 2, 3:1) (44)
p(XT,X |z, _1). (45)

Pose X, depends only on X[cprev: | Ac: |] sO pgKF defines a distribution
on X,, X[c: |]. While operating in ¢ the EKF maintains the posterior

Pekr = p(X), X[e: |]|z,s71) (46)

on landmarks and the new robot pose X.

Now let us assume we leave c again (Fig. 8). The EKF’s distribution
Phkp is divided by pe. We cannot factor into p(...|z4) - p(...|2—,s°")
as in (40) because both are connected by pose X,. Factorization holds
only as long as X, is not marginalized out.

:/ p(X], X, Xc ‘z s 1) (47)
X
= 20X Xl L) (e, X) (a3

24

:/X p(X0, X, Xe: |]]24) p(X[e:])2—, s71) p(X0 | Xe: 1], 2, s71)
' (49)

PEKE [(01,6, Xl U]z) o0 Xles 257 (50

The p(X,|...) term is the robot pose passed. We write p(...|r) getting®

:/X p(X), X, X[c: |]|24) - p(Xp, X[e: |]r) (51)
:/X (X!, X, X[e: 1|24, 7) (52)
=p(X7, X[e: |]|z4,7). (53)

Overall, after dividing by p. we have the constraints obtained by new
measurements z; plus the constraint r passed from the previous region.
The sparsification operator § factorizes the result as a product

:p(X;,,X[C: J,]‘Z+7T73-T-1) -p(X;,,X[CZl]‘S+) (54)

of a sparser distribution and a distribution s discarded (®). It makes
X, depend only on landmarks both in ¢ and in the next region Cpext-

p(XHX[c: sz, sjrl) = p(X,C‘X[c: LA cnext: 1], 24, sjrl,r) (55)
So when X/ is marginalized out in the next step (@) the result is

Pike - Pike With phke = p(X[e: |2+, s;',r) and (56)
PSxp = p(X,{‘X[c: LA chext: 1], 24, sjrl, r) (57)
= p(X}|X[et | A cpext: 1], 2,871). (58)

The marginal pJEMKF is independent from the landmarks given z_, s”h Tt
is multiplied into p. thereby passing the landmark information to the
treemap. The conditional pgKF is independent of both and passed to
the next region cpeyt, where it is used to initialize the EKF again.

6.3 Gaussian Implementation

In this section we will derive the sparsification operation . The remain-
ing operations are the same as in (Sec. 3.5) being implemented by (24),
©® (information form); (27) and (30), @; (31) and (33), ® (covariance
form). Operation @ is just a symbol for discarding information.

®Note, that X, is the robot pose when entering c, i.e. a random variable, whereas
r is the distribution integrated as a prior in the new region, i.e. a Gaussian constraint.

25

Table 2: Random variables in the distribution p;;% to be sparsified.

Block in A Notation Random variables
1 X/ Current robot pose.
2 X[c: | A cpext: 4] Landmarks in old but not in new region.
3 X[c: | Acpext: |] Landmarks in both old and new region.

The sparsification procedure has the same job as the SEIF sparsi-
fication procedure (Thrun et al., 2004). In contrast to the approach
taken here, SEIF introduces overconfidence (Eustice et al., 2005), possi-
bly reporting smaller covariances than actually true. On the other hand
the sparsification procedure derived here can not be used for SEIF since
it introduces further links that spoil overall sparsity. Treemap is con-
cerned only with removing the links between X, and X|[c: | A Cpext: 4]
and sparsifies a local Gaussian (54) that is already dense. The difference
is subtle. SEIF first integrates and then sparsifies the global information
matrix. Treemap first sparsifies a local matrix and then integrates the
result into the overall sparse matrix represented by the tree.

We do not change the Gaussian’s mean so sparsification only con-
cerns the information matrix A. Let therefore A be permuted as a 3 x 3
block matrix according to table 2. Sparsification replaces A by A’ with
Ay = A, =0,0 < A < A, and A — A’ being as small as possible.
Thereby links between X, (block row / column 1) and landmarks not in
the new region (block row / column 2) are removed. We want to loose
as little information as possible. So following requirement (R1), the goal
is to minimize the largest factor

T g1

Amax (A1, A7 = max % = agl/iZnAoz (59)
by which the covariance increases considering any linear combination
of random variables. This is the largest generalized eigenvalue of A'~!
relative to A~1 (Frese, 2006a). We cannot provide an optimal solution in
general, but the following theorem gives an optimal solution if the first
block row / column is 1-D. It removes the links between X[c: | A cpext: 4]
and one of the three DOF of the robot pose. The proof can be found
in (Frese, 2004, §3.7). Here the theorem is used as a black box formula,
that for a matrix A (60) makes the desired part A5 = 0 zero (61)
without being overconfident (0 < A" < A).

Theorem 1 Let 0 < A be a 3 x 3 block matriz being decomposed as
TT UJT
A= (Z‘f WT> (60)

S
W X

26

with 1-dimensional first block row / column. Then among all
A= (B9%), with0 < A" < A and Ay = Afy =0 (61)
the following matriz A" minimizes Apax (A’ ™1, A71).
A=A —wul, with u = A(ésglr), and (62)

v =B = A"a), §=B=A+ AT,

63
a=rT'S7lr, B=(p—a) A= {/prTSs—1r). (63)

The matrix S can sometimes be singular when some landmark has
not been observed while operating in a region. Still since A is positive
semidefinite S~ exists®, i.e. there is a solution to Sv = r and all
solutions lead to the same 77v and Wv. This solution can be rigorously
obtained by Singular Value Decomposition (SVD) (Press et al., 1992,
§2.6) or less rigorously by adding a small € to the diagonal of S.

In order to remove the links between the robot pose X, and X|c: | A
Cnext: 4] treemap applies theorem 1 three times. In the first step row /
column 1 of A is the robot’s x position, in the next step y, then 6. After
each step the first column is marginalized out to avoid that following
steps are introducing links again. The final sparsified matrix A’ is

A =A- uluip — ung - U3U3T, (64)

where u; 2 3 are the u vectors (62) in the three applications of theorem 1.

Each step is optimal with respect to (R1) among all matrices with the
sparsity pattern (61). However the overall sparsification after repeatedly
changing regions will probably be suboptimal. Still each measurement
is affected by sparsification only once, namely when it is passed from
the EKF to the treemap. At the very least, this serves to prevent the
errors introduced by sparsification accumulating over time. We will
experimentally investigate treemap’s performance with respect to (R1)
in (Sec. 9) reporting the actual increase of error encountered.

7 Maintenance of the Tree

In this section we will discuss the bookkeeping part of the algorithm. It
maintains the tree that is not defined a-priori but built while the map
grows. There are three subtasks.

SFor a positive semidefinite matrix the image space of an off-diagonal block is

contained in the image space of the corresponding diagonal block. Let therefore
0 < (17{”“;) and v € kernel(S). Then 0 < (é?})T(w"T)(lo) = (|4 ’"T“). It

r S 0w oTr 0
follows that ™ v must be 0, so 7 is orthogonal to kernel(S) and hence r € image(S).

27

1. Determine for which nodes to update p¥ and p< by (24) (@), as
well as (27) and (30) (@). This task is pure bookkeeping.

2. Control the transition between the current region, ¢, and the next
region, Cpext. Lhis defines which constraints are assigned to which
leaf although the assignment is not explicitly stored. We rely upon
a heuristic that limits a region’s geometric extension by mazD.

