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Motivation
The ability to solve spatial tasks is crucial for everyday life and thus

of great importance for cognitive agents. A common approach to

modeling this ability in artificial intelligence has been to represent

spatial configurations and spatial tasks in form of knowledge about

space and time. Augmented by appropriate algorithms such repre-

sentations allow the computation of knowledge-based solutions to

spatial problems. In comparison, natural embodied and situated

cognitive agents often solve spatial tasks without detailed knowledge

about underlying geometric and mechanical laws and relationships;

they can directly relate actions and their effects due to spatio-tem-

poral affordances inherent in their bodies and their environments.

Against this background, we argue that spatial and temporal structures

in the body and the environment can substantially support (or even

replace) reasoning effort in computational processes. While the

principle underlying this approach is well known—for example, it is

applied in descriptive geometry for geometric problem solving—it

has not been investigated as a paradigm of cognitive processing. The

relevance of this principle may not only be to overcome the need for

detailed knowledge that is required for a knowledge-based approach;

it is also in understanding the efficiency of natural problem solving

approaches.

Architecture of cognitive systems
Cognitive agents such as humans, animals, and autonomous robots

comprise brains (resp computers) connected to sensors and actuators.

These are arranged in their (species-specific) bodies to interact with

their (species-typical) environments. All of these components need to

be well tuned to one another to function in a fully effective manner.

For this reason, it is appropriate to view the entire aggregate (cog-

nitive agent including body and environment) as a ‘full cognitive

system’ (Fig. 1).

Our work aims at investigating the distribution, coordination, and

execution of tasks among the system components of embodied and

situated spatial cognitive agents. From a classical information pro-

cessing/AI point of view, the relevant components outside the brain or

computer would be formalized in some knowledge representation

language or associated pattern in order to allow the computer to

perform formal reasoning or other computational processing on this

representation. In effect, physical, topological, and geometric rela-

tions are transformed into abstract information about these relations

and the tasks are then performed entirely on the information pro-

cessing level, where true physical, topological, and geometric

relations no longer persist.

This classical information-processing oriented division between

brain/computer on one hand and perception, action, body, and envi-

ronment on the other hand is only one way of distributing the

activities involved in cognitive processing [Wintermute and Laird,

2008]. Alternative ways would be (1) to maintain some of the spatial

relations in their original form or (2) to use only ‘mild abstraction’ for

their representation. Maintaining relations in their original form

corresponds to what Norman [1980] named knowledge in the world.

Use of knowledge in the world requires perception of the world to

solve a problem. The best-known example of mild abstraction is

geographic paper maps; here certain spatial relations can be repre-

sented by identical spatial relations (e.g. orientation relations); others

could be transformed (e.g. absolute distances could be scaled). As a

result, physical operations such as perception, route-following with a

finger, and manipulation may remain enabled similarly as in the

original domain. Again, perception is required to use these mildly

abstracted representations—but the perception task can be easier than

the same task under real-world conditions, for example due to the

modified scale.

A main research hypothesis for studying physical operations and

processes in spatial and temporal form in comparison to formal or

computational structures is that spatial and temporal structures in the

body and the environment can substantially support reasoning effort

in computational processes. One major observation we can make

when comparing the use of such different forms of representation

(formal, mild abstraction, original) is that the processing structures of

problem solving processes differ [Marr 1982]. Different processing

structures facilitate different ease of processing [Sloman 1985].

Our hypothesis can be plainly formulated as:

manipulation + perception simplify computation

While the principle underlying this hypothesis is well known—for

example, it is applied in descriptive geometry for geometric problem

solving—it has not been investigated as a principle of cognitive

processing.

Reasoning about the world can be considered the most advanced

level of cognitive ability; this ability requires a comprehensive

understanding of the mechanisms responsible for the behavior of

bodies and environments. But many natural cognitive agents

(including adults, children, and animals) lack a detailed understanding

of their environments and still are able to interact with them rather

intelligently. For example, they may be able to open and close doors

in a goal-directed fashion without understanding the mechanisms of

the doors or locks on a functional level. This suggests that knowledge-

based reasoning may not be the only way to implementing problem

solving in cognitive systems.

