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An extension of Allen’s approach to interval-based temporal reasoning is presented.  The
new method allows for temporal and spatial reasoning on the basis of incomplete or im-
precise knowledge of the kind that is available from inference and perception processes.
The central idea of the representation method is the structuring of knowledge according to
the conceptual neighborhood of temporal and spatial relations.  This representation
allows for integration of coarse and fine knowledge.  Logical reasoning on the basis of
such knowledge therefore takes place within a unified scheme.  The method presented not
only is more efficient than Allen’s method, it also is more ‘cognitively adequate’ in
comparison with previous approaches.

1. INTERVAL-BASED TEMPORAL REASONING  
À LA ALLEN

In his popular paper on maintaining knowledge
about temporal intervals, James Allen [1] proposes
to represent temporal relations between intervals to
describe qualitative relations between events.  For
reasoning about relations between events, Allen
develops rules which allow for deriving knowledge
about certain relations between events from knowl-
edge about temporal relations between related events.

1.1 Thirteen Qualitative Temporal Relations

The basis for Allen’s interval algebra is the set of
thirteen mutually exclusive qualitative relations
between two intervals by which the temporal rela-
tionship between any two events can be unam-
biguously described.  These relations are depicted in
Fig. 1.  The set consists of seven basic relations and
their inverses;  in case of the ‘equal’ relation the
basic and inverse relations are identical.  In the
pictorial example, the events ‘X’ and ‘Y’ are denoted
by contiguous sequences of the characters ‘X’ and
‘Y’, respectively.

Temporal reasoning is done by deriving the set of
possible relations between two events which have
known relations to a third event.  For this purpose,
all 13*13 possible compositions of two relations are

listed in a table.  These compositions may result in
unique relations or in a set of several alternative
possibilities.

Temporal
Relation

X before Y

X equal Y

X meets Y

X overlaps Y

X during Y

X starts Y

X finishes Y

Basic
Symbol
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Inverse
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di
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fi
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Example
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Y Y Y
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X X X
  YYY
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YYYYY

  XXX
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Fig. 1:  The 13 possible relations between two
intervals



1.2 Examples for Interval-Based Inferences

1) If we know that event A immediately
precedes event B (A meets B) and event C takes
place during event B (C during B), we can derive that
event A takes place before event C:

A meets B A m B
C during B B di CAAAABBBB
--------------- ---------      CC
A before C A < C

2) If we know that A takes place during B and C
starts B, we can derive that either A takes place
during C or A finishes C, or A is overlapped-by C,
or A is-met-by C, or A takes place after C;  none of
the remaining eight relations may hold between
events A and C:

A during B A d B
C starts B B si C
--------------- ---------
A { during, A {d, f, oi, mi, >} C
finishes,
is-overlapped-by,   AA
is-met-by, BBBBBBBBB
after} C > C

mi C C
oi C C C
f CCCC
d CCCCC

1.3 Criticism of Allen’s Approach

Allen’s reasoning is carried out by look-up in the
exhaustive composition table.  This is an efficient
method but the table does not reflect an understan-
ding of a physical or logical structure underlying the
inferences.  As a consequence, it is difficult to
extend the representation scheme in such a way that
it is robust against variations or small errors in the
input knowledge:  if the input cannot be relied on,
the output becomes completely unpredictable.

Although Allen’s reasoning scheme can represent
incomplete knowledge in form of disjunctions, the
inference mechanism does not really process such
knowledge;  instead, incomplete knowledge is com-
plemented into an exhaustive set of completely
specified alternatives;  each of these pieces of com-
plete knowledge then is processed individually.

Incomplete knowledge, however, is omnipresent in
temporal and spatial reasoning:  typically, the
knowledge that is available for reasoning is incom-

plete to start with;  but even if it is complete, after
only one inference step we have to face incomplete
knowledge (previous section, example 2).

From a cognitive perspective, Allen’s inference
scheme has a rather unplausible property:  the less
knowledge is given to the procedure (due to incom-
plete knowledge), the more complex is its represen-
tation and the more processing has to be done.  This
is due to the fact that incomplete knowledge is trea-
ted as a set of completely specified alternatives.

