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Abstract. This paper addresses the problem of merging several constraint networks over
the same qualitative calculus representing information from different sources into a single
consistent constraint network. We define the general problem, discuss rationality criteria, and
describe a distance-based approach using the notion of conceptual neighborhood between the
relations. Our approach is relation-based rather than model-based and, hence, can also be
used to relax a single inconsistent network. We investigate the properties of the proposed
merging operators, describe an algorithm for their computation, and discuss its complexity.
We also argue that the merging problem is still not sufficiently understood and deserves
further research.

1 Introduction

While checking consistency and constraint propagation in qualitative constraint networks (QCNs)
have been extensively studied wrt. complexity and design of efficient algorithms in the qualitative
spatial and temporal reasoning (QSTR) community (see [1, 2] for overviews), the same cannot
be said for a second class of important reasoning problems often referred to as neighborhood-
based reasoning tasks because the underlying concept is the notion of conceptual neighborhood [3]
between spatial (or temporal) relations. Alternative denominations are similarity- or distance-based
qualitative reasoning.

We address one particular neighborhood-based reasoning problem arising in the context of
qualitative spatial representations: the problem of merging constraint networks over the same
calculus in a suitable way (discussed later in the paper) and ensuring that the result is always
a consistent network. This problem occurs, for instance, when merging information from several
databases containing qualitative information or when combining the beliefs of multiple agents
(e.g., humans or robots) expressed in a qualitative way. One important particularity of the QCNs
that has to be taken into account when defining suitable merging operators is that in contrast to
similar merging problems in propositional logic it is often not possible to express all disjunctions
of possible models without admitting additional models. This aspect will play an important role
in the investigations presented in this paper. A related problem not covered in this paper is the
revision of qualitative information, i.e., dealing with changing beliefs regarding a world when new
information becomes available, as studied for example by Hue and Westphal [4].

The problem of merging information from several constraint networks into a single consistent
network can be seen as the task of finding a consistent network that is in some sense ”in the
middle” or ”approximately equally close” to the individual input networks. Shortest path distance
in the conceptual neighborhood graph is typically the distance measure of choice to calculate the
distance between two base relations but there are many ways how neighborhood distances can be
aggregated to capture the distance between entire constraint networks [5–8].

The merging problem as considered in this paper subsumes the problem of resolving conflicts
or contradictions in a single network by turning to the closest consistent network or relaxing the
constraints until the network becomes consistent. In earlier work [7], we developed a first approach
to relax a single inconsistent constraint network. The merging operators we describe in this paper
are a direct extension of this idea to the more general problem of merging several qualitative
constraint networks. We relate QCN merging to work on logic-based merging [9, 10] (as originally
suggested in [11, 12]) and formulate clear rationality criteria for merging operators. In contrast



to the merging operators defined in [11] which are model-based in the sense that the result only
depends on the models of the input networks, we aim for a relation-based approach in which every
relation contained in the input QCN is able to affect the merging result. We argue that this
approach is advantageous in many application scenarios, in particular when considering spatial
database integration where the spatial relations stored in the database are based on independent
observations (for a concrete example, cf. Sec. 2.3). In addition, this approach allows us to also deal
with inconsistent input networks, which is not directly possible in a model-based framework.

With this paper, we are aiming at drawing the attention of researchers from the field of QSTR to
the problem of merging QCNs and neighborhood-based reasoning problems in general. It is our hope
that this will lead to a better understanding of the complexity of these problems and availability
of improved algorithms in the future. The remainder of the paper is structured as follows: We
first formalize the merging problem and related concepts (Section 2). We then discuss the issue
of rationality criteria that suitable merging operators should satisfy (Section 3). In Section 4 we
summarize our merging operators, explain what is known about their properties wrt. the defined
rationality criteria, and present an algorithm to compute the merging results for these operators.
Additionally, we discuss the complexity of the algorithm. We close with a brief discussion on our
approach (Section 5).