In fact, alternative models of perceiving and moving goal-oriented

autonomous systems have been proposed in biocybernetics and AI

research to model aspects of cognitive agents [e.g. Braitenberg 1984;

Brooks 1991; Pfeifer and Scheier, 2001]. These models physically

implement perceptual and cognitive mechanisms rather than

describing them formally and coding them in software. Such systems

are capable of intelligently dealing with their environments without

encoding knowledge about the mechanisms behind the actions.

The background of the present work has been discussed in detail in

[Freksa 2013; Freksa and Schultheis, in press].

Approach
With our present work, we go an important step beyond previous

embodied cognition approaches to spatial problem solving. We

introduce a paradigm shift which not only aims at preserving spatial

structure, but also will make use of identity preservation; in other

words, we will represent spatial objects and configurations by them-

selves or by physical spatial models of themselves, rather than by

abstract representations. This has a number of advantages: we can

avoid loss of information due to early representational commitments:

we do not have to decide prematurely which aspects of the world to

represent and which aspects to abstract from. This can be decided

partly during the problem solving procedure. At this stage, additional

contextual information may become available that can guide the

choice of the specific representation to be used.Fig. 1 Structure of a full cognitive system
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Perhaps more importantly, objects and configurations frequently

are aggregated in a natural and meaningful way; for example, a

chair may consist of a seat, several legs, and a back; if I move one

component of a chair, I automatically (and simultaneously!) move

the other components and the entire chair, and vice versa. This

property is not intrinsically given in abstract representations of

physical objects; but it may be a very useful property from a cog-

nitive point of view, as no computational processing cycles are

required for simulating the physical effects or for reasoning about

them. Thus, manipulability of physical structures may become an

important feature of cognitive processing, and not merely a property

of physical objects.

Similarly, we aim at dealing with perception dynamically, for

example allowing for ‘‘on-the-fly’’ creation of suitable spatial refer-

ence frames: by making direct use of spatial configurations, we can

avoid deciding a priori for a specific spatial reference system in which

to perceive a configuration. As we know from problem solving in

geometry and from spatial cognition, certain reference frames may

allow a spatial problem to collapse in dimensionality and difficulty.

For example, determining the shortest route between two points on a

map boils down to a 1-dimensional problem [Dewdney 1988].

However, it may be difficult or impossible to algorithmically deter-

mine a reference frame that reduces the task given on a 2- or

3-dimensional map to a 1-dimensional problem. A spatial reconfig-

uration approach that makes use of the physical affordance ‘shortcut’,

easily reduces the problem from 3D or 2D to 1D. In other cases, it

may be easier to identify suitable spatial perspectives empirically in

the field than analytically by computation. Therefore we may be better

off by allowing certain operations to be carried out situation-based in

the physical spatial configuration as part of the overall problem

solving process.

In other words, our project investigates an alternative architecture

of artificial cognitive systems that may be more closely based on role

models of natural cognitive systems than our purely knowledge-

based AI approaches to cognitive processing. We focus on solving

spatial and spatio-temporal tasks, i.e. tasks having physical aspects

that are directly accessible by perception and can be manipulated by

physical action. This will permit ‘outsourcing’ some of the ‘intelli-

gence’ for problem solving into spatial configurations.

Our approach is to first isolate and simplify the specific spatial

problem to be solved, for example by identifying an appropriate task-

specific spatial reference system, by removing task-irrelevant entities

from the spatial configuration, or by reconstructing the essence of the

spatial configuration by minimal abstraction. In general, it may be

difficult to prescribe the precise steps to preprocess the task; for the

special case of spatial tasks it will be possible to provide rules or

heuristics for useful preprocessing steps; these can serve as meta-

knowledge necessary to control actions on the physical level. After

successful preprocessing, it may be possible in some cases to ‘read’

an answer to the problem through perception directly off the resulting

configuration; in other cases the resulting spatial configuration may be

a more suitable starting point for a knowledge-based approach to

solving the problem.