3. Rearrange the tree so it is balanced and well partitioned, i.e.
xz[n: | 7] contains few landmarks in all nodes n. Balancing is not
difficult but hierarchical tree partitioning (HTP) is NP-complete.
So we follow the tradition in graph partitioning (Fiduccia and
Mattheyses, 1982) and optimize in greedy steps with each step
being optimal.

The goal was to make treemap O(k3logn) in a strict asymptotical
sense given that the HTP subalgorithm succeeds in finding a suitable
tree (Def. 1). Unfortunately this results in a relatively involved im-
plementation. We therefore discuss the general approach and leave the
details to the pseudocode in appendix A. We currently investigate (Frese
and Schroder, 2006) how treemap can be simplified when sacrificing the
O(k31ogn) bound.

7.1 Update

Treemap has to keep track of which landmark is involved where and
when to marginalize out a landmark. So distributions pﬁ/‘[, pg contain a
sorted list £M, £& denoting the landmarks represented by the different
rows / columns of the corresponding matrices and vectors. For each
landmark it also contains a counter that is 1 in the leaves and added
when multiplying distributions (®). There is also a global landmark
array £ with corresponding counters. We treat both as multisets writing
@ for union with adding counters and |#L for the counter of | in L.
Treemap detects when to marginalize out a landmark by comparing the
counters passed to the node with the global counter.

Ly =Lyl wey! (65)
LM ={le £L|0 < I#L, < I#L} (66)
LG = {l € LL|0 < I#L, = 1#L} (67)

It further maintains an array lcall] storing for each landmark | the least
common ancestor of all leaves involving |. It is that node, that satisfies
|#L! | = |# L and where | is marginalized out.

Ica]l

If p., changes — for instance by multiplying pé/[KF into pL — all pM and
pgl are updated from m = n up to the root. The same applies if a new
leaf has been inserted. Additionally lca[l] can change for a landmark

28

involved in pl, and all nodes from the old lcall] to the root are updated
too. By definition 1.2, only O(1) leaves share landmarks with a given
leaf so O(logn) nodes are updated in O(k>logn) computation time.

In the following we need to find all leaves involving a given landmark
l. We recursively go down from m = lcall] as far as | € £} . By definition
1.2 this holds for only O(1) leaves taking O(klogn) time.

7.2 Region Changing Control Heuristic

Let treemap currently operate in a region, i.e. a leaf c. The EKF directly
handles odometry, observation of new landmarks, and of landmarks in
X|c: |]. There are two reasons to leave ¢ and enter another region cpext.
First a landmark may be observed that is not within c, i.e. X[c: {]. In
this case we transition to a region containing this landmark so as to
pass information on that landmark from the treemap to the EKF. A
second reason is the need to limit the number of landmarks in a region
for efficiency. We actually limit the distance mazD between landmarks
in the same region instead of directly limiting the number of landmarks.
This allows us to later add landmarks that have been overlooked.

As we transition from ¢ to cpext, the two regions must share at least
two landmarks, to avoid disintegration of the map due to the omitted
odometry link. Thus, treemap checks, whether ¢ must be left for one of
the two reasons above and determines cpeyt With these steps:

1. Find all leaves sharing at least two landmarks with c.

2. For each of these leaves verify whether maxD would be exceeded
when adding the landmarks currently in the robot’s field of view.

3. Among those where it is not exceeded, choose Cpext as the one that
already involves most of the landmarks in the robot’s field of view.

4. If all leaves would exceed mazD then add a new leaf as cpext.-

5. Leave c¢. Add landmarks observed to Cpext and enter Cpexs.

When a new leaf is added, it is inserted directly above the root node. It
will then be moved to a better location by the HTP subalgorithm.

7.3 Hierarchical Tree Partitioning (HTP)

The HTP subalgorithm optimizes the tree while the robot moves. The
goal is to meet definition 1, which is the prerequisite for our O(...)
analysis. The problem is equivalent to the Hierarchical Tree Partition-
ing Problem known from graph theory and parallel computing and being
NP-complete. However, successful heuristic algorithms have been devel-
oped (Vijayan, 1991) — the most popular of which is the Kernighan and
Lin heuristic (Fiduccia and Mattheyses, 1982). It employs a greedy

29

strategy in each step moving that node which minimizes the cost func-
tion. Hendrickson and Leland (1995) report that it works especially well
when applied hierarchically. We can do this easily since we optimize an
existing tree. Overall the HTP subalgorithm makes O(1) optimization
steps (5 in our experiments) whenever changing regions, so the time
spent in partitioning is limited. It is heuristic experience and formally
part of definition 1 that this suffices to maintain a well partitioned tree.

In each optimization step we choose one node r to optimize. We
move a subtree somewhere left-below that node to the right side or vice
versa. This affects r and its descendents but we only consider r itself,
priorizing parents over children. The cost function that is optimized is

par(r) = |L31| + 1L£7]] = | X[r/: L1]] + [X[ey: L1]] (68)

the number of landmarks involved in p% and p%. This number deter-
mines the size of the matrices involved in computation at r. The subtree
that we choose to move from one side of r to the other is that which
minimizes par(r). The cost function depends only on which subtree to
move, not on where to move it. Therefore the optimal subtree is found
by recursively going through all descendants s of r that share a land-
mark with r. At each node, par(r) is evaluated for the situation that s
was moved to the other side of r.

le LM o 0 < LY FIHLY <I#L
le L) o 0 <L £1#LY < 1%L
H|(0 < LM F LM < |#£}(
par(r)s =
+ H|(o < LM 1M < I#LH

(69)

(70)

The case with — and + corresponds to moving from / to \,, + and — cor-
responds to the other way. Each evaluation is performed by (70) in O(k)
time using the counters in £Y. Node r involves O(k) landmarks each in
turn involved at O(1) leaves so overall O(klogn) nodes are checked in
O(k?logn) computation time. The tree should be kept balanced. Thus
s is only considered, if after moving

1
ir/size S r\size S 2rfsize (71)

where ng;,. is the number of leaves below n.

We still have to determine exactly where to insert s. For par(n)
it only matters, whether s is inserted somewhere left-below (par(n),),
somewhere right-below n (par(n),), or directly above (par(ny)y).

par(ng); = L] + [£y (72)

30

par(n), = ‘{I‘O < LY 1L < |#c}(+La| (73
par(n), = [, |+ [{Ij0 < el + el <wpeh] (7

So the insertion point that minimizes par(...) priorizing parents over
children can be found by descending through the tree as follows:

1. Start with n =r\ (or r, resp.)

2. Evaluate par(n) for each of the three choices directly above (72),
somewhere left-below (73), or somewhere right-below (74).

3. If directly above is best and the new parent of n and s would be
balanced (71) then insert s. Update from old and new s to the
root.

4. Else set n to n, or n\ whichever is better and go to step 2.

8 Comparison with the Thin Junction Tree Fil-
ter

Paskin (2003) has proposed an algorithm, the Thin Junction Tree Fil-
ter (TJTF), which is closely related to the treemap algorithm, although
both have been independently developed from completely different per-
spectives’. Paskin views the problem as a Gaussian graphical model. He
utilizes the fact that if a set of nodes (i.e. a set of landmarks) separates
the graphical model into two parts, then these parts are conditionally
independent given estimates for the separating nodes. The algorithm
maintains a junction tree, where each edge corresponds to such a sepa-
ration, passing marginalized distributions along the edges.

