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Abstract Acting intelligently in dynamic environments
involves anticipating surrounding processes, for example to
foresee a dangerous situation by recognizing a process and
inferring respective safety zones. Process recognition is thus
key to mastering dynamic environments including surveil-
lance tasks. In this paper, we are concerned with a logic-based
approach to process specification, recognition, and interpre-
tation. We demonstrate that linear temporal logic (LTL) pro-
vides the formal grounds on which processes can be specified.
Recognition can then be approached as a model checking
problem. The key feature of this logic-based approach is its
seamless integration with logic inference which can sensibly
supplement the incomplete observations of the robot. Fur-
thermore, logic allows us to query for process occurrences
in a flexible manner and it does not rely on training data. We
present a case study with a robotic observer in a warehouse
logistics scenario. Our experimental evaluation demonstrates
that LTL provides an adequate basis for process recognition.
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1 Introduction

Mastering dynamic environments is a demanding challenge
in autonomous robotics, involving recognition and under-
standing processes in the environment. Recent advances in
simultaneous localization and mapping in dynamic envi-
ronments build the basis for sophisticated navigation, but
understanding processes goes even beyond. The ability to
recognize and to understand processes allows a robot to inter-
act with its environment in a goal-oriented fashion. For exam-
ple, in processes that involve dangerous situations like the
violation of safety zones, process understanding enables a
robot to avoid dangerous situations in an anticipatory man-
ner. But first of all, processes need to be represented in a way
that fosters process understanding. Moreover, the represen-
tation should be seamlessly integrated with other high-level
robot control tasks to ease the control flow.

We approach process understanding with linear temporal
logic (LTL) ([29], see Sect. 3) which allows us to represent
processes as logic formulas in a declarative manner. LTL is a
slender knowledge representation language that recently has
received increasing attention from the autonomous robotics
community. The use of LTL in robotics has been advocated
much earlier though [1]. For example, LTL has been used
to specify controllers in a correct-by-construction manner
[17]. LTL is widely used for motion planning from high-level
specifications (e.g. [15,32,19]). Kloetzer and Belta [16]
demonstrate the applicability to real robotic systems. Our
motivation of using LTL is twofold. Firstly, we want
to demonstrate that LTL specifications also provide an
adequate basis for process recognition and understanding,
supplementing existing approaches to robot control. Sec-
ondly, LTL allows a domain expert to describe processes
of interest in a way that does not require knowledgeability
of robot technology. LTL further provides an excellent basis

123



6 Intel Serv Robotics (2013) 6:5–18

for flexibly querying the observations of the robot. It is then
the task of the robotic system to turn a query into an effective
observation and reasoning strategy.

In this paper, we focus on spatio-temporal processes,
i.e., processes that are characterized by temporal patterns
of movements in space. Spatio-temporal aspects are at the
core of any process description and so this study achieves
a high degree of generality. As scenario for our experimen-
tal evaluation we have selected warehouse logistics which
is an interesting and relevant domain for studying spatio-
temporal processes. In a warehouse, there is a steady flow
of goods which are moved through space, establishing func-
tional zones that are connected with certain types of storage
processes (for example, admission of goods into a warehouse
makes use of buffer zones to temporarily store goods). Note
that these functional zones are not necessarily known a priori.
Hildebrandt et al. [14] argue for use of autonomous robots
as a minimally invasive means to recognize in-warehouse
processes which, in turn provides the knowledge for opti-
mizing the warehouse. The task of the robot is to recognize
the storage processes that occur. However, a robot is gen-
erally not able to gather all potentially relevant information
about a process and therefore needs to infer missing pieces
of information, in particular identifying functional zones and
their whereabouts.

The first contribution of this paper is to show that LTL
offers adequate means for declaratively specifying processes
in a way that fosters process recognition from robot observa-
tions. We demonstrate how a mobile observer can recognize
various processes in a warehouse based on sensor percep-
tion backed up by a formal process specification. The sec-
ond contribution of this work is to show that logic reasoning
can be performed with the declarative process specifications
and observations, enabling the robot sensibly to supplement
missing pieces of information.

This paper is organized as follows: we first point out con-
nections to existing work and we discuss reasons for choosing
a logic-based formalism (Sect. 2). In Sect. 3, we briefly intro-
duce LTL and summarize its important features. Thereafter,
we describe our formalization of in-warehouse processes
(Sect. 4) which consists of a domain axiomatization and an
appropriate grounding of logic primitives. Section 5 presents
our system realization, followed by an experimental evalua-
tion (Sect. 6). We discuss our results (Sect. 7) and conclude
with some final remarks (Sect. 8).

2 Related work

Many approaches have been used to tackle process recog-
nition, which can roughly be categorized into learning
approaches, probabilistic process descriptions, and logic-
based declarative approaches.

Machine learning approaches such as Markov networks
[5,20], Bayesian networks [36], supervised learning [3], or
inductive logic programming [9] require a training phase
before deployment. By contrast, we are particularly inter-
ested in mastering contexts in which no training data are
available beforehand. Our aim is to enable querying the
robot’s observations using a flexible formal language for
specifying process descriptions. Thus, any process to be
recognized could be specified on the fly and does not need
to be known beforehand; also queries to the system can be
changed flexibly without need of relearning.