2 Merging Problem and Operators

2.1 Qualitative calculi, QCNs, and Consistency

In this paper, we restrict ourselves to spatial calculi over binary relations. However, the methods
described here can be adapted to relations of higher arity or other domains, e.g., temporal relations,
as well. In the remainder of the paper, we will refer to the following concepts and notations: A
qualitative spatial calculus C defines a set BC of jointly exhaustive and pairwise disjoint spatial
relations over a domain of spatial objects DC (e.g., points, lines, regions). For example, C could
define a set of cardinal directions north-of (N), northwest-of (NW), west-of (W), southwest-of (SW),
etc. plus the identity relation equal (EQ) for points in the plane. To be able to express incomplete
or imprecise spatial knowledge, the qualitative spatial calculus actually is concerned with the so-
called set of general relations RC containing all possible unions of base relations. We adopt the
often used way of notating general relations as sets of base relations instead of unions, meaning that
RC “ 2BC and that, for instance, A tNE,N,NWuB means A is either to the northeast, north, or
northwest of B. Complete ignorance is expressed by the universal relation U “ tb P BCu. Another
special relation is the empty relation H which cannot be realized by any pair of objects.

In addition to defining relations, a qualitative calculus also defines a set OC “ tX,Y, ,̄
!, ˝u

of operations over RC . X, Y, and ¯ are the operations of intersection, union, and complement
which keep their set-theoretic meaning. The unary operation ! is the converse operation which
tells us the relation holding between B and A from the relation holding between A and B, e.g.,
tNu! “ tSu. The binary composition operation ˝ yields the relation that has to hold between A
and C when we know the relation holding between A and B as well as between B and C, e.g.,
tNu ˝ tSWu “ tNW,W,SWu.

A qualitative constraint network (QCN) specifies the spatial arrangement of objects Oi in terms
of relations from a qualitative calculus C (see Fig. 1). It is a directed graph G “ pV,Eq in which
the vertices (or variables) vi represent the objects and the directed edges ei are associated with
the spatial relation holding between the objects by a function C : V 2 Ñ RC mapping each pair
of variables from V to a relation from RC . We will use the abbreviation Cij for Cpvi, vjq. The
relations can be seen as constraints that restrict which values of DC can be assigned to the objects
Oi. The QCNs in Fig. 1 contain a vertex for every variable vi and one directed edge for every pair
of variables vi, vj with i ă j which is labeled by the corresponding relation. By convention, edges
labeled with the universal relation U are omitted.

A QCN can be consistent (satisfiable) or not. An assignment of values from DC to the variables
vi is a solution if it satisfies all constraints Cij . A QCN N is consistent if it has at least one
solution. A QCN s is called atomic or a scenario if all Cij consists of a single base relation. We
say that a scenario s “ pV,C 1q is a scenario of QCN N “ pV,Cq if all C 1ij Ď Cij . We will use
a predicate consistent(N) to state that QCN N is consistent. We denote the set of all scenarios
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Fig. 1. Input QCNs N1 to N3 and a scenario of N3.

(not necessarily consistent ones) of N as xxNyy and the set of all consistent scenarios as JNK. QCN
will refer to the constraint network in which all constraints Cij are U for a given set of variables
V and a given calculus C and, hence, xxQCN yy stands for the set of all possible scenarios (not
necessarily consistent ones) given V and C. Figs. 1(a)–1(d) show several exemplary QCNs with
cardinal direction constraints. The QCN in Fig. 1(d) is a scenario of the QCN in Fig. 1(c).

Deciding consistency of QCNs is NP-complete for many calculi but often tractable subalgebras
are known. There exist two main methods for deciding consistency, both based on techniques
developed for discrete CSPs. The so-called algebraic closure algorithm enforces a local consistency
called path-consistency [13] and runs in Opn3q time for n variables. If algebraic closure is not
sufficient to decide consistency for the relations occurring in the network, a backtracking search is
performed [14] that recursively splits the constraints, until a level is reached which can be checked
with algebraic closure.

2.2 Conceptual Neighborhood

Our merging approach is based on the notion of similarity or distance between QCNs. Similarity is
related to how the relations of the QCN can change, an aspect which is described by the notion of
conceptual neighborhood introduced in [3]. Two base relations of a spatial calculus are conceptually
neighbored, if they can be continuously transformed into each other without resulting in a third
relation in between. For instance, N is conceptually neighbored to NW but not to W as one
would have to pass through at least one other base relation (e.g., NW). The concrete conceptual
neighborhood relation depends on the concrete set of continuous transformations one considers [3,
7] which in turn need to be grounded in spatial change over time [15]. For this work, it is sufficient
to assume that a suitable conceptual neighbor relation has been defined which is irreflexive and
symmetric. It can be represented by the so-called conceptual neighborhood graph CNG as illustrated
in Fig. 2. Typically, when using the graph to measure the distance between two base relations in
terms of their shortest path distance, all edges are assumed to have a uniform weight of 1 but
approaches with different weights per edge have also been proposed, e.g. in [16, 17].
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2.3 The QCN merging problem