Treemap’s tree is very similar to TJTF’s junction tree. The most
important difference is how treemap and TJTF ensure that no node in-
volves too many landmarks. TJTF further sparsifies thereby sacrificing
information for computation time. Treemap on the other hand tries to
rearrange the tree with its HTP subalgorithm to reduce the number of
landmarks involved. It never sacrifices information except when inte-
grating an observation into the tree the first time. There are arguments
in favor of both approaches. If treemap succeeds in finding a good tree,
that is certainly better than sacrificing information. However, if no such
suitable tree exists, this question is debatable.

Consider the example in Section 4 of densely mapping an open plane.
This is not topologically suitable and treemap’s computation time will
increase to O(n*?). TJTF in contrast will force each node to involve

"Originally I developed treemap from a hierarchy-of-regions and linear-equation-
solving perspective. I later added the Bayesian view provided in this article.

31

only O(k) landmarks by sparsification, saving it’s O(k®n) computation
time. But is the posterior represented still a good approximation?

Let us consider one node of TJTF’s tree that roughly divides the map
into equal halves. Originally these halves have an O(y/n) border where
landmarks are tightly linked to both halves of the map. The considered
node represents only O(k) landmarks, so most of these landmarks loose
their probabilistic link to one half of the map during sparsification. This
is not just slightly increasing the estimation error but actually introduces
breaks in the map, violating for instance (R1).

A further difference between treemap and TJTF is that treemap
views its tree as a part-whole hierarchy with a designated root corre-
sponding to the whole building. For TJTF on the other hand the tree
is just an acyclic graph without designated root. This difference leads
to the data flow structure in treemap whereby the posterior is updated
as information matrices are passed upwards after which inference oc-
curs with the mean and, optionally covariance calculations downwards.
Together with the representation of p§ by H,h (27) this reduces the
computation time for the mean from O(k3) per node to O(k?) per node
compared to passing information matrices downwards.

Treemap saves a further factor of O(k) by taking care that each land-
mark is only involved in O(1) leaves, so there are O(%) nodes. This
is at least typically enforced by the region changing control heuris-
tic, and for the analysis it is formally assumed by definition 1.2.
Thereby, treemap groups measurements as geometrically contiguous re-
gions, whereas TJTF chooses the node that minimizes the KL divergence
during sparsification. Overall this leads to a computation time for mean
recovery of O(kn) for treemap vs. O(k®n) for TJTF.

Treemap maintains a balanced tree thereby limiting update and com-
putation of a local estimate to O(k3logn). Paths in TJITF’s tree however
may have a length of O(n) so it cannot update that fast exactly.

Summarizing the discussion, treemap applies a more elaborate book-
keeping to reduce computation time. This bookkeeping on the other
hand makes it considerable more difficult to implement than TJTF.

9 Simulation Experiments

This section presents the simulation experiments conducted to verify the
algorithm with respect to the requirements (R1)-(R3). Clearly space
(R2) and time (R3) consumption are straightforward to measure but
how should one assess map quality with respect to requirement (R1)?
It should be kept in mind, that our focus is on the core estimation algo-
rithm, not on the overall system. So relative, not absolute, error is the
quantity to be considered. This is achieved by generalized eigenvalues.

32

Table 3: Artificial noise proportional to: ®distance, Yobservation angle,
square root of distance traveled (effectively), ?distance traveled. The
distance bias causes a huge orientation error (140°) in the large noise
experiment reported in Section 11.

Scenario Landmark sensor Odometry
distance distance angular velocity orient. robot
noise® bias® noise noise® bias? radius

Small noise / Large scale 2.5% 2° 0.01y/m 0.3m
Large noise 10% 4528 5° 0.07y/m 5= 0.3m

We therefore repeat the same experiment with independent mea-
surement noise 1000 times passing the same measurements to treemap,
EKF and the optimal ML estimator. We derive an error covariance
matrix Cireemap, OML, Cuxr for all three® and compare the square root
of the generalized eigenvalue spectrum (Frese, 2006a). This spectrum
illustrates the relative error in different aspects of the map, i.e. different
linear combinations of landmark coordinates. In particular the smallest
and largest eigenvalue bound the relative error of any aspect.

The experiments use the more sophicasted scheme for passing the
robot pose described in the companion report. They have been con-
ducted on an Intel Xeon, 2.67 GHz processor with the simulation param-
eters shown in table 3. The algorithm’s parameters are optHTPSteps =5
optimization steps and mazD =5m region size.

9.1 Small Noise Experiment

The small noise simulation experiment allows statistical evaluation of the
estimation error and comparison with EKF and ML (Fig. 9). At first
sight all three appear to be of the same quality (except for the left upper
room in the treemap estimate) and perfectly usable for navigation. The
orientation of the rooms appears to be an issue. There are no overlapping
landmarks between room and corridor. Thus the larger error in treemap
is likely caused when changing regions.

Figure 9d reports the relative error as a generalized eigenvalue spec-
trum. When comparing treemap vs. ML, the smallest relative error is
110% (87% vs. EKF) and the largest, 395% (181% vs. EKF). The me-
dian relative error is 137% compared to ML with two outliers of 395%
and 293% and median 125% compared to EKF. The outliers are also ap-
parent in the plot comparing EKF to ML, so they are probably caused
by linearization errors occurring in EKF and treemap.

8To limit the number of necessary runs, only eight selected landmarks are used.

33

(a) Optimal ML estimate. (b) EKF estimate.
400 T T T T T T TF
error treemap vs. ML ---+-- N
350 H error treemap vs. EKF —— R
—_— error EKFvs. ML _--%-- e
— & '.:/
] &, 300 i
= v v v o 5 R
1 £
H] :
M] g
[= ——y > e
® > o
e *ﬂ:ﬁ%—‘ﬂr 8
>

50 |- g
j >
| 0 1 1 1 1 1 1 1
g_yJI 0 2 4 6 8 10 12 14 16
2m .
R eigenvalue #

(c) Treemap estimate. (d) Relative error spectrum.

Figure 9: Small noise simulation results. (a)-(c) shows the estimate of
ML, EKF, and treemap. (d) compares the relative error as a generalized
eigenvalue spectrum. Treemap performs well relative to EKF but both
suffer from linearization error.

34

Figure 10: Large scale simulation experiment: Treemap estimate (n =
11300).

9.2 Large Scale Map Experiment

The second experiment is an extremely large map consisting of 10 x 10
copies of the building used before (Fig. 10). There are n = 11300 land-
marks, m = 312020 measurements and p = 63974 robot poses. The
EKF experiment was aborted due to large computation time.

In figure 11a storage space consumption is clearly shown to be linear
for treemap (O(kn)) and quadratic (O(n?)) for EKF. Overall computa-
tion time was 31.34s for treemap and 18.89 days (extrapolated ~ mn?)
for EKF. Computation time per measurement is shown in figure 11b.
Time for three different computations is given: Local updates (dots be-
low < 0.5ms), global updates computing a local map (scattered dots
above 0.5ms) and the additional cost for computing a global map are
plotted w.r.t. n. Note that the global updates have a very fluctuating
computation time because the number of nodes updated depends on
the subtrees moved by the HTP subalgorithm. The spikes in the global
estimation plot are caused by lost timeslices”.