Declarative, logic-based formalisms enable us to pose
queries flexibly. Utilizing logics in robotics dates back to the
first appearances of AI robotic research (recall, for example,
seminal work related to Shakey [28]). More recently, Mastro-
giovanni et al. [25] have been using a logic-based approach
integrating ontologies to recognize contexts in a ubiquitous
robotics setting, which relates to our process recognition task.
Mastrogiovanni et al. [24] introduced a new formal language
to specify these contexts. In their framework, time is rep-
resented by a series of discrete time steps such that a for-
mula holds at a given time instant. Computing time then
increases exponentially with the number of time steps con-
sidered, such that only a limited number of time steps can
be maintained. In the approach we present in this paper, we
avoid this shortcoming by representing time explicitly on the
level of the chosen logic formalism, namely linear temporal
logics (LTL). This reduces the complexity and yields linear
complexity with respect to the number of time steps as we
will show in Sect. 3.2.

Moreover, formalisms based on LTL or its extensions
neatly integrate into other LTL-based approaches to robot
control such as motion planning or construction of controllers.
Kress-Gazit et al. [17] propose a method for constructing
controllers from an LTL formula and they determine that
mastering state explosion is a key challenge, i.e., to develop
techniques that avoid generating more states than feasible.
This problem arises as LTL formulas are naturally eval-
uated over infinite time sequences, hence they potentially
involve infinitely many states. One practical approach is to
employ a receding horizon ([35,34,17], e.g.) which aims to
cut off irrelevant future states. In our work we use a simi-
lar approach to interpret queries over the finite sequence of
observations available to the robot. Ding et al. [8] propose
a method to transform LTL specifications of processes into
a control policy for Markov decision process, taking into
account probabilities of successful action execution. This is
accomplished in a way similar to model checking with a
probabilistic temporal logic. Putting this into a more gen-
eral context, probabilistic extensions of LTL, such as proba-
bilistic temporal logic [7], are interesting. However, process
detection with probabilistic logics requires the probabilities
of process occurrence to be specified beforehand. In settings
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like ours where no training data are available to determine
the required probabilities, probabilistic logics are hence not
suitable.

Model checking is widely used in software verification,
but it has important applications in robotics, as well. For
example, planning can be posed as a model checking task
([6,10,16], e.g.). Consider φ to be the specification of a plan
to be fulfilled and M to be the set of all possible states a robot
can be in. In this setting, verifying that M models φ means
that we find a time linear sequence of robot states that meets
the requirements of the specified plan. As we will show later,
the same principle can be applied to process detection: the
set of worlds M is then derived from sensor observations of
the robot.

3 Linear temporal logic (LTL) for process detection

In classical propositional logic, formulas are evaluated with
respect to a single fixed interpretation called world. Thus,
a formula is either true or false. In order to acknowledge
dynamic environments in which a proposition may hold for
some limited time only, temporal logics utilize a set of worlds
over which formulas are evaluated. Formulas may be satisfied
in some worlds, but not in others. Linear temporal logic is a
modal logic that extends propositional logic by a sequential
notion of time. A formula φ in LTL is defined over a finite set
of propositions with the usual logic operators (∧, ∨,¬,→).
The temporal component is established by an accessibility
relation R that connects the individual worlds (also called
states with LTL) over which formulas are interpreted. In lin-
ear temporal logic, the relation R is a discrete linear ordering.
We say that a world W is a future world of V if (V, W ) ∈ R,
i.e., W is reachable from V by R. LTL defines three unary
modal operators on the basis of R:

◦φ (next) φ holds in the following world
�φ (always) φ holds in the current world and in

all future worlds
♦φ (eventually) φ holds in some future world

(♦φ ↔ ¬�¬φ)

One important reasoning task in logic is model checking:
given a specification φ and a model which valuates the logic
primitives, does the model satisfy φ?

3.1 Process recognition as model checking

We describe a process by an LTL formula φ. Then, a process
is said to be recognized if a model derived from the observa-
tions of the robot satisfies φ. Thus, model checking matches
logic predicates with observations. Usual techniques for LTL
model checking are based on translation of the formulas to
either ω-automata or Büchi-automata. These automata are

then used to process an infinite model. However, in process
detection we are involved with finite models. For any given
time point one can decide whether a complete process has
been observed or not.

3.2 Computational complexity of model checking

Sistla and Clarke [31] show that the model checking prob-
lem of LTL is PSPACE-complete, but various fragments have
a significantly lower complexity. Bauland et al. [4] inves-
tigated various fragments of LTL and found tractable sub-
sets with time complexity as low as NLOGSPACE-complete.
Efficient subclasses either exclude the eventually operator or
they do not allow the Boolean and. However, both operators
add important expressiveness to process descriptions. Our
formalization of warehouse processes detailed in Sect. 4.6
involves both operators. The resulting subclass of model
checking which involves only ♦,∧, and ¬ is NP-complete
[4,31].

In a survey about complexity of temporal logic model
checking, Schnoebelen [30] describes the influence of var-
ious factors. If the length of formulas is fixed, complexity
of model checking is in NLOGSPACE with respect to model
size |M |. By contrast, if the model is fixed, then the complex-
ity is in PSPACE with respect to varying length of the formu-
las. Lichtenstein and Pnueli [21] show that model checking
can be done in 2O(|φ|)O(|M |), i.e., model checking is linear-
time with respect to the size of the model. This is an important
result since in applications like process detection the model
size grows with the amount of observations, but the length of
the query formulas is fixed, assuming fixed process descrip-
tions. In other words, the exponential growth with respect to
formula length does not apply.

We consider an important variety of model checking. Con-
sider formulas which disjunctively combine sub-formulas
which only vary in one atom, i.e., formulas which can be
written

∨
a∈A φ(a), whereby A denotes a set of atoms. If

all φ(a) are within an NP-complete fragment of LTL model
checking, the complete formula is also in NP as one can
non-deterministically select a clause from the disjunction
in polynomial time and then continue with model check-
ing. Morgenstern and Schneider [27] pursue a similar idea
by introducing oracle variables which “[. . .] may represent
‘angelic’ nondeterminism that may be resolved in favor to
satisfy the specification”.