The QCN merging problem addressed in this paper, can be formalized as follows (adopting a
notation similar to that used in [11]):

Definition 1 (QCN Merging Problem) Given an input set N “ pN1, N2, ...Nnq of QCNs
Nk “ pV,Ckq over the same set of variables V and the same qualitative spatial calculus C, rep-
resenting information from different sources about a static arrangement of objects, the task is to
derive a consistent QCN N 1 “ ∆pN q according to some well-defined merging operator ∆pN q.

An exemplary merging problem could be to merge the QCNs N1, N2, N3 from Fig. 1. We here
only make the restriction that all Nk are over the same set of variables V for convenience. As long as
the correct correspondences between variables are known, a preprocessing step renaming variables
and, if needed, adding new ones connected via the univesal relation U to all other variables can be
employed to transform the QCNs into QCNs over the same variable sets.

Obviously, the above definition specifies the input and output of the QCN merging problem
but everything else depends on the chosen merging operator ∆pN q. Therefore, we will in the
next section look into merging operators in more detail and discuss criteria for suitable merging
operators. For now we restrict ourselves to the one main criterion that the output network should
be consistent, meaning it needs to have at least one consistent scenario.

Two straightforward ways of combining QCNs are integrating them conjunctively or disjunc-
tively. Combining the QCNs conjunctively (later written as N1 X N2) means to construct a new
QCN by taking the intersection of the relations making up corresponding constraints. Obviously,
the resulting QCN can be inconsistent, even when the input networks themselves are all consistent.
This is the case if the QCNs do not share a consistent scenario. Hence, intersection in general is
too strict to serve as a suitable merging operator. On the other hand, combining networks dis-
junctively (later written as N1 YN2) means to take the union over corresponding relations. Using
the union, consistent scenarios of the input networks are preserved but new ones may appear and
the result will often be very unspecific reducing its usability. In addition, if all input networks are
inconsistent, the resulting QCN may still be inconsistent.

In this work, we are interested in merging operators that are guaranteed to return a consistent
result even when the input QCNs are not consistent (we only assume that all Cij ‰ H). Adopting
the idea of distance-based merging [10, 9], we want our solution to be based on those models
(consistent scenarios in our case) that are as close as possible to all input networks simultaneously
in a way that we will explain below. A main difference to existing work on merging QCNs [11,
12] is that we assume that all relations in the QCN can be considered independent and equally
reliable information pieces that can have an effect on the result of the merging, while in the other
approaches the result only depends on relations belonging to consistent scenarios. Consequentially,
we will refer to our approach as relation-based in contrast to the model-based paradigm employed in
the other approaches. To make this difference more clear, consider the example shown in Fig. 3. For
convenience we introduce a compact notation for QCNs with three variables: A QCN N “ pV,Cq
with variables v1, v2, and v3 is written as a triple of constraints N “ pC12, C13, C23q. The input set
in the example consists of the two QCNs N1 “ ptSu, tSu, tS,SEuq and N2 “ ptSWu, tSu, tSEuq. N1

has one consistent scenario, namely ptSu, tSu, tSuq, while N2 itself is a consistent scenario. As the
model-based approach presented in [11] basically ignores relations that are not part of a consistent
scenario such as SE in C23 of N1, it would consider the consistent scenarios ptSWu, tSu, tSEuq and
ptSu, tSu, tSuq as equally plausible resolutions of the conflicts between the two QCNs. However,
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Fig. 3. Merging example: Input QCNs N1 and N2.

while the former scenario can be explained by a single small observation error in N1 (C12 should
have been SW instead of S), the latter would mean that there have been two small observation
errors in N2. In contrast to such model-based operators, the merging operators we are going to
define in Sec. 4 will treat the scenario ptSWu, tSu, tSEuq as a more plausible explanation.