Discussion
The main hypothesis of our approach is that the ‘intelligence’ of

cognitive systems is located not only in specific abstract problem-

solving approaches, but also—and perhaps more importantly—in the

capability of recognizing characteristic problem structures and of

selecting particularly suitable problem-solving approaches for given

tasks. Formal representations may not facilitate the recognition of

such structures, due to a bias inherent in the abstraction. This is,

where mild abstraction can help: mild abstraction may abstract only

from few aspects while preserving important structural properties.

The insight that spatial relations and physical operations are

strongly connected to cognitive processing may lead to a different

division of labor between the perceptual, the representational, the

computational, and the locomotive parts of cognitive interaction than

the one we currently pursue in AI systems: rather than putting all the

‘intelligence’ of the system into the computer, the proposed approach

aims at putting more intelligence into the interactions between

components and structures of the full cognitive system. More spe-

cifically, we aim at exploiting intrinsic structures of space and time to

simplify the tasks to be solved.

We hypothesize that this flexible assignment of physical and

computational resources for cognitive problem solving may be closer

to natural cognitive systems than the almost exclusively computa-

tional approach; for example, when we as cognitive agents search for

certain objects in our environment, we have at least two different

strategies at our disposal: we can represent the object in our mind and

try to imagine and mentally reconstruct where it could or should be—

this would correspond to the classical AI approach; or we can visually

search for the object in our physical environment. Which approach is

better (or more promising) depends on a variety of factors including

memory and physical effort; frequently a clever combination of both

approaches may be best.

Although the general principle outlined may apply to a variety of

domains, we will constrain our work in the proposed project to the

spatio-temporal domain. This is the domain we understand best in

terms of computational structures; it has the advantage that we have

well-established and universally accepted reference systems to

describe and compute spatial and temporal relations.

Our research aims at identifying a bag of cognitive principles and

ways of combining them to obtain cognitive performance in spatio-

temporal domains. We bring together three different perspectives, in

this project: (1) the cognitive systems perspective which addresses

cognitive architecture and trade-offs between explicit and implicit

representations; (2) the formal perspective which characterizes and

analyzes the resulting structures and operations; and (3) the imple-

mentation perspective which constructs and explores varieties of

cognitive system configurations. In the long-term, we see potential

technical applications of physically supported cognitive configura-

tions for example in the development of future intelligent materials

(e.g. ‘smart skin’ where distributed spatio-temporal computation is

required but needs to be minimized with respect to computation

cycles and energy consumption).

Naturally, the proposed approach will not be as broadly applicable

as some of the approaches we pursue in classical AI. But it might

discover broadly applicable cognitive engineering principles, which

will help the design of tomorrow’s intelligent agents. Our philosophy

is to understand and exploit pertinent features of space and time as

modality-specific properties of cognitive systems that enable powerful

specialized approaches in the specific domain of space and time.

However, space and time are most basic for perception and action and

ubiquitous in cognitive processing; therefore we believe that under-

standing and use of their specific structures may be particularly

beneficial.

In analogy to the notion of ‘strong AI’ (implementing intelligence

rather than simulating it [Searle 1980]) we call this approach ‘strong

spatial cognition’, as we employ real space rather than simulating its

structure.
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Abstract
A biologically inspired model architecture for inferring 3D shape

from textures is proposed. The model is hierarchically organized into

modules roughly corresponding to visual cortical areas in the ventral

stream. Initial orientation selective filtering decomposes the input into

low-level orientation and spatial frequency representations. Grouping

of spatially anisotropic orientation responses builds sketch-like rep-

resentations of surface shape. Gradients in orientation fields and

subsequent integration infers local surface geometry and globally

consistent 3D depth.
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Introduction
The representation of depth structure can be computed from various

visual cues such as binocular disparity, kinetic motion and texture

gradients. Based on findings from experimental investigations (Liu

et al. (2004); Tsutsui et al. (2002)) we suggest that depth of textured

surfaces is inferred from monocular images by a series of processing

stages along the ventral stream in visual cortex. Each of these stages

is related to individual cortical areas or a strongly clustered group of

areas (Markov et al. 2013). Based on previous works that develop

generic computational mechanisms of visual cortical network pro-

cessing (Thielscher and Neumann (2003); Weidenbacher et al.