Overall the algorithm is extremely efficient updating an n = 11300
landmark map in 12.37ms. Average computation time is 1.21us - k2
for a local update, 0.38us - k% logn for a global update, and 0.15us - kn
for a global map (mean only), respectively (k ~ 5.81). The latter is
surely the most impressive practical result. It allows the computation
of a global map even for extremely large n, avoiding the complications
of local map handling. Recently, we could even improve this result
updating an n = 1033009 landmarks map in 443ms or in 23ms for a

9Processing time had 5ms resolution, so clock time has been used.

35

50

T T T T T T T T T
- treemap (global est.

__ 4 EKF P E 10 HExe p(9 e
M 40 =)
= ©
— 35 »” treemap g2 s8H .
3] =
< 30 o
% o o 6 + .

25 ’ = .
= 3 .
& 20 = P e N tréema
8 o~ a4 »+ (glgbal upd%—
S 15 & g 1% *»+
= e g +3+ N

10 P 3 oy

sH i LR
// treemap (Iocal uPd)
0 1 1 1 1 1 0
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000

landmarks n landmarks n

(a) Storage space. (b) Computation time per measurement.

Observe local updates ~ 0.02ms.

Figure 11: Large scale simulation experiment: Storage space and com-
putation time over number of landmarks n.

local update of ~ 10000 landmarks (Frese and Schroder, 2006).

10 Real World Experiments

The real world experiment reported in this section shows how treemap
works in practice by mapping the DLR Institute of Robotics and Mecha-
tronics’ building (Fig. 4) that serves as an example of a typical office
building. The robot is equipped with a camera system (field of view:
+45°) at a height of 1.55m and controlled manually. We set circular
fiducials throughout the floor (Fig. 12) that were visually detected by
Hough-transform and a gray-level variance criterion (Otsu, 1979).

Since the landmarks are identical, identification is based on their
relative position employing two different strategies in parallel. Local
identification is performed by simultaneously matching all observations
from a single robot pose to the map, taking into account both error
in each landmark observation and error in the robot pose. For global
identification we encountered considerable difficulties in detecting clo-
sure of a loop. Before closing the largest loop, the accumulated robot
pose error was 16.18m (Fig. 13) and the average distance between adja-
cent landmarks was ~ 1m. With indistinguishable landmarks, matching
observations from a single image was not reliable enough.

Instead, the algorithm matches a map patch of radius 5m around
the robot. When the map patch is recognized somewhere else in the
map, the identity of all landmarks in the patch is changed accordingly
and the loop is closed (Frese, 2004). It is a particular advantage of the
treemap algorithm to be able to change the identity of landmarks already

36

Figure 12: Screen shot of the SLAM implementation mapping the
DLR building. The corresponding video can be downloaded from the
author’s website: http://www.informatik.uni-bremen.de/ ufrese/
slamvideos2_e.html.

integrated into the map. This allows the use of the lazy data association
framework by Hahnel et al. (2003). The regions were mazD = Tm large.

The final map contains n = 725 landmarks, m = 29142 measure-
ments and p = 3297 robot poses (Fig. 13). The results highlight the ad-
vantage of using SLAM, because after closing the loop the map is much
better. Figure 14 shows the internal tree representation (k ~ 16.39).
The tree is balanced and well partitioned, i.e. no node represents too
many landmarks. It can be concluded that the building is indeed topo-
logically suitable in the sense discussed in Section 4.

If only a local update is performed, as is often the case (Fig. 15),
then computation time is extremely low. The average time is 0.77us - k2
for a local update, 0.02us - k*logn for a global update and 0.04us - kn
for a global map (mean) respectively. Accumulated computation time
is 2.95s for treemap and 660s (extrapolated ~ mn?) for EKF.

37

Figure 13: (a) Treemap estimate before closing the large loop having
an accumulated error of 16.18m mainly caused by the robot leaving the
building in the right upper corner. (b) Final treemap estimate after clos-
ing the large loop and returning to the starting position closing another
loop.

11 A Nonlinear Extension

SLAM is essentially nonlinear. Nearly all approaches linearize the mea-
surement functions and are thus subject to linearization error. As dis-

cussed by Frese (2006a), the most difficult source of nonlinearity oc-

cos ¢ — sin ¢

curs in the robot’s orientation ¢ as a (sing cos o > rotation matrix. It

severely distorts the map, when the error in ¢ exceeds ~ 15° (Fig. 17c¢).

A thorough way to handle nonlinearities is to use an iterative nonlin-
ear least square algorithm like Levenberg-Marquardt (Press et al., 1992,
§12). This algorithm reevaluates all measurement Jacobians iteratively
(relinearization) at the current estimate. It converges to the optimal
ML solution but violates both (R2) and (R3). Treemap has a nonlin-
ear extension that offers an intermediate solution between nonlinear ML
and linearized least squares. It rotates the local distributions pl, and p
according to the current estimate whenever updating a node (Fig. 16).
As we will derive later, this is equivalent to reevaluating all Jacobians
of measurements integrated below at a rotated linearization point.

Few approaches address nonlinearity without storing all measure-
ments. FastSLAM (Montemerlo et al., 2002) can do so and Thrun and
Liu (2003) have applied rotations to local Gaussians for joining maps
made by different robots. The mathematics of rotation is the same as

38

[[l
i = =]
= 2] E] i =| 2 d
=] 2 7] | 5| E 5| =] @] 4] = 2] i =]
ged g B --i 6) 5 = £ E Bl D "E"@°F Boao g [B
EPEE S [A= o moee [Bap nu-az:l.- g‘g!g!H.“ B2 0B HOBE°
A [l [) I 0 Al
qaa.an B0 e) 08 g .‘ Inaz) 2 ﬂl”lﬂ
a [l =
I BE] tH

Figure 14: Tree representation of the map. The size of the node ovals is
proportional to number of landmarks represented.

12 T T T T T 1 12 T TEF T T T T 1
o EKF *::i
m 10| 4 & 1w} i x .
= g e x
g 8r 1 2 8r FRES X]
X = pes
2 S e treemap
o 6 T 2 6 i3 X (global upd. & est.)
?é) o 45 X X % X ¥
. X
5 af et 4 a4 X X X x XX g
2 ~~ treemap g >§<>< X XX% 8
3 < X X X
o XX
2 - 2 x XXX -
XX treemap (local upd.)
0 1 1 1 1 1 1 0
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
landmarks n landmarks n
(a) Storage space. (b) Computation time per measurement.

Observe local updates ~ 0.07ms.

Figure 15: Real experiment performance.

for treemap but the overall framework differs. Both approaches high-
light an important point: to rotate parts of the map later on, these parts
must be kept separate and not integrated into a large sparse matrix.

11.1 Data Flow View

Treemap’s nonlinear extension does not aim at a rigorous treatment of
all nonlinearities. The goal is simply to do better than linearized least
square without storing all measurements and without much increase
in computation time. To this end, treemap rotates the distributions
passed by a node’s children whenever this node is updated anyway as
well as when closing a large loop. Primarily, submaps are still aligned
by the integration of Gaussians during regular updates. The additional
rotations just serve to reduce the error in the linearization point. Since
linearization error grows quadratically with the error in the linearization
point, the rotations do not have to fit perfectly anyway:.