Before we introduce the operators themselves, we start by formulating rationality criteria for
relation-based QCN merging operators. As mentioned in the introduction, one particularity of
the QCN merging scenario distinguishing it, for instance, from merging problems in propositional
logic is that it is not always possible to combine models (or here consistent scenarios) into a
single representation without obtaining additional models. Unfortunately, in many situations (e.g.,
merging databases) maintaining multiple hypotheses is undesirable or infeasible because of the
additional complexity of tracking multiple hypotheses about the state of the world simultaneously.
Hence, we define relation-based merging operators ∆pN q with N “ tN1, ...Nnu that take an input
set and return a single QCN and investigate how this requirement and the established rationality
criteria fit together.

3 Rationality Criteria

To define the rationality criteria for our merging scenario, we follow criteria developed for infor-
mation merging in a propositional setting (criteria (A1)–(A6) in [19] and (IC1)–(IC6) in [9]). Due
to the special properties of QCNs and the fact that we are aiming at merging operators which are
relation-based instead of model-based, we have to adapt the criteria leading to (Q1)–(Q6). The
resulting set of criteria turns out to be a specialization of the generic criteria for QCN merging
(N1)–(N6) described in [12] but without assuming consistency of the input QCNs. We will point
out where we make stronger demands tailored towards our particular merging approach.

The most basic requirement is that the merging result is a consistent QCN. Therefore we
demand that ∆pN q always has to be consistent. In contrast, instantiating (N1) in [12] for our case
would only demand that a QCN is returned but not necessarily a consistent one.

(Q1) consistentp∆pN qq

If the intersection of the input QCNs already is consistent, ∆ should yield exactly this intersec-
tion. Again, the corresponding criterion (N2) in [12] would only make a weaker demand allowing
the merging result to be inconsistent.

(Q2) consistentp
Ş

Niq ñ ∆pN q “
Ş

Ni

The third criterion defined in [19] formalizes the ’irrelevance of syntax’. Concerned with defining
criteria for model-based merging operators, they demand that the result of merging should only
depend on the models of the input knowledge bases. In our relation-based case, it only makes sense
to demand a significantly weakened version of the third criterion, basically claiming that the order
of input networks should not affect the result. Thus, we define when two input sets are equivalent.

Definition 2 (Equivalence (”) of input sets) Two input sets of QCNs N “ pN1, ..., Nnq and
N 1 “ pN 11, ..., N

1
nq are equivalent (N ” N 1) iff there exists a bijection f between N and N 1 such

that Nk and N 1l “ fpNkq have the same scenarios, i.e. xxNkyy “ xxfpNkqyy for 1 ď k ď n.
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(Q3)N1 ” N2 ñ ∆pN1q “ ∆pN2q

The fourth criterion is concerned with fairness of the merging operator stating that it must
not give preference to one of the input knowledge bases. Since we do not consider one knowledge
base to be more reliable than another, when merging two QCNs N1 and N2 and there is a (not
necessarily consistent) scenario s part of the merging result which is also a scenario of N1, the
same must hold for a scenario t of N2. Intuitively, since there has to be a scenario in N2 that is at
least as close to N1 as s is to N2, not having a scenario from N2 in the result would mean giving
preference to N1 over N2.

(Q4) Ds : s P xx∆ppN1, N2qqyy ^ s P xxN1yy ô Dt : t P xx∆ppN1, N2qqyy ^ t P xxN2yy

With the fifth property we demand that if we merge two input sets N1 and N2 individually
and there is a scenario s part of both merging results, this scenario must also be part of the result
of merging the input set resulting from combining the QCNs from N1 and N2 into a single set
(written as N1 \N2).

(Q5) @s : ps P xx∆pN1qyy ^ s P xx∆pN2qyy ñ s P xx∆pN1 \N2qyyq

Finally, in (Q6) we demand that if ∆pN1q and ∆pN2q have a common scenario, the reverse
direction of (Q5) is also true. Taken together (Q5) and (Q6) state that if for two input sets the
merging agrees on certain scenarios, these scenarios should be exactly the scenarios of the resulting
QCN of the combined input set.

(Q6) Dt : t P xx∆pN1qyy ^ t P xx∆pN2qyy ñ ps P xx∆pN1 \N2qyy ñ s P xx∆pN1qyy ^ s P xx∆pN2qyyq

We now proceed by defining our relation-based merging operators for QCNs and will later
discuss to what extent they satisfy the rationality criteria defined here.

