A Continuous-Based Model for the Analysis of Indoor Spaces

XIANG LI¹, CHRISTOPHE CLARAMUNT² AND CYRIL RAY²

¹ Key Lab of Geographical Information Science, East China Normal University, Shanghai 200062, China ² Naval Academy Research Institute, Lanvéoc-Poulmic, CC 600, 29240 Brest Cedex 9, France

INTRODUCTION

CONTINUOUS-BASED MODEL FOR INDOOR SPACES

From Large to Small Scale Environments

- People spend large parts of their lives in indoor spaces : office buildings, shopping center, airports...
- Emerging and continuing advances in ambient devices and systems and communications bring novel opportunities for indoor "geo-services"
 - Human way-finding and navigation in built environments
 - Evacuation routes for people stuck in a building during an emergency
 - Tracking suspicious moving objects in a building using video surveillance...
- Is there any need to reconsider current GIS models when considering indoor environments ?
 - Taking into account human cognition and behaviours in such environments
 - The way indoor spaces are constrained by architectural designs
 - Considering the role played by smart location-based devices
 - Taking into account the range of applications in indoor environments...

Research Issues and Objectives

Modelling issues :

- How to spatially represent an indoor space ? (discrete, continuous, symbolic)
- How to transform/map an indoor physical space towards a spatial-based model ?
- How to take into account the behaviour and positioning data of a moving object and an indoor-based model ?
- How to apply the model of an indoor space to a given phenomena, either discrete or continuous ?

Modelling approach

- We retain a continuous and structural-based modelling approach allowing the integration of graph-based properties
- Such an approach favours accurate indoor positioning, tracking and navigation and the modelling of continuous phenomena
- The approach is illustrated by the diffusion of a gas leak

RELATED WORKS

MODELLING BACKGROUND

Modelling Indoor Spaces

- From physical to conceptual modelling : geometric → set-based → topological → semantic
- Geometric spaces :
 - Representation mainly based on Euclidean geometry
 - Using by absolute or relative coordinate systems and transformation between them
- Symbolic spaces (spaces with qualitative description)
 - Set-based representation where space is described by spatial regions and relationships between them
 - Structural representation where topological relationships and structural properties are derived from a graph-based model
 - Semantic representation where space is considered as a set of objects and relationships between them

Modelling Indoor Spaces

Adapted from Li, 2008

Symbolic Spaces vs. Geometric spaces

- Symbolic models of indoor space are often preferred over traditional geometric models because they are able to capture the semantics associated with indoor entities (Jensen *et al.*, 2009)
- Non-exhaustive advantages of symbolic models
 - Simple models generally based on graph models and theory
 - Nodes represent rooms, and edges connections, such as corridors and doors, between rooms
 - Nodes and edges obtained by division, adjacency and connectivity
 - Cells (nodes, edges, objects) define a location reference for indoor space
 - Ambient systems emerge with appropriate positioning systems (presence sensors vs. position sensors)
 - Geometry is approximated as each cell may have (or not) its own geometry
 - Topology is implicit as cell connections reflect the structure of space
 - Spatial relationship between cells and moving object can be established

Is Symbolic Representation Always Appropriate?

- Space syntax had been long applied to indoor environment (e.g. Kim et al., 2008)
 - Well defined from a spatial modelling point of view, and with operators long identified by graph theories
 - Local operators evaluate the connectivity of a given room, while global operators measure the role played by a given room in the whole network
- The assumption of this modelling approach is that there might have a correlation between structural patterns that emerge from layout and the way moving objects (phenomenon) evolve through spaces...

• ..., but

- There is a lack of continuity and geometrical measures of space or time that encompass another class of properties (such as "continuous" events)
- People's behaviours are often non deterministic processes that cannot always be approximated by a structural representation of space

Towards a Finer Modeling Approach

- Usual node-edge representation is structural and reveals the main spatial structure of a built environment
- While such a model can represent topological relationships, It fails to retain the whole semantics of complicated indoor spaces
 - For example, is a single point enough to represent a room with a large area or an irregular shape?
- Alternative solutions considering indoor spaces at a lower level of granularity should be considered (Ray *et al.*, 2009)
 - A fine "cell-based" modelling approach is based on an occupancy grid that reflects the main geometrical properties
 - Each cell/node is connected to its neighbours that represents connectivity and displacement opportunities