Figure 16 shows the nonlinear update in a node n. Before multi-
plying ptj‘fi and pi‘{{ both are rotated. Treemap basically keeps track of

39

i
n
ps
(o)
Pn

G

ge

O
I
P,

3
=}
J

Figure 16: Data flow view. Data flow in a single node n with nonlinear
extension. Before multiplying pnMJ and pﬁ/{ they are rotated according
to the estimate E(py).

the estimate that was used when the measurements integrated into a
distribution have been linearized. This serves as a linearization point in
a rough sense and is propagated together with the distribution.

e Creation When plp is constructed from the EKF state, store
the current estimate for the landmarks as linearization point.

® Combine both linearization points by taking a weighted average.
As weight use the diagonal entries in the information matrix.

® Drop landmarks marginalized out from the linearization point.

O Rotate the linearization point by least square matching to the
current estimate. Rotate the distribution by the same angle.

Rotating pﬁ/‘[is equivalent to rotating the linearization point of all mea-
surements assigned to leaves below n. Thus, even when only updating a
single path up the root, all linearization points are improved. Certainly
large subtrees are rotated as a whole so this is not the same as if rotating
all pl, independently. Still for a node n the relative orientation error of
n, and n\ is usually much smaller than the absolute orientation error
of n. So the linearization error is improved without additional updates.

When p} is rotated all p$, below must be rotated too to be consis-
tent. To save computation time we defer this step to when pg, is actually
used for recovering the mean. It is then rotated (©) by the sum of all
angles applied to marginal distributions above.

If p{l involves an absolute pose constraint it is not rotation invariant
and cannot by relinearized by rotation. Thus the initial leaf and all
ancestors are never rotated. In theory absolute information is passed
along with the robot pose making all pZ non rotation invariant. However
it decays exponentially, so we rotate all leaves except the initial one.

40

When a loop with very large orientation error is closed (Fig. 17) a
useful estimate requires several iterations. Treemap iterates whenever a
landmark is observed that is not involved at any leaf that shares land-
marks with the current leaf. Then old and new current leaf and all that
share landmarks with them are updated. This is repeated as long as any
rotation above 2° is applied with O(k®logn) time per iteration.

11.2 Gaussian Implementation

Now we derive the concrete formulas for rotating Gaussians. First as-
sume that the input to treemap’s tree is directly defined by Gaussian
landmark constraints without the preprocessing EKF stage.

~2log p(ylz) = (f(y) —2) C (f(y) - 2) (75)

This expression defines the constraint, that f(y) ~ z with an error
covariance of C'. The Gaussian p], is derived by linearizing (75) at some
linearization point § usually the current estimate.

~2log ph(y) = (F@s) + £ @)y —) — =) C7 (F@) + F @)y —) - 2)
= yT Ay + y* b+ const, with
A=f@TCH @), b=2f'CT(f@) - @y —=2) (76)
SLAM constraints are rotation invariant (except initial robot pose)

fRa®) = f(Y) Vo (77)

where R, (y) is a rotation matrix with (Cow _Sin¢> blocks for each

sin¢g cos¢

landmark. We take the derivative on both sides

(fRa®)) = f'(Rad) Ra = f(5) (78)
f/(Ra Zj) = f/(:'j) ‘R_qa. (79)
So by post multiplying the Jacobian f’ with a rotation matrix R_, we

can get the Jacobian at a rotated linearization point ' = Rot,y. If we
derive the Gaussian p! by (76) using 3/, we get

A = FETCL) = £ (Ra i) C L (Ra §) (80)
O RT, fHTC () Roo = RT, AR, (81)
o = 2f (YO (F) — £ —) (82)
=2f'Ra)"C (f(Ra i) — f'(Ra i) Ray — 2) (83)
O IR, FHTC N (F) — £ ReaRadi—2) =RT b (84)

41

So by multiplying A and b with R_, we get the Gaussian corresponding
to ¥ = Ry without recomputing Jacobians. By (24) and (30) the
factor propagates through multiplication (®) and marginalization (@).
So by rotating p}! of an inner node n we can rotate the linearization
point of all constraints below n without recomputing anything.

When the tree’s input distributions are derived from the preprocess-
ing EKF, linearization is implicitly done by the EKF. So we still can
apply the rotation in the tree the same way.

The conditionals pg are represented by P~!, H, h. We substitute
(81) and (84) into (27) and get the rotation formula

P~ =RT, PR, (85)
H =-R_P'R_,RT RR_,=RL_HR_,, (86)
W=-RL, PIR_,RY c¢c=RT_h. (87)

Finally o (as well as a translation d) is determined by minimizing
Siw((Ray+d)— g})2. Lu and Milios (1997) give an analytical solution

a = atan2 (S12 — Sa1, S11 — S22) , (88)
S = (Zw) (Zwlf&l?}fp) - (Z’w@) <Zwl?§|>T7 (89)
| | | |

where g and ¥, denote the coordinates for landmark | in § and ¥ respec-
tively. The weight wy is defined as w; = tr(4,)) trace in the corresponding
block in the information matrix A.

11.3 Large Noise Experiment

This experiment evaluates treemap’s nonlinear extension with a large
accumulated orientation error (140°, Fig. 17a). Figures 17b-d show the
ML, EKF and treemap estimate. The EKF estimate is clearly unusable.
It appears to be even topologically inconsistent despite perfect data
association. To see what happens, let us try to minimize |(_01__Sf§2“)‘
The nonlinear minimum is certainly 180°, but when we linearize at & =
0, we get ‘(Zé)‘ and a minimum at o = 0. This roughly happens in
figure 17c. The area around the robot is barely rotated although it
should be but extremely distorted instead.

In contrast to that, the treemap estimate appears to be worse than
the ML estimate but still reasonable, showing that, with the nonlinear

extension, treemap works well, especially compared to the EKF.

12 Conclusion

The treemap SLAM algorithm proposed in this article works by divid-
ing the map into a hierarchy of regions represented as a binary tree.

42

L.
(a) Error before closing the loop. (b) Optimal ML estimate.

(c) EKF estimate. (d) Treemap estimate.

Figure 17: Large noise simulation experiment results. The estimate of
treemap with nonlinear extension is still okay but the EKF estimate is
clearly unusable.

With this data structure, the computations necessary for integrating a
measurement are limited essentially to updating a leaf of the tree and
all its ancestors up to the root. From a theoretical perspective the main
advantage is that a local map can be computed in O(k3logn) time. In
practice, it is equally important that a global map can be computed in
O(kn) time allowing the update of a map with n = 11300 landmarks
in 12.37ms on an Intel Xeon, 2.67 GHz. Treemap is exact up to lin-
earization and sparsification where some information on the landmarks
is sacrificed to pass information on the robot pose between regions. Still
despite the sparsification, if two landmarks are observed together, the
fact that we know their precise relative location will be reflected by the
estimate after the next update.

With respect to the three criteria (R1)-(R3) proposed in Section 1,
the algorithm was verified theoretically, by simulation experiments, and
by experiments with a real robot. There are two preconditions for
achieving these results. a) The environment must be topologically suit-

43

able, i.e. have a hierarchical partitioning and b) the HTP subalgorithm
must find one as explained in Section 4. This is indeed a major drawback
since it precludes mapping dense outdoor environments. The second
drawback is that performing the bookkeeping in O(k?log n) significantly
complicates the algorithm. Consequently we are currently working on a
simplified algorithm (Frese and Schréder, 2006). We plan to generalize
it so it can handle different SLAM variants such as 2D-, 3D-, landmark-,
pose-, and bearing-only-SLAM and publish the code as an open source
implementation.