4 Merging Operators and Algorithm

4.1 Neighborhood distance based measures and operators

Above, we introduced the conceptual neighborhood graph as a way to measure the distance or
similarity of the base relations of a calculus3, assuming that variations are caused by imperfect
observations. Seeing the conceptual neighborhood graph CNGC of a calculus C as an undirected
graph (cmp. Sec. 2.2), we now define the distance dBØB between the two base relations bi, bj P BC
as the shortest path distance between the corresponding nodes in the graph:

dBØBpbi, bjq “ shortest path distance between

bi and bj in CNGC (1)

The next step is to define the distance between two atomic qualitative constraint networks
s “ pV,Cq and s1 “ pV,C 1q over the same set of m variables and the same calculus. For this
we need an aggregation operator that determines how the distances between constraints in si, sj
given by dBØBpbi, bjq are combined. Natural candidates for this aggregation operator which we
will denote as o are the sum or the max operator. The distance itself is defined as:

doSØSps, s
1q “ o

1ďiăjďm
dBØBpCij , C

1
ijq (2)

The notion behind our merging operators ∆pN q is that the resulting QCN is built from the
consistent scenarios that are closest to the input networks together with all inconsistent scenarios
that are at most as distant as these consistent scenarios. Therefore, we further need to define
the distance between a scenario and a general constraint network and based on that the distance
between a scenario and the set of input networks (N ).

3 We note that, in general, any distance measure can be applied. However, the choice of distance measure
may affect the properties of ∆pN q.
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For determining how close a scenario s is to a constraint network N we consider all scenarios
of N and take the distance to the closest one. The resulting distance doSØN ps,Nq is then given by

doSØN ps,Nq “ min
s1PxxNyy

doSØSps, s
1q (3)

To measure the distance between a scenario s and the set N of all input networks Ni, we need to
aggregate over the individual distances doSØN ps,Niq. To do this, we introduce another aggregation
operator f. Again, sum and max seem to be natural candidates for this aggregation operator. In
the general case, the resulting distance is given by

do,f
SØN ps,N q “ f

1ďkďn
doSØN ps,Nkq (4)

To construct the final merging result we take the set So,fpN q of all scenarios (xxQCN yy) that
are closer or as close to N as the closest consistent scenarios (JQCN K) wrt. do,f

SØN .

So,fpN q “ ts P xxQCN yy | @s1 P JQCN K : do,f
SØN ps

1,N q ě do,f
SØN ps,N qu (5)

As the final step, the resulting QCN is constructed by taking the union of all the scenarios,
i.e. union of the corresponding networks, in So,fpN q.

∆o,fpN q “
ď

sPSo,fpN q

s (6)

As discussed previously, the final union step may lead to additional scenarios in ∆o,fpN q that
are not contained in So,fpN q, i.e., having a larger distance to the given networks, which is the
price one has to pay to end up with a single QCN.

4.2 Properties of the Operators

Table 1 summarizes the properties of the merging operators introduced in the previous section
wrt. the rationality criteria given in Section 3 as proven and discussed in detail in [8]. So far, we
have mainly been concerned with the question whether our merging operator ∆o,fpN q satisfies
the criteria for all combinations of o,f P t

ř

,maxu 4. This is the case for the fundamental criteria
(Q1)–(Q4). For (Q5) the situation is more complicated: In [8] we presented a counter example
showing that ∆

ř

,
ř

pN q does not satisfy the criterion. We then proved that in general (so for
o,f P t

ř

,maxu) (Q5) is satisfied by the scenarios in So,fpN q. This means that the loss of this
property is a direct consequence of the final union step based on the demand that the merging
result has to be a single QCN.

For (Q6), we presented a counter example that shows that the criterion is not satisfied by
∆

ř

,
ř

pN q and ∆
ř

,maxpN q and also not in S
ř

,
ř

pN q and S
ř

,maxpN q. We currently do not know
whether a similar counter example can be constructed for ∆max,fpN q (and Smax,fpN q). It seems
possible that this is the result of including inconsistent scenarios with a distance smaller than that
of the closest consistent scenario. While it would be counterintuitive not to include these scenarios
when inconsistent scenarios with a larger distance are included, the properties of such alternatives
need to be investigated. In addition, the question on whether suitable operators can be found which
do not suffer from similar problems caused by the final union step as we saw for (Q5) needs to be
investigated as part of future research.