We can thus apply LTL model checking to formulas that
involve an extensional quantifier ranging over a set of atoms
without increasing computational complexity further. This
observation is important in our context since we are inter-
ested in querying for process occurrences and queries nat-
urally involve unknowns. For example, one would rather
query whether a good was moved to some place within
the storage area, rather than querying whether a specific
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Fig. 1 A warehouse, its
functional zones, and typical
movements of different goods
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good G was moved to a specific location L . With respect
to computational complexity of querying we note that the
procedure can be carried out in NP given that the set of
atoms to consider is fixed, i.e., our domain is not expand-
ing. Considering our warehouse domain we naturally have
a fixed set of locations but a potentially growing set of
goods. However, within a limited amount of time the amount
of goods visiting a warehouse can be regarded to remain
constant.

4 Specification and interpretation of in-warehouse
processes

In the following, we describe a case study of warehouse logis-
tics in which a mobile robot observes processes in a ware-
house. The robot can later be queried by a logistic expert who
is involved with improving storage strategies. We use LTL
to describe relevant storage processes and their functional
components. Both temporal and spatial primitives used in
the logic are grounded in the observations of the robot. We
conclude this section by a small example.

4.1 Scenario

We address the problem of understanding so-called chaotic or
random-storage warehouses, characterized by a lack of pre-
defined spatial structures, that is, there is no fixed assignment
of storage locations to specific goods. Thus, storage processes
are solely under the responsibility of the warehouse opera-
tors and basically are not predictable: goods of the same type
may be distributed over various locations and no database
keeps track of these locations. This makes it a hard problem
for people aiming to improve the internal storage processes.
We are interested in representing the spatio-temporal change
that occurs in the warehouse, but we are not interested in
tracking individual movements. Therefore, we can assume
the environment to be piecewise static.

On a conceptual level, storage processes are defined by a
unique pattern [33]: on their way into and out of the ware-
house, goods are (temporarily) placed into functional zones
which serve specific purposes (see Fig. 1). All goods arrive
in an entrance zone (E). From there, they are picked up
and temporarily moved to a buffer zone (B) before they
are finally stored in the storage zone (S). This process is
called ‘admission’. Within the storage zone ‘redistribution’
of goods can occur arbitrarily. When ‘taking out’ goods, they
are first moved from the storage zone to the picking zone (P)
from where they are taken to an outlet zone (O), before being
moved out of the warehouse.

A mobile robot observing such a warehouse is not able
to perceive these zones directly, as they are not marked. For
all zones we know that they exist (that is, that such regions
are used within the storage operations), but neither their con-
crete spatial extents nor the number of their occurrences is
known. This information solely depends on the dynamic in-
warehouse storage processes. The robot can detect and iden-
tify goods and it can estimate their position. We thus face
the challenge that for detecting concrete storage processes
we need to rely on knowledge about functional zones which
is not yet available. For example, if a robot perceives a good
at three different locations the process interpretation largely
depends on the zones of the locations. If all locations are in the
storage zone, a redistribution may have occurred, whereas if
all locations are in different zones an admission or a take-out
process may have occurred.

4.2 Formalizing the warehouse scenario

In this section we explain the formalization of processes and
general background knowledge in terms of spatio-temporal
integrity constraints like, for instance, the fact that objects
can only be at one location at a time. To this end we need to
compose LTL formulas which capture the characteristics of
spatio-temporal processes. These formulas serve as axioms
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and are used to enforce a sensible interpretation of the obser-
vations of the robot. To begin with, observations are mapped
in a spatio-temporal grounding process to primitives of our
logic. Our formalization is based on the following set of prim-
itives:

Goods: a set G = {G1, . . . , Gn} of goods constitutes
the entities that move in space over time and determine
the dynamics of the scenario. They are observable by the
robot and their position can be estimated.
Locations: a location is a property of a good which
remains the same when a good is not moved. Dur-
ing spatio-temporal grounding, position estimates are
abstracted to a discrete set of locations. For a spatially
restricted scenario the set of locations L = {L1, . . . , Lm}
is finite.
Zones: the warehouse scenario involves functional zones
Z = {E, B, S, P, O} as described in Sect. 4.1. The extent
of a zone is defined by the set of locations it contains.
Zones are considered to be fixed in our scenario, but their
extent is a priori unknown to the reasoning system.

4.3 Atomic propositions for spatio-temporal processes

Modeling with LTL involves devising a finite set of atomic
propositions which capture relevant facts about the state of
the world. Atomic propositions can either be determined
by interpreting observations of the robot or by logic infer-
ence. We utilize the following atomic propositions which we
denote in a predicate style for ease of readability, i.e., the
atom at(G, L) stands for |G| · |L| atoms, one per combina-
tion of good G and location L .

– at(G, L) ⇔ good G is at a location L .
This type of atom is data-driven, that is, its value can
directly be obtained from sensor observations of the
robot. Proposition at(G, L) holds if and only if a good
G is known to be at location L . Truth of this proposition
can thus change over time if a good is moved.

– in(L , Z) ⇔ location L is contained in a zone Z .
As the set of locations is generated at runtime, in(L , Z)

also depends on sensor perceptions. The interpretation of
in(L , Z) remains constant over time.

– close(L1, L2) ⇔ two locations L1, L2 are close to one
another.
We use closeness as a central concept to distinguish dif-
ferent zones. close(L1, L2) remains constant over time.