Allen’s inference scheme obeyes the laws of logics
but ignores some useful laws of the physics of time
which we have incorporated in our approach.

2. THE REPRESENTATION OF INCOMPLETE
KNOWLEDGE

There are two ways of dealing with incomplete
knowledge corresponding to a bottom-up and a top-
down view of the world, respectively.  The bottom-
up view suggests that incomplete knowledge is due
to omission of specifications;  thus it can be com-
pleted by considering the set of possible augmenta-
tions.  The top-down view suggests that incomplete
knowledge is due to possible distinctions of details
which are not made;  thus, by ignoring details, we
can deal with coarse knowledge.  

Each of those views is associated with a correspon-
ding knowledge representation and processing philo-
sophy.  Both approaches eventually yield the same
results;  but they use different paths of differing
length.

2.1 Disjunctions of Completed Knowledge

The use of disjunctions of complete knowledge to
represent and process incomplete knowledge is a
classical propositional approach which is used by
Allen:  incomplete knowledge is augmented into a
disjunction of all alternatively possible complete
propositions;  each of the alternatives suggested by
the disjunctions is then treated as complete knowl-
edge.  The results obtained by the individual com-
plete reasoning processes are again combined into
disjunctions reflecting the set of actually possible
outcomes.

This approach is restricted to situations in which all
possible completions of knowledge are foreseeable.
For complexity reasons, the number of alternatives
considered must be small.



2.2 Abstraction from Details

This approach is suggested by models of perception:
if I see something for the first time at some di-
stance, I may not see all the details of the object nor
may I be able to consider all possible instances of
details which I am missing;  nevertheless I will be
able to make certain observations and inferences
about the object.  The reason why this is possible is
that many observations and inferences are indepen-
dent of the missing details;  knowledge of the details
merely would allow for a refinement of the
observations and inferences and would not require
their correction.

With this view of the world we organize knowledge
hierarchically according to the level of detail which
is available:  less knowledge corresponds to the
higher levels and more knowledge to the lower
levels in this organization.  On any level certain
inferences can be drawn.  These inferences can be
expressed in terms of knowledge represented on the
same level of detail or of a higher or lower level.
One advantage of this approach is that inferences
that can be drawn on a higher level subsume several
(possibly many) corresponding inferences on lower
levels.  If additional knowledge about details
becomes available, the inferences are refined.
Knowledge is treated more like a painting than as a
text.

A prerequisite  for employing this approach is
monotonicity of the reasoning processes involved.
This means, that inferences carried out on the basis
of coarser knowledge must remain valid when addi-
tional knowledge becomes available.  Differently
stated this means that the ‘picture’ painted by the
coarse knowledge always must be complete in the
sense that there are no gaps on this level which
could be filled by additional knowledge;  ambiguous
situations ‘melt’ into a single representation.  The
picture may be incomplete in the sense, that addi-
tional knowledge resolves the painting more finely,
however.  This monotonicity property can be
established for temporal and spatial knowledge as
will be seen in the following sections of the paper.

3. CONCEPTUAL NEIGHBORHOOD

Although the examples given in the present paper
are taken from the temporal domain, the statements
about neighborhood apply to the spatial domain as
well [2].  The basic approach to exploiting mono-
tonicity for temporal and spatial reasoning is guided

by the observation that conceptually neighboring
relations between events have similar behavior [3].
In order to be more precise, we make the following

Definition:   
Two relations between pairs of events are conceptual
neighbors if they can be directly transformed into
one another by continuous deformation (i.e., shorte-
ning or lengthening) of the events.

Example:   
The relations before (<) and meets (m) are concep-
tual neighbors since a temporal extension of the
earlier event may cause a direct transition from the
relation before to the relation meets:

A < B AAAAA  BBBBB

A m B AAAAAAABBBBB

The relations before (<) and overlaps (o) are not con-
ceptual neighbors, since a transition between those
relations must go through the relation meets:

A o B AAAAAAAAA
       BBBBB

3.1 Neighborhood Structure of the 13 Relations

The thirteen qualitatively different pairs of intervals
(depicted by a dumbbell-shaped line and a rectangle)

Fig. 2:  The 13 relations arranged according to
conceptual neighborhood



are arranged in Fig. 2 in such a way, that continuous
transformation of the corresponding events only will
result in transitions between spatially neighboring
pairs.  Since the resulting neighborhood structure
will play a major role in the following sections, we
will develop a neighborhood-oriented symbolism for
referring to the relations within the structure.