4.3 An Algorithm to Compute ∆o,fpN q

In [8], we described an algorithm to compute ∆o,fpN q. While the time complexity is still exponen-
tial in the worst-case, the algorithm is an improvement over brute-force methods described in [11]
and based on the following two notions to significantly improve its performance in practice, in par-
ticular when the input QCNs are rather close to each other: (1) candidate scenarios are considered

4 Merging operators are often classified into majority or arbitration operators. We briefly state here
without proof that ∆o,max satisfies the notion of an arbitration operator (see (A7) in [19]), while ∆o,

ř

is preferable if a majority-based resolution is desired (see (M7) in [19]).
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in order of increasing distance to N as given by do,f
SØN ps,N q5, and (2) the expensive consistency

checking is delayed as long as possible and does not have to consider individual scenarios. For
generation of scenarios in the order of increasing distance in the merging algorithm (see Alg. 1),
we need relax functions at several levels: (a) the constraint level, (b) the network level, and (c)
the level of sets of networks. Although, we develop them bottom up, i.e., from (a) to (c), they will
be applied top-down in the algorithm, i.e., (c) to (a).

The function relaxCpC, dCq yields the relation consisting of all base relations which have min-
imal distance dC for dC ě 0 to a base relation in constraint Cij . That is, relaxCpC, dCq generates
a D-coarse network as introduced by Li and Li [20].

relaxCpCij , dCq “

"

b P BC | min
b1PCij

dBØBpb, b
1q “ dC

*

6 (7)

Based on it, the function relaxNopN, dN q yields a set of networks in which constraints Cij

have been changed using relaxC with parameter eij so that aggregation with o over eij yields dN .

relaxNopN “ pV,Cq, dN q “ (8)
"

N 1 “ pV,C 1q | C 1ij “ relaxCpCij , eijq ^ o
1ďi,jďm

eij “ dN

*

Thus, each scenario s P xxQCN yy is a scenario of a network in relaxNopN, dN q iff doSØN ps,Nq “ dN .
The function relaxNo,fpN , dN q then yields a set of modified input sets where each modified

Nk has been modified using relaxNopNk, ekq such that the ek are aggregated with f to dN .

relaxNo,fpN “ pN1, N2, ...Nnq, dN q “ (9)
"

pN 11, ..., N
1
nq | N

1
k “ relaxNopNk, ekq ^ f

1ďkďn
ek “ dN

*

Given this set of relax functions the basic version of our algorithm proceeds as follows (see
Algorithm 1): The outer loop increases dN and considers scenarios s with do,f

SØN ps,N q “ dN .
The algorithm stops when there is at least one consistent scenario among these. All scenarios are

5 In [11] at any stage all possible scenarios have to be considered
6 We here assume that the distance function is integer-based, so that constraints can be relaxed in discrete

steps (see line 12 of Algorithm 1). An adaptation to other distance functions is possible though.

merging operator Q1 Q2 Q3 Q4 Q5 Q6

∆
ř

,
ř

pN q 3 3 3 3 7 (holds for S
ř

,
ř

q 7 (also not for S
ř

,
ř

q

∆
ř

,max
pN q 3 3 3 3 ? (holds for S

ř

,maxq 7 (also not for S
ř

,maxq

∆max,
ř

pN q 3 3 3 3 ? (holds for Smax,
ř

q ?

∆max,max
pN q 3 3 3 3 ? (holds for Smax,maxq ?

Table 1. The properties of the merging operators
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Algorithm 1 Merging algorithm

procedure ∆o,f
pN q

1: S Ð pV,Cq with all Cij “ H

2: dN Ð 0; consistentÐ false
3: repeat
4: RÐ relaxNo,f

pN , dN q
5: for all pN 11, ...N

1
nq P R do

6: I Ð
Şn

i“1N
1
i

7: if @i, j : Cij ‰ H holds for I then
8: S Ð S Y I
9: if consistentpIq then consistentÐ true end if

