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Abstract

We demonstrate the role of commonsense inference to-
ward the modeling of qualitative notions of space and
spatial change within a dynamic setup. The inference
patterns are connected to those that are required to han-
dle the frame problem whilst modeling inertia, and the
causal minimisation of Lin [1995] that is required to ac-
count for the ramifications of occurrences. Such patterns
are both useful and necessary in order to operationalize
a domain-independent qualitative spatial theory that is
re-usable in arbitrary dynamic spatial systems, e.g., for
spatial planning and causal explanation tasks. The illus-
tration, grounded in the context of embedding arbitrary
‘qualitative spatial calculi’ within the situation calculus,
utilizes topological and orientation calculi as examples.

1 Introduction
Research in the qualitative spatial reasoning domain has fo-
cused on the representational aspects of spatial information
conceptualization and the construction of efficient computa-
tional apparatus for reasoning over those by the application
of constraint-based techniques [Cohn and Renz, 2007]. For
instance, given a qualitative description of a spatial scene, it
is possible to check for its consistency along arbitrary spa-
tial domains (e.g., topology, orientation and so forth) in an
efficient manner by considering the general properties of a
qualitative calculus [Ligozat and Renz, 2004]. So an impor-
tant question that may be posed is: how do we integrate these
specializations, which allow us to efficiently reason about a
static spatial configuration, within a dynamic spatial system
[Bhatt and Loke, 2008] where spatial configurations undergo
changes as a result of actions and events occurring within
the system? More generally, how do we embed a special-
ized commonsense theory of space and spatial change within
a general formalism to describe and reason about change? In-
deed, this is closely connected to the agenda described by
Shanahan [1995], and is also related to the broader theme
of the sub-division of endeavors and their integration in AI.
Shanahan describes it aptly:

‘If we are to develop a formal theory of commonsense,
we need a precisely defined language for talking about
shape, spatial location and change. The theory will

include axioms, expressed in that language, that cap-
ture domain-independent truths about shape, location and
change, and will also incorporate a formal account of
any non-deductive forms of commonsense inference that
arise in reasoning about the spatial properties of objects
and how they vary over time’

This paper complements the results in Bhatt [2009], where
commonsense inference from the viewpoint of phenomenal
and reasoning requirements is presented. Here, we demon-
strate the utility of commonsense inference within the frame-
work of the situation calculus for representing and reasoning
about changing spatial domains. The reasoning tasks are di-
rectly connected to fundamental epistemological aspects con-
cerning the frame and ramification problems, and are neces-
sary for consistently preserving some of the high-level ax-
iomatic aspects that characterize a generic qualitative spatial
calculus (Section 2). Although we do not explicitly address
all aspects pertaining to the task of ‘spatial calculus embed-
ding’ (within situation calculus) herein, that is essentially the
overall context. Here we solely focus on demonstrating the
use of commonsense reasoning in the context of (AI–AII):

AI maintaining compositional consistency of sets of spatial re-
lations pertaining to an arbitrary number of integrated / non-
integrated spatial calculi, i.e., calculi with / without integrated
composition theorems. Here, compositional consistency for
each spatial calculus is defined by the properties that are in-
trinsic to it and does not depend on the default reasoning ap-
proach. This aspect is connected to the ramification problem
(Section 3.1).

AII inertial aspects of a dynamic spatial system determining what
remains unchanged, one instance of this being characterized by
the intuition that the qualitative spatial relationship between
two primitive spatial entities typically remains the same. In-
deed, these aspects are connected to the frame problem (Sec-
tion 3.2).

Reasoning about changing spatial configurations in the
presence of actions and events is useful in several scenarios
of which the domain of cognitive robotics is a prime exam-
ple. For instance, spatial re-configuration may be formulated
as a planning task: given compositionally consistent mod-
els of an initial and desired spatial configuration, regress a
situational-history (i.e., a sequence of actions) that would pro-
duce the goal configuration. Similarly, given an initial situa-
tion description and a temporally ordered set of partial obser-
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Figure 1: Topological and Orientation Calculi

vations denoting configurations of objects, abduce an expla-
nation that entails the observations. Indeed, the embedding
and/or integration of commonsense notions of space and spa-
tial change (e.g., qualitative spatial calculi) within the formal
apparatus to reason about action and change is a necessary
endeavor for operationalizing (spatial) calculi in practical ap-
plication domains and for realizing the aforementioned spa-
tial planning and causal explanation tasks.