A major future challenge will be uncertain data-association. Some
authors address this issue with a framework that evaluates the likelihood
of several data association hypotheses (Hahnel et al., 2003). Regardless
of how the overall framework is conceived, it needs a classical SLAM
algorithm as the core engine to evaluate a single hypothesis. Efficiency
is then even more crucial because updates must be performed for each
of the hypothesis considered.

Acknowledgments

I would like to thank Bernd Krieg-Briickner, Robert Ross, Matthew
Walter, and the anonymous reviewers for valuable comments.

References

Bosse, M., P. Newman, J. Leonard, and S. Teller: 2004, ‘SLAM in Large-
scale Cyclic Environments using the Atlas Framework’. International
Journal on Robotics Research 23(12), 1113-1140.

Duckett, T., S. Marsland, and J. Shapiro: 2000, ‘Learning Globally
Consistent Maps by Relaxation’. In: Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, San Francisco. pp.
3841-3846.

Duckett, T., S. Marsland, and J. Shapiro: 2002, ‘Fast, On-line Learning
of Globally Consistent Maps’. Autonomous Robots 12(3), 287 — 300.

Eliazar, A. and R. Parr: 2003, ‘DP-SLAM: Fast, Robust Simulataneous
Localization and Mapping without Predetermined Landmarks’. In:
Proceedings of the International Joint Conference on Artificial Intel-
ligence, Acapulco. pp. 1135-1142.

Estrada, C., J. Neira, and J. Tardds: 2005, ‘Hierarchical SLAM: Real-
Time Accurate Mapping of Large Environments’. IEEFE Transactions
on Robotics 21(4), 588-596.

44

Eustice, R., M. Walter, and J. Leonard: 2005, ‘Sparse Extended Infor-
mation Filters: Insights into Sparsification’. In: Proceedings of the
International Conference on Intelligent Robots and Systems, Edmon-
ton.

Fiduccia, C. and R. Mattheyses: 1982, ‘A linear-time heuristic for im-
proving network partitions’. In: Proceedings of the 19th ACM/IEEE
Design Automation Conference, Las Vegas. pp. 175-181.

Frese, U.: 2004, ‘An O(logn) Algorithm for Simulateneous Locali-
zation and Mapping of Mobile Robots in Indoor Environments’.
Ph.D. thesis, University of Erlangen-Niirnberg. http://www.opus.
ub.uni-erlangen.de/opus/volltexte/2004/70/.

Frese, U.: 2005, ‘A Proof for the Approximate Sparsity of SLAM Infor-
mation Matrices’. In: Proceedings of the IEEE International Confer-
ence on Robotics and Automation, Barcelona. pp. 331-337.

Frese, U.: 2006a, ‘A Discussion of Simultaneous Localization and Map-
ping’. Autonomous Robots 20(1), 25-42.

Frese, U.: 2006b, ‘Treemap: An O(logn) Algorithm for Indoor Simulta-
neous Localization and Mapping’. Autonomus Robots. to appear.

Frese, U. and G. Hirzinger: 2001, ‘Simultaneous Localization and Map-
ping - A Discussion’. In: Proceedings of the IJCAI Workshop on
Reasoning with Uncertainty in Robotics, Seattle. pp. 17 — 26.

Frese, U., P. Larsson, and T. Duckett: 2004, ‘A Multigrid Algorithm
for Simultaneous Localization and Mapping’. IEEE Transactions on
Robotics 21(2), 1-12.

Frese, U. and L. Schroder: 2006, ‘Closing a Million-Landmarks Loop’. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Beijing. submitted.

Gauss, C.: 1821, ‘Theoria combinationis observationum erroribus min-
imis obnoxiae’. Commentationes societatis regiae scientiarum Gottin-
gensis recentiores 5, 6-93.

Guivant, J. and E. Nebot: 2001, ‘Optimization of the Simultaneous
Localization and Map-Building Algorithm for Real-Time Implemen-
tation’. IEEE Transactions on Robotics and Automation 17(3), 242
— 257.

Guivant, J. and E. Nebot: 2003, ‘Solving computational and memory
requirements of feature-based simultaneous localization and mapping
algorithms’. IEEE Transactions on Robotics and Automation 19(4),
749-755.

45

Hahnel, D., W. Burgard, B. Wegbreit, and S. Thrun: 2003, ‘Towards
lazy data association in SLAM’. In: In Proceedings of the 10th Inter-
national Symposium of Robotics Research.

Hendrickson, B. and R. Leland: 1995, ‘A Multilevel Algorithm for Parti-
tioning Graphs’. In: Proceedings of the ACM International Conference
on Supercomputing, Sorrento. pp. 626—657.

Horn, R. and C. Johnson: 1990, Matriz Analysis. Cambridge University
Press.

Leonard, J. and H. Feder: 2001, ‘Decoupled Stochastic Mapping’. IEEE
Journal of Ocean Engineering 26(4), 561 — 571.

Lu, F. and E. Milios: 1997, ‘Globally Consistent Range Scan Alignment
for Environment Mapping’. Autonomous Robots 4(4), 333 — 349.

Montemerlo, M., S. Thrun, D. Koller, and B. Wegbreit: 2002, ‘Fast-
SLAM: A Factored Solution to the Simultaneous Localization and
Mapping Problem’. In: Proceedings of the AAAI National Conference
on Artificial Intelligence, Edmonton. pp. 593—-598.

Nieto, J., J. Guivant, E. Nebot, and S. Thrun: 2003, ‘Real Time Data
Association for fastSLAM’. In: Proceedings of the IEEE Conference
on Robotics and Autonomation, Taipeh. pp. 412—418.

Otsu, N.: 1979, ‘A Threshold Selection Method from Gray-Level His-
tograms’. IEEE Transactions on Systems, Man and Cybernetics 9(1),
62 — 66.

Paskin, M.: 2003, ‘Thin Junction Tree Filters for Simultaneous Locali-
zation and Mapping’. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence. San Francisco, pp. 1157-1164.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery: 1992, Numeri-
cal Recipes, Second Edition. Cambridge University Press, Cambridge.

Smith, R., M. Self, and P. Cheeseman: 1988, ‘Estimating Uncertain
Spatial Relationships in Robotics’. In: I. Cox and G. Wilfong (eds.):

Autonomous Robot Vehicles. Springer Verlag, New York, pp. 167 —
193.

Stachniss, C. and W. Burgard: 2004, ‘Exploration with Active Loop-
Closing for FastSLAM’. In: In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. pp. 1505-1510.

Thrun, S., W. Burgard, and D. Fox: 2005, Probabilistic Robotics. MIT
Press.

46

Thrun, S. and Y. Liu: 2003, ‘Multi-Robot SLAM With Sparse Extended
Information Filers’. In: Proceedings of the 11th International Sympo-
sium of Robotics Research, Sienna.

Thrun, S., Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-
Whyte: 2004, ‘Simultaneous Localization and Mapping With Sparse
Extended Information Filters’. International Journal of Robotics Re-
search 23(7-8), 613-716.

Vijayan, G.: 1991, ‘Generalization of Min-Cut Partitioning to Tree
Structures and Its Applications’. IEEE Transactions on Computers
40(3), 307 — 314.

Walter, M., R. Eustice, and J. Leonard: 2005, ‘A Provably Consistent
Method for Imposing Exact Sparsity in Feature-based SLAM Infor-
mation Filters’. In: Proceedings of the 12th International Symposium
of Robotics Research.