3.2 Iconization of the Neighborhood Structure

The neighborhood structure obtained by continuous
deformation of intervals is shown in Fig. 3.  The
images of the intervals from Fig. 2 are replaced here
by circles containing the symbolic abbreviations of
the names of the corresponding relations as given in
Fig. 1.  The neighborhood relations are depicted by
solid lines:
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o fi
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 >

Fig 3:  Symbolized relation neighborhood structure

The topological arrangement of Fig. 3 is used as
generic structure for symbolizing disjunctions of
interval relations by means of icons.  The individual
relations are symbolized as follows:

< m o f i di s i =

s d f oi m i >

Any of the 213-1 disjunctions of one or more indi-
vidual relations can be symbolized by superposition
of icons as shown in the following examples.

The icon

corresponds to the disjunction of the relations <, m,
o, s, d and the icon

corresponds to the disjunction of all thirteen
relations (which means that no constraint on the
relationship between the intervals is given).

3.3 Linearization of the Neighborhood Structure

In effect, we now have a system of 2-dimensional
symbols for representing disjunctions of temporal
relations.  We use these symbols for representing
abstract temporal and spatial relationships.  We will
exploit the fact that the icons can be viewed both as
logic symbols and as topological images of tempo-
ral or spatial relationships.

The advantage of the topolog ical view of the icons
is that we obtain information on the neighborhood
of relations without explicitly reasoning about
neighborhood.

In order to visualize the reasoning procedure within a
2-dimensional graphical domain, we will modify the
topological arrangement in such a way that only a
subset of the actual neighborhood relations is reflec-
ted.  Specifically, we will neglect the neighborhood
between the relations o and s, oi and si, f and =, =
and fi, for this purpose.  This yields a linear neigh-
borhood structure which consists of the following
sequence of the thirteen relations:  <, m, o, fi, di, si,
=, s, d, f, oi, mi, >.

We use this ordering of relations for creating a
neighborhood-oriented variation of Allen’s compo-
sition table for reasoning about temporal or spatial
intervals.  The resulting table is depicted in Fig. 4.

3.5 Neighborhood-Oriented Composition Table

The composition table consists of 13 rows and 13
columns arranged according to the linear neighbor-
hood structure developed in the previous section.
The entries of the table refer to the disjunctions of
relations which may hold under composition.

The significance of the neighborhood-oriented
arrangement of the relation composition table stems
from the fact that certain properties of temporal and
spatial structures are preserved which are not repre-
sented in Allen’s scheme.   



Fig. 4:  Neighborhood preserving relation composition table.

Some important properties of the composition table
are listed below:

1) Most compositions (= temporal or spatial infe-
rences) result in disjunctions of several alter-
native relations;  some compositions result in
unambiguous relations.

2) The relations within a disjunction always form a
conceptual neighborhood, i.e., they are connected
via conceptual neighbors.

3) In many cases, a transition to neighboring initial
conditions results in the identical conclusion or
in a subset or superset of an inference neighbor-
hood.

4) In no case, a transition among neighboring
initial conditions results in a jump between non-
neighboring conclusions.

5) Only a small subset of 27 of the possible con-
ceptual neighborhoods corresponds to actually
possible inferences.

6) The inference table shows many symmetries
which may be utilized in the inference process.

7) All these properties hold for the complete 4-
dimensional composition space which we would
get without linearization of the neighborhood
structure



4. COARSE CODING AND NEIGHBORHOOD-
BASED REASONING

The benign monotonicity properties of the compo-
sitions in the neighborhood-based framework allow
us to represent the inference knowledge of the
composition table on a coarser level:  we construct
neighborhoods of initial conditions in such a way
that we obtain each of the original 13 relations by
conjoining neighborhoods.  This corresponds to a
more abstract level of representing the basic knowl-
edge.