2 Ontology of Space and Change
The situation calculus formalism used in this work, denoted
Lsitcalc, is a first-order many-sorted language with equality and the
usual alphabet of logical symbols {¬, ∧, ∨, ∀, ∃, ⊃, ≡}. There
are sorts for events and actions (Θ), situations (S), spatial objects
(O) and regions of space (R), with corresponding (lower-case) vari-
ables for each sort. The use of the predicates including, Holds,
Poss, Occurs, Caused and the Result function for a typical situ-
ation calculus theory will be self-evident. With Lsitcalc as a basis, a
situation calculus meta-theory Σsit required from the viewpoint of
the causal minimisation framework of [Lin, 1995] is adopted :
Definition 2.1 (Foundational Theory Σsit). The founda-
tional theory Σsit of the situation calculus formalism consists of
the following set of formulae: the property causation axiom deter-
mining the relationship between being ‘caused’ and being ‘true’,
a generic frame axiom in order to incorporate the assumption of
inertia, uniqueness of names axioms for the fluents, occurrences and
fluent denotations, and domain closure axioms for propositional
and functional fluents. �

The spatial ontology that is required depends on the na-
ture of the spatial calculus that is being modeled. In general,
spatial calculi can be classified into two groups: topologi-
cal and positional calculi. When a topological calculus such
as the Region Connection Calculus (RCC) [Randell et al.,
1992] is being modeled, the primitive entities are spatially
extended and could possibly even be 4D spatio-temporal his-
tories (e.g., in a domain involving the analyses of motion-
patterns). Alternately, within a dynamic domain involving
translational motion in a plane, a point-based (e.g., Double
Cross Calculus [Freksa, 1992],OPRAm [Moratz, 2006] ) or
line-segment based (e.g., Dipole Calculus [Schlieder, 1995])
abstraction with orientation calculi suffices. Figure 1(a) is
a 2D illustration of relations of the RCC-8 fragment of the
region connection calculus. This fragment consists of eight
relations: disconnected (dc), externally connected (ec), par-
tial overlap (po), equal (eq), tangential proper-part (tpp) and
non-tangential proper-part (ntpp), and the inverse of the lat-
ter two tpp−1 and ntpp−1. Similarly, Fig. 1(b) illustrates one

primitive relationship for the Oriented Point Relation Algebra
(OPRA) [Moratz, 2006], which is a spatial calculus consist-
ing of oriented points (i.e., points with a direction parameter)
as primitive entities. The granularity parameterm determines
the number of angular sectors, i.e., the number of base rela-
tions. Applying a granularity of m = 2 results in 4 planar
and 4 linear regions (Fig. 1(b)), numbered from 0 to 7, where
region 0 coincides with the orientation of the point. The
family of OPRAm calculi are designed for reasoning about
the relative orientation relations between oriented points and
are well-suited for dealing with objects that have an intrinsic
front or move in a particular direction.
Definition 2.2 (Valid Regions within the Theory).
Let U denote the universe of the primitive spatial entities,
whatever be their precise geometric interpretation in <n. When
extended, a region is valid if it has a well-defined spatiality, is
measurable using some notion of n-dimensional measurability that
is consistent across inter-dependent spatial domains (e.g., topology
and size) and the region is convex and of uniform dimensionality. �

Definition 2.2 is one way to set the basic requirements for a
particular application domain – these are necessary to accom-
modate the spatial calculi we use in the examples. The func-
tional fluent extension(o) denotes the extension of a physi-
cal object in space – to emphasize, this could be a region of
space (for a topological calculus such as RCC), or a hypo-
thetical entity such as a point or in general, an ordered tuple
of points (for line-segment based orientation calculi) and also
possibly a point with an additional direction parameter (for
modeling a calculus such as OPRAm) on an absolute frame
of reference. We suppose that the precise semantics vis-à-vis
the concrete domain in <n is provided by a domain-specific
qualifier. Finally, let R = {R1, R2, . . . , Rn} be a finite
set of binary base relationships of a qualitative calculus over
U with some spatial/spatio-temporal interpretation.1 We reify
the base relationships inR for representational purposes. i.e.,
relationships from eachR are treated as concrete fluent deno-
tations for spatial fluents denoting the spatial relationship be-
tween the primitive entities of U – let Γsp = {γ, γ1, . . . , γn}
denote such a set. For brevity, the object-region equivalence
axiom (1) for spatial fluents (φsp) denoting spatial relation-
ships (γ) between primitive spatial entities is used:

