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Abstract

The new era of semantic web has enabled users to ex-
tract semantically relevant data from the web. The backbone
of the semantic web is a shared uniform structure which de-
fines how web information is split up regardless of the im-
plementation language or the syntax used to represent the
data. This structure is known as an ontology.

As information on the web increases significantly in size,
Web ontologies also tend to grow bigger, to such an extent
that they become too large to be used in their entirety by any
single application. This has stimulated our work in the area
of sub-ontology extraction where each user may extract op-
timized sub-ontologies from an existing base ontology.

Sub-ontologies are valid independent ontologies, known
as materialized ontologies, that are specifically extracted to
meet certain needs. Because of the size of the original ontol-
ogy, the process of repeatedly iterating the millions of nodes
and relationships to form an optimized sub-ontology can be
very extensive. Therefore we have identified the need for a
distributed approach to the extraction process. As ontolo-
gies are currently widely used, our proposed approach for
distributed ontology extraction will play an important role
in improving the efficiency of information retrieval.

1. Introduction

The next generation of the internet is the semantic web.
It provides an environment that allows more intelligent
knowledge management and data mining. The main focus
is the increase in formal structures used on the internet. The
taxonomies, with added functionality such as inferencing,
for these structures are called ontologies[3, 4], and the suc-
cess of the semantic web highly depends on the success
of these ontologies. Ontology user groups and communi-
ties need to agree on proper ontology standards before they

can be put to good use. This was made clear from the ini-
tial definition of an ontology as a shared conceptualization
of some domain [3]. Getting large groups to agree on an on-
tology standard means that a compromise is needed to en-
sure world wide use of ontologies. Ontologies grow very
large as a result of attempts to model certain domains accu-
rately and completely, leading to a number of problems.

A major problem is that as an ontology grows bigger,
user applications begin to only require particular aspects
of the whole ontology. They do not benefit from other se-
mantic information. Using the whole ontology means that
drawbacks from this redundant information are encoun-
tered; complexity and redundancy issues rise, while effi-
ciency issues fall. This demonstrates a clear need to cre-
ate sub-ontologies[14, 10]. For instance, if a business only
concerns itself with worker information, there is no need
to access the detailed product catalog information. Extract-
ing just the worker information, offers a smaller, simpler
and more efficient ontology solution.

There is research in similar areas[5, 6, 7, 8], and also
there is research pioneered by the authors in the special-
ized area of ontology extraction[14, 15, 16]. Optimization
schemes were introduced to meet requirements to guaran-
tee a high quality sub-ontology. However, this extraction
process, proves to be computationally expensive, in part be-
cause of large ontologies (The Unified Medical Language
Systems (UMLS) [9] ontology has more than 800,000 con-
cepts and more than 9,000,000 relationships), but also be-
cause of the many optimization schemes have to be applied.

This paper introduces a distributed approach to the sub-
ontology extraction process. Distribution not only makes
the process faster, but also conforms to our envisaged ap-
plication. The model presented in this paper will benefit a
lot of areas involved in ontology manipulation and extrac-
tion as well as general workload distribution.

The rest of this paper is as follows: Section 2 intro-
duces the sequential extraction process we call MOVE -
Materialized Ontology View Extractor. Section 3 presents
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the distributed version of MOVE, by stepping through one
of the basic optimization schemes involved in the extrac-
tion process - The Requirements Consistency Optimization
Scheme (RCOS). Section 4 evaluates the distributed imple-
mentation, and Section 5 concludes the paper.

2. MOVE: Materialized Ontology View Ex-
traction

The architectural framework for the whole process of
extracting materialized ontologies, is shown in Figure 1.
Throughout this paper we refer to the result of an extrac-
tion process as a sub-ontology or a materialized ontology
view. Intuitively, and for the course of this paper, these can
be defined as a new version of the ontology, where no new
semantic information has been added but semantic informa-
tion has been thoughtfully left out. Detailed definitions are
given in [15, 16], but are irrelevant here.