(2006)) we propose a model that transforms initial texture gradient

patterns into representations of intrinsic structure of curved surfaces

(lines of minimal curvature, local self- occlusions) and 3D depth (Li

and Zaidi (2000); Todd (2004)).

Previous work
Visual texture can assume different component structure which suffers

from compression along the direction of surface slant when the object

appearance curves away from the viewer’s sight. Texture gradients

provide a potent cue to local relative depth (Gibson, 1950). Several

studies have investigated how size, orientation or density of texture

elements convey texture gradient information (Todd and Akerstrom,

1987). Evidence suggests that patterns of changing energy convey the

basic information to infer shape from texture that need to be integrated

along characteristic intrinsic surface lines (Li and Zaidi, 2000). Pre-

vious computational models try to estimate surface orientation from

distortions of the apparent optical texture in the image. The approaches

can be subdivided according to their task specificity and the compu-

tational strategies involved. Geometric approaches are suggested to

reconstruct the structure of the metric surface geometry (e.g., Aloi-

monos and Swain (1985); Bajcsy and Lieberman (1976); Super and

Bovik (1995)). Neural models, on the other hand, infer the relative or

even ordinal structure from initial spatial frequency selective filtering,

subsequent grouping of the resulting output responses and a depth

mapping step (Grossberg et al. 2007; Sakai and Finkel, 1997). The

LIGHTSHAFT model of Grossberg et al. (2007) utilizes scale-selec-

tive initial orientation filtering and subsequent long-range grouping.

Relative depth in this model is inferred by depth-to-scale mapping

associating coarse-to-fine filter scales to depth using orientation sen-

sitive grouping cells which define scale- sensitive spatial

compartments to fill-in qualitative depth. Grouping mechanisms can

be utilized to generate a raw surface sketch to establish lines of min-

imal surface curvature as a ridge-based qualitative geometry

representation (Weidenbacher et al. 2006). Texture gradients can be

integrated to derive local maps of relative surface orientation (as

suggested in Li and Zaidi (2000); Sakai and Finkel (1997)). Such

responses may be integrated to generate globally consistent relative

depth maps from such local gradient responses (Liu et al. 2004).

The above mentioned models are limited to simple objects most

dealing only with regular textures and do not give an explanation as to

how the visual system mechanistically produces a multiple depth

order representation of complex objects.

Model description
Our model architecture consists of a multi-stage network of inter-

acting areas that are coupled bidirectionally (extension of

(Weidenbacher et al. 2006); Fig. 1). The architecture is composed of

four functional building blocks or modules, each one consists of three

stages corresponding to the compartment structure of cortical areas:

feedforward input is initially filtered by a mechanism specific to the

model area, then resulting activity is modulated by multiplicative

feedback signals to enhance their gain, and finally a normalization via

surround competition utilizes a pool of cells in the space-feature

domain.

The different stages can be formally denoted by the following

steady-state equations (with the filter output modulated by feedback

and inhibition by activities from a pool of cells (Eq. 1) and the

inhibitory pool integration (Eq. 2)):
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where the feedback signal is defined by neti,feat
I,FB = [kFB -

ri,feat
II ] +

P
z2{feat,loc}rz

II. Here rI, rII denote output activation of the

generic modules (I, II: two subsequent modules in the hierarchy). The

different three-stage modules roughly correspond to different cortical

areas with different feature dimensions represented neurally (compare

Fig. 1): Cortical area V1 computes orientation selective responses

using a spatial frequency decomposition of the input; area V2

accomplishes orientation sensitive grouping of initial items into

boundaries in different frequency channels to generate representations

of surface curvature properties. Different sub-populations of cells in

V4/IT are proposed to detect different surface features from distrib-

uted responses: One is used to extract discontinuities in the

orientation fields (indicative for self-occlusions), another extracts and

analyzes anisotropies in the orientation fields of grouping responses to
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