10: end if
11: end for
12: dN Ð dN ` 1
13: until consistent
14: return S

collected in the QCN S which in the end will contain the merging result. To find the scenarios with
do,f
SØN ps,N q “ dN , the following happens inside the outer loop: Relaxed input sets are generated

with relaxNo,fpN , dN q for the given dN . For every element N 1 “ pN 11, ...N
1
nq of the resulting set,

the algorithm takes the intersection over all N 1k. It can be shown, that do,f
SØN ps,N q “ dN holds for

a scenario s iff s is a scenario of one of the networks I generated in this inner loop. Hence, when
the intersection does not contain empty constraints (which would mean it does not have scenarios
at all), we add all scenarios of I to S through the union operation in line 8. In addition, it is
checked whether I is consistent using standard QSTR techniques. If consistent, we know that we
have found at least one consistent scenario and the algorithm will stop after all remaining tuples in
R have been processed (see line 5). The algorithm is available in the current version of the SparQ
reasoning toolbox7.

Fig. 4(a) shows an example of employing Algorithm 1 to compute ∆
ř

,
ř

for merging the QCNs
N1 to N3 from Fig. 1. The resulting network contains 64 scenarios, six of them consistent (for
comparison the input QCNs have 2187, 6, and 18 scenarios). The minimum distance is three
(four inconsistent scenarios) and the maximum distance is four. Two of the consistent scenarios
(Figs. 4(b) and 4(c)) have distance four, the other four consistent scenarios with distance ą 4 result
from the final union step (e.g. Fig. 4(d)).

4.4 Complexity Considerations

Investigation of our algorithm has shown that the question of complexity is not simple to answer
as it is highly dependent on the choice of aggregation operators and the calculus C used. To the
best of our knowledge, the same holds for the QCN merging problem in general. Condotta et
al. have described a naive brute-force approach that always checks the exponential worst-case
number of |BC |

|C| scenarios individually [11], with |BC | denoting the number of base relations and

|C| “ mpm´1q
2 denoting the number of constraints. Each scenario has to be checked for consistency

(Opm3q for algebraic-closure or worse). We assume that the same worst-case complexity applies
to our algorithm, but as our scenario generation is iteratively built on the basis of the CNG and
typically several scenarios are considered simultaneously in a single consistency check, the average-
case performance of our algorithm is better. If the input networks already contain a common
consistent scenario, our algorithm only computes the intersection and checks its consistency (best-
case). Similarly, if the networks are already rather close to each other, i.e., only few constraints of
the provided networks differ and are close in the CNG, only few iterations (line 3) are necessary
to find at least one consistent scenario.

7 https://github.com/dwolter/SparQ
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5 Concluding Discussions

We presented the QCN merging problem and a family of distance-based operators. The operators
are relation-based in the sense that they treat every relation as an independent piece of information
that may affect the result and can be applied to inconsistent input networks. Deviations from
the criteria are partially due to the fact that QCNs cannot express all disjunctions of scenarios
without leading to additional scenarios. Nevertheless, alternatives need to be evaluated as part of
future research. We also presented an algorithm for computing the merging result by incrementally
relaxing the input networks and delaying expensive consistency checking as long as possible in
order to increase the average-case efficiency compared to a naive implementation. However, to our
knowledge the complexity of the overall problem is still not well understood. We also expect that
significant progress still can be achieved in designing more efficient merging approaches, once this
problem and related neighborhood-based operations and reasoning tasks are given more attention.
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4. Hué, J., Westphal, M.: Revising qualitative constraint networks: Definition and implementation. In:
IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece,
November 7-9, 2012. (2012) 548–555

5. Bruns, H.T., Egenhofer, M.J.: Similarity of spatial scenes. In: Seventh International Symposium on
Spatial Data Handling, Taylor & Francis (1996) 173–184

6. Moratz, R., Freksa, C.: Spatial reasoning with uncertain data using stochastic relaxation. In Brauer,
W., ed.: Fuzzy-Neuro Systems 98. Infix; Sankt Augustin (1998) 106–112

7. Dylla, F., Wallgrün, J.O.: Qualitative spatial reasoning with conceptual neighborhoods for agent
control. Journal of Intelligent and Robotic Systems 48(1) (2007) 55–78

8. Wallgrün, J.O., Dylla, F.: A relation-based merging operator for qualitative spatial data integration
and conflict resolution. Technical Report 022-06/2010, SFB/TR 8 Spatial Cognition (2010)
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