The process begins with the import of an ontology (i.e.
constructing an internal memory representation of the on-
tology), which is represented using an ontology standard
such as OWL [11], DAML-OIL [1] or Ontolingua [2]. Also
imported into the system is the user (or application) re-
quirements and specifications. This is followed by the ex-
ecution of the optimization algorithms that finally produce
the extracted sub-ontology. Next we briefly discuss the ma-
jor components of the system which are illustrated in Fig-
ure 1.

2.1. Ontology Import Layer

The import layer (component 1) is responsible for han-
dling the various ontology representation standards. This is
achieved in MOVE by transforming the external representa-
tion of the ontology and its meta-level to an internal one that
is specific to our implementation. The Meta-level consists
of type-information pertaining to the various elements in
the ontology. If PERSON is an element in an ontology, the
meta-level then holds the type of the element, say a CON-
CEPT. So a PERSON has a meta-type of CONCEPT.

It is necessary for user applications to use our import
layer so as to be able to utilize the extraction algorithms.
The representation layer maintains an object-oriented view
of the ontology and its Meta-level. This facilitates easy ex-
tensibility as new ontology elements (new types) may be
added to the ontology as well as its meta-level.

2.2. Labelling - Requirements Specification

’Labelling’ (component 2) of the base ontology facili-
tates the manipulation during the extraction process. The la-
belling may be adjusted, from what the user specified, due
to the requirements of the extraction process. This is the

Figure 1. The Sequential Extraction Process

standard way that the different components of the extrac-
tion process (different extraction algorithms) communicate
with each other. Therefore, labelling is crucial to the inter-
action between users and the extraction algorithms and al-
gorithms amongst themselves. It allows a user to provide
subjective information, pertaining to what must/must not be
included in the target sub-ontology, on which the extrac-
tion process is based. Moreover, an algorithm may work on
the labelling specified by the user, modify it and still pre-
serving the semantics of the specification before passing it
to the next algorithm in the extraction process.

Every ontological element may have a labelling of se-
lected - must be present in the sub-ontology, deselected -
must be excluded from the sub-ontology or void - the ex-
traction algorithm is free to decide the respective elements
inclusion/exclusion in the sub-ontology.

2.3. The Extraction Process

The ’Extraction Process’ (component 3) involves vari-
ous optimization schemes that handle several issues per-
taining to it, such as to ensuring the consistency of initial
requirements. This maintains the semantic completeness,
well-formedness and derives a sub-ontology that is highly
qualitative, in a sense that it is optimal, and is the best so-
lution based on the users requirements. The extraction pro-
cess is not limited to the optimization schemes that are be-
ing used in the framework. Schemes can be added or re-
moved based on the users requirements of the resulting sub-
ontology. Below, we present a short discussion on each of
the optimization schemes currently used in MOVE.

• Requirements Consistency Optimization Scheme
(RCOS): RCOS checks for the consistency of the
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user specified requirements for the target ontol-
ogy. Currently, RCOS itself is a combination of four
sub-schemes that check for various forms of con-
sistency. We will cover this optimization scheme in
greater detail in Section 3.

• Semantic Completeness Optimization Scheme
(SCOS): SCOS considers the completeness of the con-
cepts, i.e. if one concept is defined in terms of an an-
other concept, the latter cannot be omitted from
the sub-ontology without loss of semantic mean-
ing of the former concept.

• Well Formedness Optimization Scheme (WFOS):
This optimization scheme contains the proper rules to
check that the new sub-ontology is a valid ontology.

• Total Simplicity Optimization Scheme (TSOS): Ap-
plying TSOS to a solution will result in the smallest
possible solution that is still a valid ontology.