Holds(φsp(o1, o2), γ, s) ≡ (∃ri, rj). extension(o1, s) = ri

∧ extension(o2, s) = rj ∧ Holds(φsp(ri, rj), γ, s)
(1)

From a high-level axiomatic viewpoint, a spatial calculus de-
fined onR has the following properties:

P1 R has the jointly exhaustive and pair-wise disjoint (JEPD)
property, meaning that for any two entities in U , one and only
one spatial relationship fromR holds in a given situation

P2 the basic transitivity, symmetry or asymmetry or the relation-
ship space is known

P3 the primitive entities inR have a continuity structure, referred
to its conceptual neighborhood (CND) [Freksa, 1991], which
determines the direct, continuous changes in the quality space
(e.g., by deformation, and/or translational/rotational motion)

1Binary spatial relations are assumed here, but potential scenar-
ios could also involve ternary orientation calculi.
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Figure 2: Complete N-Clique Descriptions

P4 for a calculus with n JEPD relationships, [n × n] composition
theorems are pre-computed

P5 axioms of interaction that explicitly model interactions be-
tween interdependent spatial calculi, when more than one cal-
culi are being applied in a non-integrated manner (i.e., with
independent composition theorems)

Whereas the JEPD property (P1) is necessary to model
compositional reasoning and consistency maintenance, the
CND structure (P) is useful in either projecting or abducing
potential states for sets of qualitative spatial descriptions. By
definition, for any spatial calculus, we assume that (P1–P5)
are known apriori. Given the scope of this paper, we only
discuss the modeling of requirements (P4) and (P5) herein.
However, note that in order to realize a domain-independent
spatial theory that is re-usable across arbitrary dynamic do-
mains, it is necessary to preserve all the high-level axiomatic
semantics in (P1–P5), and implicitly the underlying algebraic
properties, that collectively constitutes a ‘qualitative spatial
calculus’ [Ligozat and Renz, 2004].

3 Commonsense and (Spatial) Calculi
3.1 Global Compositional Consistency
Corresponding to each situation (within a hypothetical
branching-tree structured situation space), there exists a sit-
uation description that characterizes the spatial state of the
system. Starting with the initial situation, it is necessary that
the spatial component of such a state be a ‘complete specifi-
cation’ without any missing information. Note that by com-
plete specification, we do not imply absence of uncertainty or
ambiguity. Completeness also includes those instances where
the uncertainty is expressed as a set of completely specified
alternatives in the form of disjunctive information. From the
(spatial) viewpoint, for k spatial calculi being modeled, the
initial situation description involving n domain objects re-
quires a complete n-clique specification with [n(n − 1)/2]
spatial relationships for each of the respective calculi (Fig. 2).
Precisely, given that the foundational theory Σsit (Def. 2.1)
consists of unique names axioms for fluents (i.e., [φsp(oi, oj)
6= φsp(oj , oi)]), static spatial configurations in actuality con-
sist of [(k × [n(n − 1) / 2]) × 2] unique functional fluents.
CI. Composition Theorems: From an axiomatic viewpoint,
the notion of a spatial calculus, be it topological, orienta-
tional or other, defined on a relationship space R is (primar-
ily) based on the derivation of a set of compositions between
the primitive JEPD setR. In general, for a calculus consisting
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Figure 3: Compositional Consistency and Ramifications

of n JEPD relationships (i.e., n = |R|), [n × n] composi-
tions are precomputed. Each of these composition theorems
is equivalent to an ordinary state constraint (2), which every
n-clique spatial situation description (Fig.2) should satisfy.

(∀s). [Holds(φsp(o1, o2), γ1, s) ∧ Holds(φsp(o2, o3), γ2, s)

⊃ Holds(φsp(o1, o3), γ3, s)]
(2)

CII. Axioms of Interaction: Axioms of interaction are only
applicable when more than one spatial domain is being mod-
eled in a non-integrated manner. Such axioms provide an
explicit characterization of the relative entailments that ex-
ist between inter-dependent aspects of space. For instance,
a spatial relationship of one type may directly entail or con-
strain a spatial relationship of another type (3a). Such axioms
could also possibly be compositional in nature, making it pos-
sible to compose spatial relations pertaining to two different
aspects of space in order to yield a spatial relation of either or
both spatial types used in the composition (3b).