A Pseudocode

This sections lists the overall treemap algorithm in detail as pseudocode.
The main routine is observation(z, C,, EZ) integrating observations z of
landmarks £, with covariance C,. Odometry is directly handled by the
preprocessing EKF (Smith et al., 1988, Eqn. (12)). Subroutines are
printed in order of appearance. Each node n stores

e Input distribution p in information form as AL bl L] (leaves).

Marginal distribution p} in information form as AM oM cM.
Conditional distribution p§ as PS~1, HS, b, LS.

Number of leaves ng;,. below that node.

Last estimate computed &y, Cp.
Additionally, treemap globally stores

e EKF state in covariance form Zgkr, CExr, LEKF.

e Global set of landmarks £ with counters for the number of leaves
involving a landmark (as an array indexed by landmark).

e Global array lca maintaining the least common ancestor of all
nodes involving a landmark.

e Pointer root to the root node and ¢ to the current leaf.

47

A.1 observation (z,C.,L.) O(K*L.|),O(k*logn),O(kn) resp.

Integrates a vector z of measurements with covariance C into the treemap. Maybe

changes the current leaf (Fig. 8). Then integrates z into the preprocessing EKF.

1F isToolarge (Zekr, LEkF,2,L:) V L:N(L\ Lekr)# 0

THEN |newLeaf := findOrCreateLeave (z)

((A,b), (P, H, b)) := extractFromEXF (&pkr, Crkr, L:)
multiplyIntoLeaf (c,(A4,b, LExr))

FOR | optHTPSteps times | DO | optimizeHTP ()

c := newLeaf

update (c)

IF | desired | THEN | computeGlobalEstimate (root)

(£,C) := compileEKF (c,(P’, H,h))

Integrate z, C. into the EKF state rxr, Cexr (Smith et al., 1988, Eqn. (16))

A.2 isToolarge (&,L,,zL.) O(k?)

Checks, whether adding all landmarks in z to a region would violate the region’s

maximum diameter mazD. & is an estimate for the considered region.

Compute transform 7" from Zrkr to based on the landmarks in £, N Lekr

Z' := Transform z to global coordinates using robot pose from Zrxr and T'
FOR All landmarks I € £,

FOR All landmarks lo € L,
|IF | distance d from I in 2z’ to ls in & > mazD | THEN | return true
return false

A.3 findOrCreateLeave (z,L£.) O(k®+ k?logn)

Finds a leave in the tree that is appropriate for integrating measurements z into. If

none can be found creates a new leaf.

Compute set of landmarks O in the robot’s field of view from Zgxr

leaves := (J,,_ . allleavesInvolving (I,root)

M:=L.,U0; best:=|M|; bestN :=nil

FOR All nodes n € leaves

IF |£EKF ﬂ[,,ll| >2 A -isToolarge (&n,2)

THEN|IF | [M\ L]] < best | THEN| best := [M\ L}|; bestN:=n
IF bestN # nil

THEN |Extend (A{ cins b osins Lbestn) with all landmarks from M N L.
ELSE [IF | M N Lexr| < 2] THEN| M := M U {last observed landmark}
IF | M N Lexr| < 2] THEN | M := M U {second last observed landmark}
bestN := createEmptyLeave (M N L)

return bestN

48

A.4 allleavesInvolving (I,n) O(klogn)

Returns the set of all leaves below n that involve landmark I. n is below lcall].

IF | nisleaf A 1€ £}]| THEN] return {n}
IF | n#lcall] A I¢ L)' THEN] return
return allLeavesInvolving (l,n,) U allLeavesInvolving (I, n)

A.5 createEmptyleaf (M) O(klogn)

Creates a new leaf that involves landmarks M but still has 0 information and put it

at a good position in the tree.

b := new empty leaf; £{ := M; AL =0;b] =0

root := new node with root as left child and b as right child
L:=LWYM

FOR [I € M[DO] invalidate (lcall))
updateLandmarkLists (root)

a:= findBestTransferTo (b,root,)

transferSubtree (b,a)

A.6 invalidate (n) O(1) per node invalidated

Marks all nodes from n to the root invalid.

[WHILE | n # nil A n marked valid | DO [mark n invalid; n := ny |

A.7 updateLandmarkLists (n) O(k) per node updated

Updates Ci,w, LS and ngi.. of node n and all descendents recursively. Sets lca][l] for

all landmarks | marginalized out in updated nodes.

IF | n is not marked invalid | THEN | return

IF n is no leaf

THEN |updatelLandmarkLists (n,); updatelLandmarkLists (m\)
LM .= Eflwz W Cﬁi; Nsize (= Ny My,

ELSE |£M .= £l ng.e:=1

£ = {le) [1#L =1#L}; i =i\ cs

FOR| 1€ £y | DO] Ica[] :=n

Mark n as landmark list valid.

49

A.8 findBestTransferTo (s,n) O(klogn)

Finds the best node below n above which to move s.

WHILE n is not leaf

Compute par; ,, by (72), (73), (74).

IF Ssize > Nsize/2 A par; <par, A par; <par,
THEN [return n

ELSE [IF | par , < par, | THEN| n:=ny

return n

A.9 transferSubtree (s, a) O(logn)

Moves s and the subtree below to above a.

invalidate (sy)
invalidate (ay)
Change pointers, so sy becomes parent of a.

A.10 extractFromEKF (ﬁ:EKF,CEKF,N) O(k?)

Converts the EKF state Zrkr,Cexr into information form and separates the
landmark information from the robot pose information by sparsification (&) and

marginalization (@) (Fig. 8). A is the set of landmarks involved in the new leaf.

A= Cppp — Co 'ty bi= —20gkp@ekr — 205 "dc

Permute A as (I Z I), b as (Z)7 with block rows / columns:
robot pose, land*ma:ks ¢ N, landmarks € N

(A,b) := sparsify (A,b,2,N). Now A = (é (fj 5)7 = ()

Group block row / column 2 and 3 as one block. A = (((:)) égig), b= ((i))

Compute Agkr, biskr by (30) and Pgic, Hiskr, hizkr by (27).
Now Ag}(F = (X I)vbg)fKF = (%) PE?};F‘l = (*)7H]§KF = (0*)7thF =(*)
Remove first block columns from HSyy since it is 0.

return ((AIEMKFv bikcr), (Peicr » Hixcr, thF))

A.11 sparsify (A,b,i,./\/') O(k?)

Removes the off-diagonal block A21 between robot pose (block row / column 1, di-
mension 3) and landmarks ¢ A (block row / column 2)

of A= (: . :) by returning a matrix A" = (38:) with 0 < A" < A.

50

Information vector b is updated so the mean & is preserved.

Actis .= A

FOR i=1...3
Permute A: block row / col. 1: r. pose component i, 2: landmarks ¢ N, 3:
others

Compute u; by theorem 1 (62).
A:=A— ulufp, A:=A— A.1A;11A3Fl
Permute u1, uz2, us back so rows correspond to A

return (AO’”g —wiu? —upud —uzud | b— 2(u1uf + uoul + ugu;:,r)i")

A.12 multiplyIntoLeaf (n,A’,b’,E’) O(k3logn)

Multiplies the Gaussian defined by A’, b’ into the input distribution at leaf n.

Permute and extend A’,b', £ and AL b, L] so corresponding rows and columns
represent the same landmark.

