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An extension of Allen’s approach to interval-based temporal reasoning is presented. The
new method allows for temporal and spatial reasoning on the basis of incomplete or im-
precise knowledge ahe kindthat is available frominferenceand perception processes.
The central idea of the representation method is the structurkigpededge according to

the conceptual neighborhoodf temporaland spatial relations.

Thigepresentation

allows for integration otoarseandfine knowledge. Logical reasoning ¢ime basis of
such knowledge therefore takes place within a unified scheme. The rpetsedted not
only is moreefficient than Allen’s method, it also is more ‘cognitivehdequate’ in

comparison with previous approaches.

1. INTERVAL-BASED TEMPORAL REASONING
A LA ALLEN

In his popular paper on maintaining knowledge

listed in a table. Thessompositions may result in
unique relations or in a set ofeveral alternative

about temporal intervals, James Allen frpposes

to representemporal relationdetweenintervals to
describequalitative relationsdbetweenevents. For
reasoning about relationbetween events, Allen
developsrules which allow forderiving knowledge
aboutcertain relationdbetweenevents from knowl-
edge about temporal relations between related events
1.1  Thirteen Qualitative Temporal Relations

The basis for Allen’s intervaslgebra isthe set of
thirteen mutually exclusivequalitative relations
betweentwo intervals by which the temporatla-
tionship betweenany two eventscan be unam-
biguously described. These relatiare depicted in
Fig. 1. The set consists of seven basic relations ang
their inverses; incase ofthe ‘equal’ relation the
basic and inverse relationsare identical. In the
pictorial example, the events ‘X’ arl’ are denoted

by contiguoussequences ofhe characters ‘X’ and
Y’, respectively.

Temporal reasoning islone byderiving the set of

possibilities.
Temporal Basic Inverse Pictorial
Relation Symbol Symbol Example
X beforeY < > XXX YYY
X equalY = = XXX
YYY
X meetsy m mi XXXYYY
X overlapsY o] oi XXX
YYY
X duringY d di XXX
YYYYYY
X startsY S Si XXX
YYYYY
X finishesY f fi XXX
YYYYY

possible relationdbetweentwo events whichhave
known relations to a third eventor this purpose,
all 13*13 possible compositions of two relations are

Fig. 1: The 13 possible relations between two

intervals




1.2 Examples for Interval-Based Inferences

1) If we know that event Aimmediately
precedesvent B (AmeetsB) and event C takes
place during event B (Guring B), we can derive that
event A takes pladeeforeevent C:

A meetB AmB

CduringB B di CAAAABBBB
------------------------ CC

A beforeC A<C

2) If we know that A takes plaakiringB and C
starts B, we canderive that either A takeglace
during C or A finishesC, or A is overlapped-byC,
or A is-met-byC, or A takes placafter C; none of
the remaining eight relations may holgetween
events A and C:

A duringB AdB
C startsB BsiC
A {during, A {d, f, oi, mi, >} C
finishes,
is-overlapped-by, AA
is-met-by, BBBBBBBBB
after} C > C
mi ccC
oi CCC
f CCcCcC
d CCcccC
1.3  Criticism of Allen’s Approach

Allen’s reasoning iscarriedout by look-up in the
exhaustive composition table. This is efficient
methodbut the tabledoesnot reflect an understan-
ding of a physical or logical structure underlying the
inferences. As a consequence, it is difficult to

plete to start with; bueven if it is complete,after
only oneinferencestep wehave toface incomplete
knowledge (previous section, example 2).

From a cognitive perspective, Allen’mference
scheme has mtherunplausible property: the less
knowledge isgiven to theprocedure (due tincom-
plete knowledge), the more complexiis represen-
tation and the more processing has to be dortds

is due to thdfact that incompleteknowledge istrea-
ted as a set of completely specified alternatives.

Allen’s inferencescheme obeyes the laws of logics
but ignores some useful laws of the physics of time
which we have incorporated in our approach.

2. THE REPRESENTATION OFNCOMPLETE
KNOWLEDGE

There aretwo ways of dealing with incomplete
knowledge corresponding tolettom-upand atop-
down view of the world, respectively. Thettom-

up view suggests that incompldtrowledge is due

to omission of specifications; thusdan be com-
pleted by considerinthe set of possibl@augmenta-
tions. The top-down view suggests that incomplete
knowledge isdue topossible distinctions ofletails
which arenot made; thus, by ignoring details, we
can deal with coarse knowledge.

Each ofthose views isassociatedvith a correspon-
ding knowledge representati@md processing philo-
sophy. Bothapproachegventually yieldthe same

results; but they usdifferent paths of differing
length.
2.1  Disjunctions of Completed Knowledge

extend the representation scheme in such a way thatThe use of disjunctions of complekmowledge to

it is robust against variations or smaltors in the
input knowledge: ifthe input cannot beelied on,
the output becomes completely unpredictable.