2.4. Materialized View

The result of the extraction process is not simply just
an extracted sub-ontology, rather an extracted ’material-
ized ontology view’ (component 4)[14]. In the extraction
process, no new information is introduced (e.g. adding a
new concept). However, it is possible that existing seman-
tics are represented in a different way (i.e. a different view
is established). Intuitively, the definition states that elements
may be left out and/or combined, as long as the result is a
valid ontology. No new elements are introduced, unless the
new element is a combination of a number of original el-
ements (i.e. the compression of two or more elements). A
materialized ontology view is required, as the resulting sub-
ontology is a complete independent ontology.

3. Proposed Distributed Extraction Method

The complexity and size of the base ontology make the
extraction process computationally extensive. However, the
sequential extraction process, as illustrated in Section 2,
lends itself to easy distribution. For instance, most of the
intermediate extraction algorithms do not distinguish be-
tween the complete centralized ontology and a scaled down
or partitioned version of it. Therefore the same extraction
algorithm may be applied to both sequential as well as dis-
tributed versions, albeit with some modifications.

Often, business organizations have a cluster-like setup of
inter-connected workstations as opposed to a single shared-
memory, High-Performance Computing (HPC) facility. One
reason for this is that a ’Beowulf Class Cluster’ setup is
cheaper than a centralized HPC facility. It is this reason that
we aim to implement on a distributed memory architecture
for the extraction process described in Section 2.

3.1. Distribution Scheme

The core of the entire extraction process is the optimiza-
tion scheme execution. As mentioned in the previous sec-
tion, the optimization schemes are the modules within our
framework which deal with matching user requirements and
specifications to a base ontology. And then to extract the
required concepts and relationships based on these specifi-
cations. Depending on the user’s preference, optimization
schemes can be tailored to meet certain criteria, such as re-
quirement consistency (RCOS) or semantic completeness
(SCOS) of the derived ontology, etc. Different optimization
schemes can be used together or independently.

This paper focuses on the Requirements Consistency Op-
timization Scheme (RCOS). RCOS ensures that the require-
ments as expressed by the user (or any other optimization
scheme) are consistent and correct, i.e. there are no con-
tradictory statements in the labelling, as set by the user.
The RCOS rules deal with, for example, where users have
missed concepts or have selected attributes but not the con-
cept that owns the attribute. RCOS It is made up of four
rules, which without any implicit ordering or execution pri-
ority, we denote as RCOS1-RCOS4. The rules are provided
below, a more formal introduction to RCOS (and the en-
tire extraction process) can be found in [14].

• RCOS1: This rule stipulates that if a binary rela-
tionship between concepts is selected by the user to
be present in the target ontology, the two concepts
that the relationship associates cannot be disquali-
fied/deselected from the target ontology.

• RCOS2: Similar to RCOS1 with the difference being
that it is applied on an attribute mapping relationship
instead. This rule enforces the condition that if an at-
tribute mapping has a selected labelling, the associ-
ated attribute and the concept that it is mapped onto
must be ’selected’ to be present in the target ontology.

• RCOS3: Stipulates that if an attribute mapping has a
deselected labelling, its associated attribute must be
disqualified from the target ontology. No contradicting
preferences are allowed between attribute mappings
and their associated attributes. RCOS3 together with
RCOS2 imposes this condition.

• RCOS4: RCOS4 is relatively more complex than each
of RCOS1-RCOS3. We utilize the notion of a Path,
for illustrating RCOS4. Paths are very important in the
specification of ontology views. They provide seem-
ingly new relationships that are semantically correct. A
path between two concepts is defined as a chain of re-
lationships and concepts that connects those concepts.

From an RCOS4 viewpoint, the emphasis of a path
lies on the first and last concepts, as these are the two
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that are connected by the path. RCOS4 imposes a con-
dition that If an attribute is selected, but the concept
it ’belongs’ (mapped) to is deselected, there must ex-
ist a path from the attribute to another concept that is
not deselected. Moreover, the path can only contain re-
lationships with a label other than ’deselected’.