4.4 Spatio-temporal grounding

In LTL, time is represented as a sequence of independent
worlds. A temporal interpretation can thus be achieved by

sampling the observations of the robot. To this end, we make
use of the perception loop of the robot. During each cycle,
sensors are read and localization and mapping are updated.
The updated information is then used to determine which of
the atomic propositions currently holds. Since our domain
does not require us to state that nothing has changed, we can
reduce the set of worlds emitted by temporal grounding. A
new world is only generated if the interpretation of at least
one atomic proposition changes.

One central task of spatio-temporal grounding is the robust
interpretation of position estimates (x, y) ∈ R

2 to discrete
locations Li ∈ L. Naturally, position estimates are subject
to noise and may vary over time even if an object does not
move. Additionally, by keeping the size of the set of loca-
tions minimal, we can minimize the set of atomic proposi-
tions and thereby limit the size of our formulas. This can
be accomplished by updating the set of locations at runtime,
adding new locations only if necessary. In our implementa-
tion we apply a clustering approach that takes uncertainty of
estimates into account (see Sect. 5.2). It provides us with a
compact and robust interpretation, but other methods would
be possible too. A requirement is, however, that the mapping
from positions to locations is stable over time, i.e., if a good
G is said to be located at Li then this interpretation shall not
be revised when observations are integrated into the local-
ization procedure. With L available, at(G, L) can be directly
derived for every time step. Furthermore, close(L1, L2) is
valuated by applying a metric and checking whether the dis-
tance between L1 and L2 is below a certain threshold (in
the experiments in this paper, we use an Euclidean distance
of 1 m). The propositions in(L , Z) can be set if knowledge
about zones is available a priori, otherwise they need to be
inferred by reasoning.

4.5 Spatio-temporal integrity constraints

Commonsense knowledge about spatio-temporal processes
in our domain is captured by the following set of axioms
which enforce a sensible interpretation of data available.
While processes and related queries can be freely specified,
axioms remain the same over any process detection task.
Explicating this knowledge in axioms separately allows us
to keep the process specification simple and intuitive. We
define the following four axioms:

– Locations are fixed, i.e., if two locations are close to one
another they are always close to one another.

A1Li ,L j = close(Li , L j ) → �close(Li , L j ) (A1)

– A good G can only be at one location at a time.

A2G = �
∧

Li 
=L j

¬(
at(G, Li ) ∧ at(G, L j )

)
(A2)
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Axioms (A1) and (A2) describe common-sense spatio-
temporal constraints. Their fulfillment is guaranteed by the
spatio-temporal grounding process and therefore can be
omitted in the reasoning process. The next two axioms need
to be addressed explicitly during model checking:

– A location L ∈ L always belongs to the same zone and
is exactly in one zone Z ∈ Z . In other words, zones are
static and do not overlap.

A3L =
∨

Z∈Z
�

(
in(L , Z) ∧ ( ∧

Z ′∈Z\{Z}
¬in(L , Z ′)

))

(A3)

– Locations in different zones are not close to one another,
that is, zones are at least some minimum distance apart.
We note that it is still possible that two locations which
are not close to one another can belong to the same zone
(multiple occurrences of zones).

A4Li ,L j = �
(
close(Li , L j )

→
∨

Z∈Z
(in(Li , Z) ∧ in(L j , Z))

)
(A4)

In the following we use A′ to refer to axioms (A3)–(A4) that
are essential for process recognition. In conduction with all
propositions ‘close’ and ‘in’ which are static over all worlds
[also constituted by (A1) and (A3)] this forms the set

B = A′ ∪
⋃

Li ,L j ∈L
close(Li , L j ) ∪

⋃

L∈L,Z∈Z
in(L , Z) (1)

that we call the background knowledge of the warehouse
domain.

In situations where further knowledge about zones is avail-
able, the axioms can be modified to accommodate such a
priori knowledge, for example by adding appropriate propo-
sitions in(L , Z) to the set of axioms. In our evaluation we
make use of such modifications to B in order to study the
effectiveness of inferring zone membership by reasoning.

4.6 In-warehouse processes

We now formalize in-warehouse processes. In particular, we
define admission, take-out, and redistribution of goods. All
processes are specified using the following schema:

start condition ∧ ♦(next state condition ∧ ♦(. . .)). (2)

The schema solely captures the characteristic states of a
process. This ensures a robust detection of processes which
can vary in the level of detail.

– Admission: a good G is delivered to the warehouse’s
entrance zone E and moved to the storage zone S via the
buffer zone B. For all G ∈ G and Li , L j , Lk ∈ L:

AdmissionG,Li ,L j ,Lk = at(G, Li ) ∧ in(Li , E)

∧♦
(

at(G, L j ) ∧ in(L j , B)

∧♦
(
at(G, Lk) ∧ in(Lk, S)

))

(3)

– Take-out: a good G is moved from the storage zone S to
the outlet zone O via a picking zone P . For all G ∈ G
and Li , L j , Lk ∈ L:

TakeoutG,Li ,L j ,Lk = at(G, Li ) ∧ in(Li , S)

∧♦
(

at(G, L j ) ∧ in(L j , P)

∧♦
(
at(G, Lk) ∧ in(Lk, O)

))

(4)

– Redistribution: a good G is moved within the storage
zone S. For all G ∈ G and Li , L j ∈ L, i 
= j :

RedistributionG,Li ,L j = at(G, Li ) ∧ in(Li , S)

∧♦
(
at(G, L j ) ∧ in(L j , S)

)

(5)

4.7 Inferring functional zones

The axioms and the process specifications make use of func-
tional zones like entrance or buffer. While some zones may
be known beforehand, others are not known and need to be
inferred. Zones are characterized by the functional role they
take, for example, an outlet zone is the set of locations in
which a good can be seen last before it is taken out of the
warehouse. Thus, identifying zones is the task of identifying
a set of locations close to one another which all take the same
functional role in the storage processes observed. This task
can be viewed as model checking: do the observations pro-
vide a model for a hypothesis that a set of locations takes a
specific functional role? During model checking variables in
a process description are instantiated with observations. This
includes that the locations involved in process descriptions
are assigned to zones. In other words, inference of functional
zone happens naturally during model checking. For example,
if trying to verify that an admission has taken place, at least
one location Le is required to belong to an entrance zone.
Axiom (A4) further enforces that all locations close to each
other belong to the same zone. Technically speaking, zone
membership is ruled by the transitive closure of the close
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relation on locations. This leads to an interpretation that is
consistent with all processes detected.