Although Allen’s reasoningscheme carrepresent
incompleteknowledge inform of disjunctions, the
inferencemechanismdoesnot really process such
knowledge; insteadncompleteknowledge is com-
plementedinto an exhaustive set ofompletely
specifiedalternatives; each ofthese pieces ofom-

plete knowledge then is processed individually.

Incomplete knowledge, however, is omnipresent in
temporal and spatial reasoning: typically, the
knowledgethat is available for reasoning is incom-

representand process incomplet&nowledge is a
classical propositionaapproachwhich is used by
Allen: incompleteknowledge is augmentedto a

disjunction of all alternatively possibleomplete

propositions; each ofthe alternativesuggested by
the disjunctions is thetreated ascomplete knowl-
edge. The resultsobtained bythe individual com-

plete reasoning processage again combinednto

disjunctions reflecting theet of actually possible
outcomes.

This approach is restricted to situations in which all
possible completions ofnowledge are foreseeable.
For complexity reasons, the number alfernatives
considered must be small.



2.2  Abstraction from Details

This approach is suggested by models of perception:

if | see something for the first time at some di-
stance, | may not see all the details of the object nor
may | be able taconsiderall possible instances of
details which | ammissing; nevertheless Wwill be
able to make certain observatiolm®d inferences
about the object. The reason why this is possible is
that many observationand inferences arendepen-
dent of the missing details; knowledge of thetails
merely would allow for a refinement of the
observationsand inferencesand would not require
their correction.

With this view of theworld we organizé&knowledge
hierarchicallyaccording tothe level ofdetail which
is available: lessknowledge corresponds to the
higher levelsand more knowledge tothe lower
levels in this organization. On any levetrtain

by the observation that conceptually neighboring
relationsbetweenevents havesimilar behavior [3].
In order to be more precise, we make the following

Definition:

Two relations between pairs of evearg conceptual
neighborsif they can be directly transformethto
one another by continuowkeformation(i.e., shorte-
ning or lengthening) of the events.

Example:
The relationdefore (<) andmeets(m) are concep-
tual neighbors since a temporal extension of the
earlierevent maycause a diredransition from the
relationbeforeto the relatiormeets:

A<B

AAAAA BBBBB

AmB AAAAAAABBBBB

inferences can be drawn. These inferences can beThe relationdefore(<) andoverlaps(o) arenot con-

expressed inerms ofknowledge represented on the
same level ofletail or of ahigher or lower level.
One advantage othis approach isthat inferences
that can be drawn on a higher level subsseseral
(possibly many)corresponding inferences on lower
levels. If additional knowledgeabout details
becomes available, thenferences are refined.
Knowledge istreatedmore like a painting than as a
text.

A prerequisite  foremploying this approach is
monotonicity of the reasoningrocesses involved.
This means, thahferencescarriedout on the basis
of coarser knowledgmust remain valid wheraddi-
tional knowledge becomeavailable. Differently
statedthis means that théicture’ painted by the
coarse knowledgalways must be complete in the
sense thathere are no gaps on this levelvhich
could be filled byadditional knowledge;ambiguous
situations ‘melt’ into a singleepresentation. The
picture may be incomplete in the sense, thddi-
tional knowledgeresolves the painting more finely,
however.  This monotonicity propertgan be
established for temporand spatial knowledge as
will be seen in the following sections of the paper.

3. CONCEPTUALNEIGHBORHOOD

Although the examples given in the prespaper
aretaken from the temporal domain, the statements
aboutneighborhoodapply to the spatial domain as
well [2]. The basicapproach toexploiting mono-
tonicity for temporalandspatial reasoning iguided

ceptual neighbors, since a transitibatween those
relations must go through the relatimeets:
AoB AAAAAAAAA
BBBBB
3.1 Neighborhood Structure of the 13 Relations

The thirteen qualitativelglifferent pairs of intervals
(depicted by a dumbbell-shaped line and a rectangle)

o0——oO0 [

o—C—1

— 00—

Fig. 2: The 13 relations arranged according to
conceptual neighborhood



are arranged in Fig. 2 in such a way, that continuous
transformation of the corresponding events omli}
result in transitionsetweenspatially neighboring
pairs. Since the resultingeighborhood structure
will play a major role in the following sections, we
will develop aneighborhood-orientedymbolism for
referring to the relations within the structure.