4.1 Condensed Composition Table

We choose the following neighborhoods of relations
as ‘primitives’ of our representation:

The first and last two relations are trivial neighbor-
hoods consisting of only a single relation each.
This is due to the fact that they only have one or
two neighbors.  The remaining nine of the thirteen
relations each have at least three neighbors.  

Fig. 5  Inference table for coarse reasoning

The condensed inference table is obtained by super-
imposing rows and columns of the original table.
Formally, this corresponds to a logical OR-opera-
tion.  With the condensed table, reasoning can be
done in terms of entire neighborhoods – instead of
single relations – at once.  This, of course, is help-
ful only if the initial conditions for the reasoning
process are given in terms of these neighborhoods.
This is indeed frequently the case, both from
initially incomplete knowledge and from previous
inference steps, as has been shown in detail in [3].

More surprisingly, the neighborhood-based coarse
composition table can be used for fine reasoning on
the basis of the original thirteen interval relations:
this is done by accessing the rows and columns of
the table whose neighborhoods contain the indivi-
dual relations involved.  The largest neighborhood
which is contained in all icons found at the resulting
intersections represent the conclusion of the
inference procedure.  Formally, this is the
conjunction of all disjunctions involved.  Due to
favorable orthogonality properties, no information
gets lost in this process.

Accordingly, coarse and fine initial conditions can be
combined.

4.2 Examples for Neighborhood-Based Reasoning

1) Coarse reasoning

From the initial conditions describing the relations
between events X and Y and between the events Y
and Z, the relation between events X and Z is
derived.

2) Fine reasoning

The initial conditions are expressed in terms of
conjunctions of neighborhoods;  conclusions are
drawn by coarse reasoning;  the intersection of the
resulting neighborhoods yield the final result.



5. CONCLUSIONS AND OUTLOOK

We have sketched an approach to temporal and spa-
tial reasoning based on Allen’s interval calculus for
qualitative temporal reasoning [1].  Our approach
augments Allen’s calculus by the notion of
conceptual neighborhood which is elaborated in [3].
This notion supplies structures for abstracting
knowledge and for higher-level reasoning.  

The use of conceptual neighborhoods is motivated
by physical properties which are considered essential
for most cognitive operations in the temporal and
spatial domains.  The incorporation of neighborhood
structure allows for a representation of generalized
knowledge which turns out to be extremely useful
both from a cognitive and a computational perspec-
tive.  This generalized knowledge enables efficient
higher-level reasoning in terms of cognitively
meaningful concepts [3].

The higher-level reasoning processes exhibit a much
more cognitively adequate behavior in that they treat
incomplete knowledge as coarse knowledge rather
than  as underspecified knowledge;  as a conse-
quence, the required ‘computational effort’ decreases
with decreasing knowledge

Another consequence of the incorporation of neigh-
borhood information is the new role of uncertainty:
due to the monotonicity properties of the temporal
and spatial domains, neighboring initial conditions
result at worst in neighboring consequences;  thus,
small uncertainties in the initial conditions do not
cause drastically wrong conclusions.  The neighbor-
hood concept also allows for a cognitively more
adequate treatment of fuzzy knowledge [4].

On a different dimension, there exists a favorable
complexity-theoretical result which applies to our
neighborhood structure.  Vilain and Kautz [5] have
shown that computing the consequences of temporal
assertions in Allen’s framework is computationally
intractable.  Nökel [6] has investigated a fragment of
Allen’s full algebra, namely the algebra of convex
relations, which is closely related to the ‘neighbor-
hood algebra’ presented here.  He showed that in the
algebra of convex relations global consistency can
be verified in polynomial time.  This result is
expected to hold at least for the specific neigborhood
structure used in the present paper.

The approach presented is suitable both for sequen-
tial and parallel processing.  In fact, it is possible to
utilize much more structure in the composition table
(Fig. 4):  the table of originally 169 entries can be
compressed down to 7 entries by exploiting a variety
of symmetries [3].  This result is particularly useful
for dealing with higher dimensions [7] and for hard-
ware realizations of temporal or spatial inference
engines.
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