4.8 Histories and complex process queries

One piece of good can participate in many processes. Goods
enter a warehouse in an admission process, they possibly get
redistributed a couple of times before they eventually leave
the warehouse in a takeout process. We call the sequence of
processes a good participates in the history of the good. In
our domain histories naturally begin with an admission and
end with a takeout. Analogous to process detection, histories
can also be detected in an atomic manner, i.e., LTL allows
us to pose complete histories as a single query. This can
be accomplished by using the same basic schema as shown
in Eq. (2). We give three examples of complex queries to
highlight the generality of the LTL-based approach to process
detection by model checking:

– Has a good G been moved back and forth?

Q1 = at(G, Li ) ∧ ♦
(
at(G, L j ) ∧ ♦at(G, Li )

)

∧
Li 
=L j

︷ ︸︸ ︷
¬(at(G, Li ) ∧ at(G, L j )) (6)

– Has a good G been redistributed k or more times?

Q2 = φLi,1 ∧ ♦(φLi,2 ∧ ♦(φLi,3 ∧ ♦(· · · )))
︸ ︷︷ ︸

k nestings

(7)

with

RedistributionG,Lk ,Ll =
=φLi, j

︷ ︸︸ ︷
at(G, Lk) ∧ in(Lk, S)

∧♦

=φLi, j+1
︷ ︸︸ ︷
(at(G, Ll) ∧ in(Ll , S))

– Do two goods Gi , G j with Gi 
= G j that have been
observed together once remain co-located?

Q3 = (
at (Gi , Lk) ∧ at (G j , Ll) ∧ close(Lk, Ll)

)

→ �
(

Gi ,G j are observed together...
︷ ︸︸ ︷∨

Lm ,Ln
close(Lm ,Ln )

(
at(Gi , Lm) ∧ at(G j , Ln)

)

∨¬
∨

Lo

(
at(Gi , Lo) ∨ at(G j , Lo)

)

︸ ︷︷ ︸
...or neither is observed

)

(8)

By conjunctively joining process specifications, arbitrar-
ily complex queries can be stated. Prefixing a process in a
conjunctive query by the eventual operator (♦) states, that
the process may happen any time, independent of the other
processes. Joint queries are important to enable reasoning
across histories. By conjunctively combining several history
queries and prefixing them by ♦ we obtain a single query for
the existence of a model that satisfies all processes involved
(joined histories). In particular, this leads to a jointly compat-
ible interpretation of functional zones. For example, during
individual queries in one of the solutions a location might be
interpreted to be a buffer area while during querying for a
different good it is interpreted as part of an entrance. In the
case of jointly querying for both histories, the same location
cannot be part of different zones as of axiom (A3). There-
fore, we only obtain histories as a result that satisfy a process
specification using the same interpretation of location-zone
membership. This results in more robust interpretation but
comes at the cost of higher computing time due to increased
formula size.

4.9 Example

A good G enters the warehouse and is stored in the entrance
zone E at position L1 at time t0. Between t1 and t2 the good
is moved to a location L2 and between t2 and t3 the good
is moved further to L3. Let us assume that this process is
observed as follows: we perceive G to be at L1 at t1, at L2

at t2 and at L3 at t4. Furthermore, all these locations are
not close to one another. See Fig. 2 for a depiction and the
logic interpretations—to ease understanding the worlds are
labeled by time points. These observations constitute a model
that satisfies (3), i.e., the observed process is an admission
that starts in world t1 and ends in world t4. By inference it
follows that location L2 is contained in the buffer zone and
L3 is contained in a storage zone. Note that detected start
and end times differ from the real admission times: while
the admission takes place from t0 to t3, we detect it from
observations t1 to t4; this is due to incomplete observation of
the world.

5 System realization

Our implementation of logic-based process recognition
essentially consists of three parts: perceptions by the robot,
their symbolic interpretation and process understanding
using the high-level process model. The system architecture
is shown in Fig. 3. The first part, perception, is integrated
with our robot control software and its main objective is
to localize the robot and to provide an up-to-date map of
the changing warehouse. Essentially, we utilize a feature-
based SLAM to map the environment, using tag-based good
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Fig. 2 Example: model checking for an admission process of good G
(only the relevant assertions for each world t1...4 are shown). in(L1, E)

is background knowledge, also it is known that locations L2 and L3 are
either part of the buffer zone (B) or the storage zone (S) but not close to

one another so that they do not have to belong to the same zone. From
this admission refined knowledge about the buffer and storage zones
can be inferred: in(L2, B) ∧ in(L3, S)

identification. Perceptions are then lifted to the symbolic
level. By evaluating the posterior probability of changes in
landmark positions at each time step we determine whether a
good was moved and can update the map accordingly, keep-
ing track of all re-locations. During symbolic grounding the
position estimates obtained from the robot map are also clus-
tered to discrete qualitative locations that are then employed
to describe the trajectory of good movements. We refer to
the output of the symbolic grounding stage as qualitative
observations. Process recognition is realized by the symbolic
reasoning component that matches qualitative observations
against the process descriptions or process queries, supple-
menting the qualitative observations by inferred knowledge.