3.2  Iconization of the Neighborhood Structure

The neighborhood structumbtained bycontinuous
deformation ofintervals is shown inFig. 3. The
images of the intervals from Fig. &e replacedhere

by circles containing theymbolic abbreviations of
the names of the corresponding relations as given in
Fig. 1. The neighborhood relatiorese depicted by
solid lines:

Fig 3: Symbolized relation neighborhood structure

The topologicalarrangement ofig. 3 is used as
generic structure forsymbolizing disjunctions of
interval relations by means of icons. Tihdividual
relations are symbolized as follows:

SRR X

< m o fi di si
s d f oi mi >
Any of the 23-1 disjunctions of one or moiadi-

vidual relations can be symbolized byperposition
of icons as shown in the following examples.

The icon

:

corresponds to the disjunction of the relations <, m,
0, s, d and the icon

corresponds tothe disjunction of all thirteen
relations (which means that no constraint on the
relationship between the intervals is given).

3.3 Linearization of the Neighborhood Structure
In effect, wenow have asystem of2-dimensional
symbols for representing disjunctions of temporal
relations. We use these symbdts representing
abstract temporal and spatial relationships. Wile
exploit the fact that the icorsan be viewedoth as
logic symbolsand astopological images of tempo-
ral or spatial relationships.

The advantage dhe topolog ical view of the icons
is that we obtain information on theighborhood

of relations without explicitly reasoningabout

neighborhood.

In order to visualize the reasoning procedure within
2-dimensional graphical domain, wall modify the
topologicalarrangement irsuch a way that only a
subset of the actual neighborhood relationgefec-
ted. Specifically, we willneglect theneighborhood
betweenthe relations cand s, oi andi, f and =,
and fi, for this purpose. Thigelds a linear neigh-
borhood structurevhich consists of the following
sequence of the thirteen relations: <, m, o, fi, di, si,
=, s, d, f, oi, mi, >.

We use thisordering of relations for creating a
neighborhood-orientedariation of Allen’'s compo-
sition tablefor reasoning about temporal or spatial
intervals. The resulting table is depicted in Fig. 4.
3.5 Neighborhood-Oriented Composition Table
The composition table consists of 13 roasd 13
columnsarranged according tthe linearneighbor-
hood structuredeveloped inthe previous section.
The entries of the tablefer to the disjunctions of
relations which may hold under composition.

The significance of the neighborhood-oriented
arrangement of the relatiartomposition table stems
from the fact that certain properties of temporal and
spatial structureare preservewnhich are not repre-
sented in Allen’s scheme.
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Fig. 4: Neighborhood preserving relation composition table.

Some important properties of the composittable

are listed below: 4)

1) Most compositions (= temporal or spatiafe-
rences)result in disjunctions ofseveral alter-
native relations; some compositions result in
unambiguous relations.

5)

2) The relations within a disjunction always form a
conceptual neighborhoodle., theyare connected 6)
via conceptual neighbors.

3) In many cases, a transition to neighboring initial 7)

conditions results in thédentical conclusion or
in a subset or superset of mference neighbor-
hood.

In no case, a transition among neighboring
initial conditions results in a jumpetween non-
neighboring conclusions.

Only a small subset of 27 of the possiloien-
ceptual neighborhoodsorresponds to actually
possible inferences.

The inference table shows many symmetries
which may be utilized in the inference process.

All these properties hold for the complete 4-
dimensional compositiospacewhich wewould
get without linearization of theneighborhood
structure



4, COARSECODING AND NEIGHBORHOOD
BASED REASONING

The benign monotonicity properties of tkempo-
sitions in theneighborhood-based framewoalow

us to representhe inference knowledge of the
composition table on eoarserevel: we construct
neighborhoods ofnitial conditions in such a way
that we obtaineach ofthe original 13 relations by
conjoining neighborhoods. Thisorresponds to a
more abstract level of representing the basic knowl-
edge.
4.1 Condensed Composition Table

We choose the following neighborhoods of relations
as ‘primitives’ of our representation:

PYPBOE Y o

The firstandlast two relationsaretrivial neighbor-
hoods consisting of only a single relatiopach.
This is due tothe fact that they onlyhave one or
two neighbors. The remaining nine of ttiérteen
relations each have at least three neighbors.
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Fig. 5 Inference table for coarse reasoning

The condensedhferencetable isobtained by super-
imposing rowsand columns of the original table.
Formally, this corresponds to #ogical OR-opera-
tion. With the condensedable, reasoningan be
done interms of entire neighborhoods irstead of
single relations — at once. This, of coursehédp-
ful only if the initial conditionsfor the reasoning
processaregiven in terms of these neighborhoods.
This is indeed frequently the case, bothfrom
initially incomplete knowledge and from previous
inference steps, as has been shown in detail in [3].