INDOOR MODELLING

NODE-EDGE GRAPH WITHIN OCCUPANCY GRID

Modelling Background

- From an occupancy grid as initially introduced in mobile robotics and artificial intelligence
- Where an occupancy grid is a regular matrix consisting of equally-sized cells
- In such approach, the surrounding environment of a mobile robot is represented by the occupancy grid
 - Movement opportunities and/or probabilities can be estimated
 - E.g., an high probability of displacement is given to cells relatively connected, while a low probability to cells surrounded by obstacles
- Simplicity and metric embeddedness are two advantages of the occupancy grid approach

Modelling Principles

- Indoor modelling based on :
 - A node-edge graph that covers all the indoor space
 - Where nodes represent cells within an occupancy grid, and connections between cells are materialized by edges
 - Where impedance values are given to each edge depending of the application of interest

Modelling properties

- The graph-based model retain displacement opportunities from a continuous point of view
- Structural properties can be encapsulated within the graph-based representation
- The geometrical properties are implicitly represented by the continuous layout of the graph and reflect the shapes of the rooms considered

Modelling Principles

- A built environment is modelled as a two dimensional space of extent S materialized as a continuous space of cellular units
- The continuous representation covering S is parameterized by a level of granularity g that generates a grid graph of step g
- The grid graph includes additional diagonal edges so that each node is connected to 8 neighbours
- Nodes and edges are labelled according to their memberships to a given cellular unit such as a room or a connecting space
 - Each node has one and only one membership value as a node is contained by one and only one cellular unit
 - Membership value of an edge is multi-valued when this edge intersects several cellular units

g

Modelling Illustration

Cellular Units

 Each cellular unit contains nodes regularly placed (every g). Nodes are labelled according to their memberships to a cellular unit

Grid Graph

 Edge impedance (v) allows modelling of different constraints associated to studied phenomena

Impedance values might be correlated with g. They are closely related to studied application

Overlap of a grid graph and labeled cellular units

Illustration for Moving Objects

• The model allows finding accurate shortest path between two points

 ∞

• Impedances are based on graph granularity g and assigned according to cellular unit membership

Free space represented by a grid graph

Shortest path between **1** and **2**

CASE STUDY

MAPPING GAS LEAK IN AN INDOOR SPACE

Objective and Assumptions

• Objective : to map the diffusion of a gas leak in an indoor space

• Some assumptions :

- The source of the gas leak is located in a given room of an indoor space
- The impedance of each edge equals the time it takes gas to diffuse along the edge
- The diffusing speed is denoted as *s* in the free space considered, let *T* be *g*/*s*

• Example of edge impedance values for gas diffusion in an indoor space

Description	Edge length	Impedance
Edges are completely within free space: room, lobby, opened door, opened	g	Т
window, or opened exit	g.√2	T.√2
Edges are completely within or intersect less occupied space: closed door.	g	40. <i>T</i>
closed window, closed exit, or inner wall	g.√2	40.T.√2
	g	Infinity
Edges are completely within or intersect more occupied space: outer wall	g.√2	Infinity

Algorithm Principles

- The diffusion algorithm figures out the evolution of nodes and edges covered by gas diffusion
- Algorithm Principles
 - Let *n*₀ denote the node representing the source of gas leak, and *t*₀ the starting time of leak
 - For a given time instant $t_0 + mT$, where *m* is a real number
 - Find all nodes whose shortest paths to *n*₀ are less than *mT* in terms of cost (i.e., diffusing time)
 - Check each edge through examining its two associated nodes and figure out those covered by gas during the interval from t₀ to t₀+mT
 - If not the whole but a part of an edge is covered by the phenomenon, only the covered part is considered