5.1 Perception: localizing and mapping goods

Localization and mapping of goods is realized as a feature-
based SLAM using visual tags attached to both goods and the
environment (see Fig. 5). We use the ARToolKit software1 for
identifying tags in camera images. This toolkit provides us
with a tag identifier and with a 3D projection matrix that esti-
mates the tag position and its orientation relative to the cam-
era. We project this transformation to the 2D ground plane in
order to obtain a bearing-and-distance estimate that is used
with the SLAM system. To this end, we determine a mea-
surement model for our camera. This model is coarsened to
mimic RFID-scanners that would be typical in an industrial
context. By only working with tags positioned in the same
height, a simple projection suffices to calculate the 3D to 2D
transformation. ARToolKit also provides a quality of recog-
nition which we use to gate tag recognition, discarding any
identifications with less than 80 % quality.

1 http://www.artoolkit.sourceforge.net/

Fig. 3 System architecture of robotic platform and reasoning

Feature-based SLAM is accomplished by a modified ver-
sion of the TreeMap system [11] for simultaneous local-
ization and mapping in static environments. TreeMap esti-
mates the position of 2D landmarks by a least square
approach, assuming a Gaussian noise model for odometry
and observations. Originally, TreeMap does not grant access
to covariances. We extended TreeMap to provide us with
covariances for position estimates of landmarks. This allows
movement detection in an uncertainty-sensitive manner by
determining the Mahalanobis distance between the position
of an observed landmark and its position given by the map,
using both covariance of observations according to the mea-
surement model and covariance of the position estimate. A
movement is said to be detected if the Mahalanobis distance
exceeds a fixed threshold of 1.9. Moved goods are re-entered
into the SLAM system using a new identifier. By keeping
track of the different identifiers used to refer to a single land-
mark we can reconstruct its trajectory.

5.2 Symbol grounding: from perception to qualitative
observations

Position estimates in the robot map are clustered immediately
before the logic-based process detection is invoked in order
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Fig. 4 Experimental setup: warehouse in the lab (6.12 × 7 m). a Warehouse layout with positions of static landmarks. b SLAM map for experimental
run I consisting of four trajectories for goods (0,1,2,3) and static landmarks (5..23)

to obtain a small and robust set of locations which describe
positions of goods in LTL. We use a straightforward cen-
troid clustering that iteratively processes position estimates
generated by the SLAM system. A new cluster is generated
whenever a position does not fit into any cluster already estab-
lished. For every cluster we generate a location L and valuate
the atoms at(G, L) and close(L , L ′) (distance between loca-
tions less than 1 m) accordingly. Clusters are limited in size
to a circle of 0.25 m radius as they represent single qual-
itative locations only. The iterative clustering method may
not yield the most sensible interpretation of locations, but it
ensures that the assignment from positions to clusters and
thus locations will not be revised if new observations are
available. This avoids detection of spurious movements and
ensures monotony of the reasoning process (cp. Sect. 4.4). To
study the effects of the autonomous clustering method, we
employ an additional method that uses pre-defined centroids
and allows us to test ground truth data for the centroids.

All in all, we obtain a time-discrete sequence of obser-
vations, e.g., t0 : {at(a, l1), at(b, l2)}, t1 : {at(b, l1)}, and
so on. To construct the sequence of qualitative observations,
repetitive time points are collapsed into a single qualitative
state, i.e., we omit all observations which share the same set
of at(·) atoms as the preceding observation.

5.3 Symbolic reasoning: process understanding with
qualitative observations

For performing process recognition we utilize the mod-
eling language of answer set programming (ASP). Based

Fig. 5 Warehouse mockup equipped with AR-tags and a Pioneer 2-DX
(see also Fig. 4a)

on its roots in logic-based knowledge representation and
non-monotonic reasoning, databases, satisfiability testing
and logic programming, ASP offers high-performance tools
while providing us with a rich yet simple modeling language.
The semantics of ASP is based on the stable model semantics
[22,23].

Linear temporal logic semantics can easily be achieved
with ASP. First, qualitative observation atoms are attributed
with the world in which they hold, for example at(G, L)

becomes at(W, G, L). Second, the modal operators are real-
ized. The next operator is realized as a preposition on worlds,
i.e., we add next(Wi , Wi+1) if Wi+1 directly follows Wi .
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Table 1 Scenarios evaluated,
their characteristics with respect
to problem size, and
computation time for the
symbolic process recognition

1Averaged over varying zone
knowledge: full, partial, and no
previous knowledge
For a definition of joined history
see Sect. 4.8

Scenario #Goods (histories) #Processes Duration (m:s) #Observations Largest joined history1

A 1 2 5:24 5 0.0 s (±0.0)

B 4 8 8:08 70 1.0 s (±0.1)

C 4 8 10:42 125 8.5 s (±0.8)

D 4 8 11:56 188 41.1 s (±4.3)

E 4 8 13:08 192 55.2 s (±6.8)

F 4 8 14:35 71 0.8 s (±0.5)

G 4 8 15:48 95 3.5 s (±0.5)

H 4 10 10:35 197 71.8 s (±11.1)

I 4 10 18:03 107 3.5 s (±1.6)

J 4 10 18:38 177 37.1 s (±6.5)

K 11 24 29:00 326 23.7 s (±2.4)

L 12 32 34:06 473 152.7 s (±21.7)

Future is realized as a recursively defined preposition uti-
lizing the next operator. Then, process specifications and
queries are rewritten accordingly. Axioms are modeled as
constraints and free variables occurring in queries are repre-
sented by choice rules in ASP. We use gringo for grounding
and clasp as ASP solver [12,13].2

In general, one set of observations can be interpreted dif-
ferently in terms of which histories could have occurred. Con-
sider the example of moving a good from A to B and further
to C. This clearly satisfies the model RedistributionG,A,B ∧
RedistributionG,B,C, but it also satisfies RedistributionG,A,C.
The latter interpretation ignores the observation that the good
visited location B. In such cases we select the maximal
model in the sense of selecting the history that involves the
largest number of processes—this can also be performed
by the ASP solver. The example is thus interpreted as two
redistributions.