Figure 2. Task-Farm Distribution Model

Figure 2 illustrates the classic task-farm model that is be-
ing utilized for the distribution of RCOS. From Figure 3 it
implies that the implementation of RCOS rule 1-3 is straight
forward. However, the complexity actually lies in the sheer
size of the workload that needs to be processed for ensur-
ing consistency. One can also draw the obvious parallels
that would exist in a distributed implementation of RCOS1-
RCOS3. Hence, we refrain from demonstrating the distri-
bution schemes for each of RCOS1-RCOS3 separately. In-
stead, we illustrate the general distribution scheme used by
us (based on Fig. 2) for RCOS1-RCOS3.

Some Notation: Below we present some notation con-
sistent with [14]. These notations are used in the pseudo
code associated with the different optimization schemes.

1. δB(b): a binary relationship between concepts

2. δC(Π1(b)): First concept associated with δB(b)

3. δC(Π2(b)):Second concept associated with δB(b)

4. δattr(t): Denotes a attribute-concept relationship

5. δC(Π1(t)): A concept with associated attribute

6. δA(Π2(t)): An attribute with a associated concept

7. δB(bi), i ε [0, N]: Many binary relationships linked to
make a path.

Let O denote the Ontology and filter(type, label) be an
operation defined over it such that it returns a collection of
elements, �etype of the type given by ’type’ such that the la-
bel of each of those elements matches ’label’. Similarly,

let partition(�etype) be a generic operation that partitions the
�etype according to some data partitioning scheme. If N com-
puting elements are available (numbered 1 to N), the result
of partition(�etype) will be N distinct �ei

type where i repre-
sents the number of the computing element to which the re-
spective partition has been assigned. Finally, let distribute
and gather be asynchronous data distribution and result col-
lection primitives.

Figure 3. RCOS1-RCOS3 Distribution

Depending on which rule is being implemented, the pa-
rameters to the filter operation change accordingly. How-
ever, the rest of the algorithm is exactly the same for each of
RCOS1-RCOS3. Currently, we adopt a equal workload dis-
tribution scheme. So the partitioning scheme divides the en-
tire ontological workload into N distinct partitions, where N
computing elements (processors) are available for use.

Figure 4. RCOS4 Distribution

As mentioned before, RCOS4 utilizes an extended model
to the one depicted in Figure 4. For RCOS4, the main (dis-
tributing process) and the worker processes follow a bi-
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directional communication protocol consisting of update re-
quests (sent by the worker processes) and ontology updates
sent back by the main process. The findSolution algorithm
(see RCOS4 pseudo code) works by traversing the ontology,
trying to find a concept that is not deselected. This traver-
sal may span parts of the ontology which are not locally
present with the worker processor. The worker processors
keeps track of such a situation and asks for an update from
the main processor. The updateRequest-updateReceive pro-
tocol continues as long as the worker processes do not reach
a dead end or a best path is found, which is then returned as
the locally found solution. Notice that RCOS4 does not in-
volve any merging of results like RCOS1-RCOS3. Every
solution returned by any of the worker processes will be
complete in itself.

3.2. Implementation

3.2.1. Plugin Architecture for Extraction Algorithms
Our implementation consists of two main components. One
pertaining to ontology representation and materialized view
extraction and the other pertaining to management of the
distributed extraction process. We adopt a plugin-based ar-
chitecture so as to facilitate seamless integration of both
the components into other ontological applications. It is
possible for a user application to incorporate our func-
tionality in the form of a plugin. Moreover, each phase
within the extraction process, consisting of various opti-
mization schemes, has been implemented independent of
other phases. Therefore, applications importing our func-
tionality are not compelled to use the entire extraction pro-
cess. Depending upon intended use, any of the optimization
schemes may be used in isolation.

3.2.2. Workload Distribution The ontological workload
distribution pertaining to all of the optimization schemes
turns out to be fairly standard. For instance, almost all op-
timization schemes involve the same data partitioning algo-
rithms, distribution primitives etc. Only the rules that qual-
ify data selection (For example, for partitioning purposes)
involve minor modifications. There are two perceived ad-
vantages offered by this approach:

1. Firstly, it facilitates our own development involving
distribution of ontology related workload.

2. Secondly, our distributed approach may be replicated
by users in other innovative application domains as the
distribution component encapsulates the classic task-
farm distribution model, data partitioning and distribu-
tion primitives, as well as facilities the merging back
of results.