Mapping Gas Leak in an Indoor Space

 $t = t_0 + 45T$

$t = t_0 + 10T$

XXXXX Room D Room A Room B Room C (DXIXI) Room D Room. Reon B Room C

$t = t_0 + 20T$

Gas leak when all doors are closed

o Starting point of the phenomenon

Mapping Gas Leak in an Indoor Space

$t = t_0 + 10T$

$t = t_0 + 20T$

	ZYŻN			Ξ¥.	70	19ř		M	ΞŇ	20	1 St		17ř	20	17ř	7K	X	ø	24	-	É	X	121	9K	XQ	æ
en:		20		22	20	E.	22	1£1		20	œ.	90	<u>e</u> r	2 G	i R'i	29	12	9	X	X	2512	22	ю	÷.	Ð	œ
e					30	Ð		Э	e.		0			: E	Ε.			Ξ.	Đ.	10		20	ю	\ominus	Ð	œ
6									84															e.	Ð	ĊЖ
4									5			20	5			5 B	1				12	2	5	ΆK	Á	Ă
<u> X</u>	10100	96	202	20				Ŧ		.				12	121				- 2		22	œ		42	4A	X
≥ o	10101	Ο.	<u>191</u>	÷.,		110		цį.		\sim	1.1	12	111		ĿТ	XT2	тx	ЪЛ	XD	æ	IXD	(DX	1X	×P	$(\ge$	X
X	30	œά	X	10	CX	10	XX	цį.	9	GX.		11	ц, i	ΧN	IXI	XLX	ΞX,	XI	XD	XD	ΙXD	(IX	ХI,	XD	(X)	ЖÇ
X 🗆	10100	00	100	10		10	2.0	нiр	20	00	ΨĮ (r	10	120	102	e te	101	10		10		10	œ		XD	1X	×ē
X. O	0.0	00	10 X	10	00	10	XX.	u (h	80	3	X	XΟΧ	120	XX	020	11	0.	1	10	άX	100	άX	X	XD	1X	XD
M. O	10100	0.0	čoč		0.0	1.0		ı Öi	20		1.0	100	uže:		1×1	XD.	ΦX	ĒΧ	XD	۵×	IXD	(DX	πđ	X1	ĺХ	Xð
-		-			-	-					÷.,	÷÷.	. . .				¥ 1	- X	- ¥			×.			10	Œ
															1000	1000	11 A 11	17.51	2512	517.5	17517	517.5	17.51	7.5.10		
ZZ	222	77	$\overline{X}\overline{X}$	<u>Σ</u> δ	77	Ā	XX	1			0	-		19			17		Эř	82		Ж	Ŕ	$\overline{\mathbb{Q}}$	Q	æ
		溟	38	X	\$\$	Â	X	i i			ŝ				,		Ĩ		à			K	Ŕ	Ş,	ĝ	X
Ø					×	X													â			K	Ŕ	8	ĝ	X
				X	X													12.2.20						8		
			200		¥													1.2.2.2.2								
			Coc																							
			COC								ozos sozekve				New Second Second			0.000.000								
			ξο ε																							
		I	toe																							
			00																							
			Coc																							

Gas leak when all doors are opened

o Starting point of the phenomenon

Mapping Gas Leak in an Indoor Space

- Beyond the evaluation of existing structural configurations face to phenomenon...
- ... another objective can be to identify "best" structural configuration(s)

What if doors' locations are changed ?

Centrality Measures

- Similarly to space syntax studies (at structural level), various measures of the centrality (e.g. degree centrality, betweenness, closeness, eigenvector centrality) can be applied to such fine-grain indoor models
- Betweenness is a representative centrality measure applied to graphs (Bonacich, 1987)
 - Denotes the number of time a given node appears in shortest paths between the other nodes of the graph
 - The most central a node is, the most important its centrality role in the structure of the whole graph (i.e., indoor space)

$$C_B(n_a) = \sum_{a \neq j \neq i} \frac{\sigma_{ij}(n_a)}{\sigma_{ij}}$$

number of the shortest paths between nodes n_i and n_j that n_a lies on

number of the shortest paths between nodes n_i and n_j

a node n_a

All doors are opened

All doors are closed

 Interest : study the impact of different distribution layouts with respect to a given phenomenon

CONCLUSION

CONTINUOUS-BASED MODEL FOR INDOOR SPACES

Conclusion

- Built environment and indoor spaces represent a novel domain of GIS applications
- Early developments have been often successful in defining spatial representations of built environments such as structural-based models, cognitive and quantitative models
- The concept of space as considered in indoor environments deserves complementary spatial modelling approaches adapted to the specific continuous properties of built environments

Conclusion

- The proposed model is a continuous-based representation of a built environment
 - An occupancy grid is considered as the reference modelling concept
 - An interest of this approach is that the coverage of the emerging graph allows
 - A study of the spatial diffusion of a given phenomenon of interest
 - The application of structural measures that reveal some emerging structural properties of the represented space
- The approach thus keeps a continuous representation of space, while still embedding structural properties at a lower level of granularity
- Future efforts will be made to
 - Extend the modelling approach to 3D environments
 - Apply these modelling concepts to real-time positioning, tracking and navigation of pedestrian

A Continuous-Based Model for the Analysis of Indoor Spaces

XIANG LI¹, CHRISTOPHE CLARAMUNT² AND CYRIL RAY²

¹ Key Lab of Geographical Information Science, East China Normal University, Shanghai 200062, China ² Naval Academy Research Institute, Lanvéoc-Poulmic, CC 600, 29240 Brest Cedex 9, France