6 Experiments and evaluation

In our experimental setting we simulate warehouse processes
in our lab. We measure how many histories, i.e., chains of
processes per good, can be identified correctly. The numbers
are further detailed to study the ability of the symbolic com-
ponent to counteract absence of process knowledge. Also,
we analyze the computing time of the symbolic reasoning
component.

6.1 Experimental setup

Our experimental robot platform consists of an Active
Media Pioneer 2-DX (differential drive) controlled by a

2 As provided at http://www.potassco.sourceforge.net

top-mounted laptop and equipped with a SONY DFW SX900
(approximately 160◦ FOV) camera that delivers 7.5 frames
per second.

We simulate a warehouse that consists of five dedicated
zones (entrance, buffer, storage, picking, outlet) as depicted
in Figs. 1 and 4a. Each good is labeled with a unique visual tag
as shown in Fig. 5 (rectangular shapes on paper sheets). For
tag identification, we rely on the ARToolKit. We distribute
17 tags as static landmarks over the environment in order to
ease robot localization.

One run of the experiment consists of a series of move-
ments of goods between the zones while our robot is
monitoring the environment. The location of all tags is
determined and we record which processes happen to obtain
ground truth data for evaluation. For each of the 12 sce-
narios performed, the robot was manually driven around
the test environment until each landmark has been seen
at least once to ensure a robust localization. Then, we
steered the robot in random courses, while we moved boxes
through the lab, simulating the previously defined logis-
tic processes (Sect. 4.6). The duration of a single run was
between approximately 5 and 34 min in which we moved
one to 12 goods through the warehouse, resulting in two
to 32 detectable processes (admission, redistribution, take-
out) per run. Details are shown in Table 1. Goods were
moved between zones while not covered by sensor sur-
veillance to comply with Axiom (A2) in Sect. 4.2. Data
gathered by the robot are processed as described above
to obtain good trajectories (see Fig. 4b for an exam-
ple depicting the movement of our goods) that are then
interpreted in terms of qualitative observations and passed
to the symbolic process recognition to recognize histo-
ries of all goods. We say that a history is correct if all
detected processes and their temporal order matches with the
ground-truth.
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(a) (b)

Fig. 6 Results from the experimental evaluation. a: showing the num-
ber of histories detected, how many are supported by the data, and how
many are correctly recognized. b Percentage of histories supported by

the data versus correctly detected histories while optimizing for maxi-
mal history length; the columns are normalized by detected histories. a
Evaluation results, b relative quality of detected histories

Fig. 7 Plot of the computing times (in log scale) for symbolic process
recognition versus number of qualitative observations

6.2 Evaluation

For the evaluation we perform 12 experimental process sce-
narios, resulting in a total of 60 histories, one for each ware.
We record all intermediate processing results. Additionally,
we record ground truth information. The characteristics of
these scenarios with respect to problem size are shown in
Table 1. In the column ‘# observations’ we give the number
of qualitative observations obtained by the automatic cluster-
ing. The computing times for the symbolic processing also
refer to the fully automatic clustering method. Figure 7 fur-
ther presents the computing times for queries obtained with
respect to the number of qualitative observations as this is
the essential factor of the computing time.

We determine the total number of correctly identified his-
tories across all scenarios, breaking up the numbers into the
availability of zone knowledge (all location to zone mappings
known, only entrance and outlet known, no zone known) and
by the spatial grounding method used (automatic cluster-

ing vs. pre-defined centroids). Figure 6a shows the results
obtained and graphically presents the percentage of histo-
ries recognized depending on these factors. Furthermore, the
plots in Fig. 6 also show the relative amount of correct his-
tories verifiable by qualitative observations in the data. To
obtain this measure, we query the qualitative observations
using the ground-truth.

7 Discussion

We first consider quality of process recognition. Looking at
Fig. 6, the “in data” bars represent the relative amount of
histories correctly verifiable matching the qualitative obser-
vations against ground truth. In other words, this bar rep-
resents how well the real-world process is captured by the
robot observations, their symbolic interpretation, and the
overall process description. This bar can thus be considered
a gold standard for the actual process recognition algorithm.
There are several reasons why the gold standard does not
reach the 100 % mark, for example good histories could not
be reconstructed correctly (small movements easily remain
unrecognized by the mapping component), or the robot may
have simply overlooked essential information. We obtain
recognition rates of around 61 % in case of automatic clus-
tering and 84 % in case of predefined centroids for this
gold standard, which indicates that the symbolic process
descriptions, the qualitative interpretation of sensor data,
and the integration with the robotic system provides us with
an adequate foundation. The correct bars in Fig. 6 present
the absolute/relative correct recognitions achieved by our
process recognition algorithms. Naturally, the performance
is less than that of the gold standard and we observe a dif-
ference in performance comparing the automatic clustering
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method against clustering with pre-defined centroids. This
difference indicates the importance of a sensible spatial
grounding and motivates further research to obtain more
sophisticated automated methods. As expected, we observe
that with increased background knowledge the relative num-
ber of histories matching the ground truth increases while
the total number of detectable processes decreases. The rea-
son for this is due to the fact that providing more background
information restricts the way the data can be interpreted, lead-
ing to fewer interpretations that meet a process description.