A= AL+ A bl =0l 4

invalidate (n)

FOR | All landmarks | € £'| DO invalidate (Ica[l])

A.13 optimizeHTP () O(k*logn)

Picks a node and tries to reduce the number of landmark involved there by optimally

moving a subtree from left below to right below or vice versa.

updateLandmarkLists (root)

r := findNodeToBeOptimized ()

IF | r = nil | THEN | return

s := findBestTransferFrom (r)

IF | s = nil| THEN| Mark r as not to be optimized; return

a:= findBestTransferTo (s,r7), with ? € {/,\} =child that is not ancestor of s.
transferSubtree (s,a)

A.14 findNodeToBeOptimized () O(logn)

Finds the next node to be optimized. It descends along to be optimized marks down

the tree. If there is a choice a node not being ancestor of the current leaf is preferred.

r :=root; p := path from root to c

IF r is marked to be optimized

THEN|WHILE r, or r\ are marked to be optimized

Remove first element from p

IF r, and r\ are marked to be optimized

THEN|IF | r, = p[0]| THEN] r:=r\

ELSE |IF | r, is marked to be optimized | THEN| r:=r,
return r

ELSE |return nil

51

A.15 findBestTransferFrom (r) O(k*logn)

Finds the optimal node below r to move from the left to the right side or vice versa.

— 2 . — 1
Slow = [r/size - grsizc-‘a Shigh ‘= Lr[.size - Ersizcj
IF %rsize S T /size S érsize

THEN |best := nil; bestValue := |7 | + | £y
ELSE |bestValue := oo

IF | Spign > 0| THEN | recursiveBest (r,,r, Siow, Shigh, best, best Value)

IF | sjow < 0| THEN | recursiveBest (r\,T, —Shigh, —Siow, best, bestValue)
return best

A.16 recursiveBest (s,r, slow,shigh,best,bVal)
O(k?) per node

Recursively searches through all descendants of s that share a landmark with r.
Looks, whether there is a node s that, when moving it to the other side of r reduces
par(r) below bVal. If there is, it replaces best and the corresponding par(r) value

replaces bVal. It considers only nodes with size in s;5u . . . Shigh-

IF [£ N (£ ULY) = 0] THEN | return
Compute par’ by (70)

IF par’ < bVal A Ssize € [Siow - - - Shigh)
THEN |best :=s; bVal := par

IF s is no leaf

THEN |recursiveBest (s/,T,[Siow - - - Shigh] , best, bVal)
recursiveBest (s\,T,[Siow .- - Shigh], best, bVal)

A.17 update (n) O(k*) per node updated

Updates AM, b¥ pPS=1 HS, and hS of node n and all descendents recursively.

IF | n is not marked invalid or landmark lists valid | THEN | return
updateLandmarkLists (n)

IF n is no leaf

THEN |update (n,/); update (n\)

Permute Aﬁi,byl and Aﬁi,bﬁi so rows / cols. corresp. to same landmarks.

A= AN AT b= bl 16

ELSE (A := AL; b:=10]

Permute A, b so block row / col. 1 corresp. to £ and block row / col. 2 to LS.
Compute AX b2 by (30) and P~ HS K by (27).

Mark node n as valid.

A.18 compileEKF (c,(Pggp, Hikp hbxr)) O(klogn)

Computes a new EKF state Z,C representing the landmarks involved in region c

and the robot pose information as passed by (PECI;;, HExr, hSxr)-

52

computeEstimateWithCovariance (c)
Compute Z by (31) and C by (33) with ¢ = . and cov(v) = C..
return (z, C)

A.19 computeEstimateWithCovariance (n)

Computes the estimate Z, with covariance Cy for node n.

IF | n =nil| THEN]| return ((), ()
(0,Cy) := computeEstimateWithCovariance (nj)

Remove all rows / cols. with landmarks ¢ £ from v, C,.
Compute Zc by (31) and C¢ by (33) from v, C, and PS—1 HS KS.

A.20 computeGlobalEstimate (m) O(kn)

Computes an estimate for all landmarks involved at n and below.

Get estimates ¢ for landmarks € £Y from the global estimate & (Note: LM = 0).
Compute 4 by (31) from ¢ and HS,hS and store in the global estimate .

IF n is not leaf

THEN | computeGlobalEstimate (n,); computeGlobalEstimate (n)

B Example for Propagation of Distributions in
the Tree

Figure 18 shows the computation at node n in the example from figure 2.
Gaussians are denoted by N (i, C') in covariance form and by N/ ~1(b, A)
in information form. On the left zn,: |] = 212, X[n,:|] = X, but
Xy |1] = Xp. So n, passes

P = p(Xplzi2) = N7 (=2, 1) = N(1,3) (90)

to n. On the right z[n\:|] = 234, 2[n\:]] = Xpcq4, and X[ny: 1]
consists of X (shared with n,) and Xy (shared with ny). So n\ passes

P = P(Xpalzza) = N7 ((%), <_11/;2 _11/22» (91)

to n. This Gaussian is degenerate, because z34 contain no absolute
position information. It declares the difference Xy — X}, as N'(2,2) plus
an infinite uncertainty for X4 + Xp. This is typical for SLAM and no
problem in the information form. Node n multiplies both (®) by (24).

P b, =9l =V (). (0 08)) = (). (39)

53

P = p(zg|21..4) Pn, = P(Xd|2)

6 -4 -2 0 2 4 6 6 -4 -2 0 2 4

Pn, "V,

osass
<5 2
S8 2
SRR35 222>
s=7 N>
(RIDZRRRERA 2
SR =
S
=7
<)
)]
R85/

2
S

SRS

RRZRIEEE

2
Noesesee
AR
R

il

s
<
43R
<2 oos
SRR
SR\ R
S8 N2>
S NS
RS2 A\
L2y
Ly
Ky

Figure 18: The probability distributions involved in computation at
node n in figure 2. The example assumes 1D landmarks. Constraint z;
declares X, to be 0 with variance 2. Constraints zs 7 declare the differ-
ence between successive landmarks to be 1 with variance 1. With only
these constraints the result would be E(X |z, 7) = (012345 6)7. The
last constraint zg contradicts by declaring X as 7 with variance 2. Thus
the estimate stretches to E(X |z, g) = (0.2 1.3 2.4 3.5 4.6 5.7 6.8)”. The
text explains how treemap computes this result.

54

The next step is to marginalize (@) out X[n: /\ 1] = X}, by (28).

P = p(X4lz1..4) =N 7H(—=6/5,1/5) = N(3,5) (92)

P = p(Xolza, z) = N(3/524 — 4/5,1) (93)

Note, that the mean of pg is defined as a linear function Hxyq + h of
x4. In this example H = (3/5) and h = (-4/5) by (27). H,h and the
covariance P~ = (6/5) are stored at n. p)/ is passed to n;. Up to now
only 2.4 have been integrated. Imagine p was directly fed back into n
using it as pn1, which should actually be computed by the parent. Then
z5..8 were bypassed and n would provide Z, 4 = (0123). Instead at

some point above n the contradicting distributions p(Xg|21..4) = N (3,5)
and p(Xg4|z5.8) = N(4,5) are integrated and

pn; = p(Xal2) = N(3.5,5/2) (94)

is passed from n; to n. It is multiplied (®) with p§ by (33) yielding

pn=p(Xoal2) =N ((33). (%5 53)) (95)

which is passed down to n, and n, .

55