3.2.3. Implementation Environment All implementa-
tion has been done using C++ on an Alpha server SC su-
percomputer running Tru64 Unix 5.1. It has also been

ported to a Linux Cluster environment. Our distribu-
tion management component does not directly tackle issues
pertaining to the cluster architecture, processor initializa-
tion etc. Instead, the Messaging Passing Standard[12, 13],
that provides high level message-passing primitives suit-
able for distributed systems, has been utilized. As such,
porting to other environments should not involve any-
thing more than a recompilation on the target platform.

4. Evaluation

To effectively evaluate the distributed section of the pro-
gram, a model was constructed to demonstrate the effi-
ciency of the program relative to different sized ontologies.
The graph has been properly scaled so that the different
sized ontologies could be evaluated easily on the one graph
(Figure 5). The graph shows the effectiveness of using mul-
tiple processors for different sized ontologies. It shows how
efficiently each size of ontology is handled in the distribu-
tion. As can be seen, the distribution is not very efficient
for ontologies that are less than 10,000 concepts. This is be-
cause the cost of employing a number of processors is to
large for the relatively small amount of work required to
be done. However, for ontologies that contain larger than
10,000 concepts, the optimum number of processors to em-
ploy increases.

Figure 5. Scaled Performance Comparison

The dip in the plots (plots with greater than 10,000 con-
cepts) show the points where the optimum number of pro-
cessors to employ is found. For example, if we were using
an ontology with 75,000 concepts, it would be best to em-
ploy four processors, if we used any less or any more then
the total number of operations would increase, leading to an
inefficient use of the processors.

Increasing the number of processors past the dip point,
for any sized ontology, the number of operations taken to
complete work increases due to the extra operations re-
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quired to employ the extra processors and distribute the
work. These sections in the plots, show that processors are
wasting precious operations and not doing any extra work.
Basically the small amount of work required to be done
doesn’t warrant the employment of extra processors.

Based on these results, it is proposed that the distribution
follow this basic table (Table 1) to ensure that the work be-
ing completed uses the most optimal number of processors
to minimize the overall number of operations performed.

Size of Ontology Optimum No of Processors
less than 10,000 1 Processor
10,000 - 25,000 2 Processors
25,000 - 75,000 3 Processors
75,000 - 500,000 4 Processors
500,000 - 8,000,000 5 Processors
8,000,000 plus 6 Processors

Table 1. Optimal Processors

For ontologies that have less than 10,000 concepts, the
system should only employ one processor to complete the
work to be at it most efficient. If more processors were
to be used then they would be wasted and the program
would actually take longer to run. For ontologies between
10,000 concepts and 25,000 concepts, the system should use
two processors. The same goes for ontologies of sizes be-
tween 25,000 and 75,000, 75,000 and 500,000, and 500,000
and 8,000,000 concepts. For ontologies that had more than
8,000,000 concepts there seemed to be no real benefit for
using more than six processors in this example.

5. Conclusion and Future Work

In this paper we have demonstrated a novel approach
for sub-ontology extraction from a large scale base ontol-
ogy. We have developed and implemented a distributed ap-
proach for the execution of the extraction process. The re-
quirement consistency sub-ontology optimization scheme
(RCOS) was divided into four modules (RCOS1 to RCOS4)
to distinguish the optmization scheme rules.

The evaluation shows how the performance of the ex-
traction process can be improved in a multi-processor dis-
tributed environment by employing an appropriate number
of worker processors. The result of this work will be bene-
ficial for other web applications that utilize large ontologies
such as bioinformatics area, data warehousing, and medical
sciences. By using our extraction process and distributed al-
gorithms, an application can extract the necessary concepts
and relationships from the base ontology and work indepen-
dently on them.
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