In some scenarios when all regions are known it occurred
that some locations are not within any zone, thereby violating
Axiom (A3) and hence inhibiting recognition at all. This is
especially true in the case of the automatic clustering as can
be seen by the drop in the case when all regions are known.
Overall the increase in background knowledge reduces the
amount of false positives while having little impact on the
number of correctly detected histories.

The most important observation is however that the rela-
tive number of correctly identified histories, i.e., how many
from the detected histories are correct, is hardly affected by
the amount of background knowledge available about zone
membership. In case of pre-defined cluster centers the aver-
age relative recognition rate is 83 % whereas for the case of
automatic clustering the average relative recognition is 69 %.
Missing zone membership information is compensated for
by logic reasoning during model checking which determines
the unknown variables sensibly. In other words, the infer-
ence process is capable of supplementing all missing zone
membership information to the process recognition process.
This demonstrates that a logic-based approach is a valuable
contribution to process recognition methods.

We note that these results confirm a previous study with
respect to the overall conclusion, absolute recognition rates
have improved though (cp. [18]), in the case of pre-defined
clusters from 68 % achieved previously to about 76 % in
this study (for automatic clustering from 42 to 44 %). The
relative recognition rates, i.e., how many of the detected his-
tories are correct ones, have improved even more: in case of
pre-defined clusters from 73 to 83 % and in case of automatic
clustering from 57 to 69 %. This improvement is due to three
changes: first, we changed the robot hardware from a Pioneer
3-AT (four wheel skid steering drive) to a Pioneer 2-AT (dif-
ferential drive) as slip and drift for the 3-AT robot are very
high on the lab floor. Second, we changed the visual tags for
landmarks and goods as we have previously been suffering
from mixups in tag detection. Last but not least we extended
the TreeMap SLAM algorithm3 to provide uncertainty esti-
mates. By exploiting covariances for position estimates from
map and observation we are able to detect movements more
robustly which increases the overall map quality too.

3 As provided at http://www.openslam.org/TreeMap.html

8 Conclusion

In this paper, we propose an approach to process detection
based on a specification of processes as temporal logic formu-
las in LTL. We demonstrate the applicability of our approach
by an evaluation with real sensory data from a mobile robot.
In our case study of warehouse logistics, the observations
of a robot can be queried for process occurrences using an
abstract process description. This allows a domain expert to
obtain valuable information.

The evaluation demonstrates usefulness of the LTL-based
approach to process description and recognition. With LTL
one takes a declarative approach that is accessible to any
domain expert as the declarative formulas abstract from the
details of underlying algorithms. The performance of the
gold standard clearly demonstrates feasibility of the sym-
bolic approach to process specification and recognition, con-
firming the first claim of this paper. The claim is further
supported by the actual recognition rates of the autonomous
process recognition. Let us now consider the second claim
of this paper, namely that the declarative approach enables
logic reasoning to supplement observations of the robot, sen-
sibly filling in missing pieces of information. Indeed, the
experimental setting in which no information about zone
membership is available a priori resembles a chicken-and-
egg problem: on the one hand, zones need to be known in
order to identify processes. On the other hand, the processes
need to be known to identify zones. Approaching process
recognition as a model checking problem allows us to
jointly recognize processes and zones using the well-defined
semantics of answer set programming. Naturally, the less
information is available the poorer the recognition rate. Fig-
ure 7 however shows that the declarative approach effectively
counteracts the loss of information, showing only a small
decline despite loss of zone information. This demonstrates
a key benefit of a logic-based approach: the seamless inte-
gration of inference processes into the robot control architec-
ture. Last but not least, the approach is sufficiently efficient
to handle real-world data. Two factors are the essential con-
tributors: the qualitative representation cuts down compre-
hensive experimental runs to few observations (see Table 1)
and the ASP solver exhibits a low-degree polynomial growth
of computing time.

In a real-world warehouse we expect the robot to only
observe a relative small amount of processes occurring, as a
robot’s perception is limited in range. Nevertheless, an analy-
sis of the overall warehouse processes is still possible if the
processes and histories detected are prototypical for the over-
all warehouse. This requires a high degree of correct recogni-
tions though. As our approach meets this requirement we are
confident that the approach will also scale to a large setting.

While the focus of this paper was to present an LTL-
based approach to process recognition and understanding,
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we aim to extend this approach to a comprehensive LTL-
based control strategy. An interesting next step is to automat-
ically derive an observation strategy that generates a sensible
surveillance behaviour. In particular, we aim to use tempo-
ral logic to incorporate so-called search control knowledge
and perform high-level planning [2], i.e., we shift to active
process detection in the sense of planning which places to
observe in order gather most valuable information.

For some complex queries it would be helpful to address
all knowledge gathered during observations, in particular
information about goods we have observed before and which
are included in the map, but which we are unable to per-
ceive at the very moment. Currently, we take a conserva-
tive approach that only explicates knowledge that is certain.
However, for such objects we still have a strong belief of
their existence and position in the warehouse, but this belief
can—according to the actual observation—not be validated.
A possibility to include reasoning on such beliefs is to use a
logic that provides a modal belief operator, such as the logic
for BDI agents presented in [26]. Another source of infor-
mation for more complex queries could be provided by an
ontology, as shown in [25].
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