More surprisingly, theneighborhood-baseaoarse
composition table can hbesedfor fine reasoning on
the basis of the original thirteen interval relations:
this is done byaccessinghe rowsand columns of
the table whose neighborhoods contain theivi-
dual relations involved. The largesteighborhood
which is contained in all icons found at the resulting

intersections represent the conclusion of the
inference procedure. Formally, this is the
conjunction of all disjunctions involved. Due to

favorable orthogonality properties, no information
gets lost in this process.

Accordingly, coarse and fine initial conditions can be
combined.
4.2  Examples for Neighborhood-Based Reasoning

1) Coarse reasoning

X(_T_!Y A Y¢]Z=>><¢Z

From the initial conditionslescribingthe relations
betweenevents Xand Y andbetweenthe events Y
and Z, the relationbetweenevents X and Z is
derived.

2) Fine reasoning

A ql) Yo l#) z
X (¢A¢)Y A Y(¢]A¢) Z
® (Ib A lb A ¢ A I#) z
b l*l Z
The initial conditionsare expressed irterms of
conjunctions of neighborhoods; conclusions are

drawn bycoarsereasoning; the intersection of the
resulting neighborhoods yield the final result.



5. CONCLUSIONS ANDOUTLOOK

We have sketched an approachtémporaland spa-
tial reasoningbased orAllen’s interval calculus for
gualitative temporal reasoning [1]. Oapproach
augments Allen’s calculus by the notion of
conceptual neighborhoodhich is elaborated in3].
This notion supplies structuregor abstracting
knowledge and for higher-level reasoning.

The use of conceptual neighborhoodsmistivated
by physical properties whichre consideredssential
for most cognitive operations in the temporal and
spatial domains. The incorporation redighborhood
structure allows for a representation géneralized
knowledgewhich turns out to beextremely useful
both from a cognitiveand acomputationalperspec-
tive. This generalized knowledgenables efficient
higher-level reasoning in terms of cognitively
meaningful concepts [3].

The higher-level reasoning processes exhibituzh
more cognitively adequate behavior in that threxat
incomplete knowledge as coarse knowledgather
than asunderspecifiedknowledge; as a conse-
guencethe required‘computationaleffort’ decreases
with decreasing knowledge

Another consequence dhe incorporation oheigh-
borhoodinformation is the new role of uncertainty:
due tothe monotonicity properties of themporal
andspatial domains, neighboring initi@onditions
result at worst in neighboringonsequences;thus,
small uncertainties in thenitial conditions do not
cause drasticallyvrong conclusions. Theeighbor-
hood conceptalso allows for a cognitivelymore
adequate treatment of fuzzy knowledge [4].

On a differentdimension,there exists afavorable
complexity-theoretical result which applies to our
neighborhood structureVilain and Kautz [5] have
shown that computing theonsequences aémporal
assertions in Allen’dramework is computationally
intractable. Nokel [6] has investigated a fragment of
Allen’s full algebra, namely thalgebra of convex
relations, which is closelyelated tothe ‘neighbor-
hood algebra’ presented here. He shotted in the
algebra of convexelations global consistency can
be verified in polynomial time. This result is
expected to hold at least for the specife@ggborhood
structure used in the present paper.

The approach presented suitable both forsequen-
tial and parallel processing. In fact, it is possible to
utilize much more structure in the compositiable
(Fig. 4): the table of originally 16@ntriescan be
compressed down to 7 entries by exploitingagety

of symmetries [3]. This result is particulatgeful

for dealingwith higher dimensions [7gndfor hard-
ware realizations of temporal or spatiahference
engines.

ACKNOWLEDGEMENTS

The research reported in this papexs supported by
the Deutsche Forschungsgemeinschadind by

Siemens AG. | alsacknowledgadiscussions with
Wilfried Brauer, JerryFeldman, DanielHernandez,
Kerstin Schill, and Kai Zimmermann.

REFERENCES

[1]  Allen, J., Maintaining knowledge about
temporal intervals. CACM 26 (1983), 11,
832-843.

[2] Freksa, C., Qualitative spatial reasoning.
Appears in: Mark, D.M., Frank, A.U. (eds.)
Cognitive and linguistic aspects of geogra-
phic space, Kluwer, Dordrecht.

[3] Freksa, C., Temporal reasoning based on
semi-intervals. ICSI TR-90-016, Internatio-
nal Computer Science Institute, Berkeley
1990.

[4] Freksa, Cin preparation

[5] Vilain, M., Kautz, H., Constraint propa-
gation algorithms for temporal reasoning.
Proc. AAAI-86, 377-382.

[6] Nokel, K., Convex relations between time
intervals. 5. Osterr. Artificial-Intelligence-
Tagung, 298-302, Springer-Verlag, Berlin
1989.

[71 Gusgen, H.W., Spatial reasoning based on
Allen’s temporal locic. ICSI TR-89-045,
International Computer Science Institute,
Berkeley 1989.