(∀s). [Holds(φsp1(o, o
′
), γ, s) ⊃ Holds(φsp2(o, o

′
), γ
′
, s)] (3a)

(∀s). [Holds(φsp1(oa, ob), γ
′
sp1, s) ∧ Holds(φsp2(ob, oc), γ

′
sp2, s)

⊃ Holds(φsp(oa, oc), γsp, s)]
(3b)

We further exemplify (CI–CII) for topological, size and ori-
entation relationships in (4–5). Here, the following notion
of global compositional consistency accounting for (CI–CII)
suffices:
Definition 3.1 (C-Consistency). A situation is C-Consistent,
i.e., compositionally consistent, if the n-clique state or spatial sit-
uation description corresponding to the situation satisfies all the
composition constraints of every spatial domain (e.g., topology, ori-
entation, size) being modeled, as well as the relative entailments as
per the axioms of interaction among inter-dependent spatial calculi
when more than one spatial calculus is modeled.

Although the details do not pertain here, it is instructive
to point out that C-Consistency is a key (contributing) no-
tion in operationalizing the principle of ‘physically realiz-
able/plausible’ situations for spatial planning and causal ex-
planation tasks.

C-Consistency and Ramifications
Spatial situation descriptions denoting configurations of do-
main objects must be C-Consistent (Def. 3.1). To re-
emphasize, in addition to the compositional constraints over



R, C-Consistency also includes those scenarios when more
than one aspect of space is being modeled in a non-integrated
way, i.e., relative dependencies between mutually dependent
spatial dimensions that are modeled explicitly too should be
satisfiable. Ensuring these two aspects of global consistency
of spatial information is problematic because both composi-
tional constraints as well as axioms of interaction contain in-
direct effects in them, thereby necessitating a solution to the
ramification problem [Finger, 1987]. In the context of the sit-
uation calculus, Lin [1995] illustrates the need to distinguish
ordinary state constraints from indirect effect yielding ones,
the latter being also referred to as ramification constraints.
This is because when ramification constraints are present, it
is possible to infer new effect axioms from explicitly for-
mulated (direct) effect axioms together with the ramification
constraints. Simply speaking, ramification constraints lead
to what can be referred to as ’unexplained changes’, which
is clearly undesirable within a qualitative theory of spatial
change. These are further illustrated in examples (E1–E2):
E1. Motion and/or Deformation: Consider the basic case of
compositional inference with three objects a, b and c: when
a and b undergo a transition to a different qualitative state
(either by translational motion and/or deformation), this also
has an indirect effect, although not necessarily, on the spatial
relationship between a and c since the relationship between
the latter two is constrained by at least one of the [n × n]
compositional constraints (2) of the relational space. As one
example, consider the illustration in Fig. 3(a) – the scenario
depicted herein consists of the topological relationships be-
tween three objects ‘a’, ‘b’ and ‘c’. In the initial situation
‘S0’, the spatial extension of ‘a’ is a non-tangential part of
that of ‘b’. Further, assume that there is a change in the re-
lationship between ‘a’ and ‘b’, as depicted in Fig. 3(a), as
a result of a direct effect of an event such as growth or an
action involving the motion of ‘a’. Indeed, as is clear from
Fig. 3(a), for the spatial situation description in the result-
ing situation (either ‘S1’ or ‘S2’), the compositional depen-
dencies between ‘a’, ‘b’ and ‘c’ must be adhered to, i.e., the
change of relationship between ‘a’ and ‘c’ must be derivable
as an indirect effect from the underlying compositional con-
straints. The new relationship between a and c in situation
S2 can either result in: increased ambiguity, decreased ambi-
guity and in some cases no change at all.2 In the case of the
RCC-8 topological calculus, there exist a total of 64 composi-
tion theorems, 27 of which provide unambiguous information
as to the potential relationship. All other compositions pro-
vide disjunctive information that may further be refined by
the inclusion of complementary spatial calculi [Randell and
Witkowski, 2004]. The support of modeling complementary
axioms of interaction (3) is included for this purpose.
E2. Interdependent Calculi: The relative entailments be-
tween the topological and the size domains serve as the sim-
plest example of interacting spatial calculi. Consider Table
1, which illustrates the mutual entailments between size rela-
tionships and the RCC-8 topological primitives [Gerevini and
Renz, 2002]. For instance, size equality rules out all contain-

2The former two cases involve ramifications whereas the last
case, further discussed in Section 3.2, pertains to inertia.

(a) Topology to Size
φtop φsize φtop φsize

tpp |= < dc |= no-info
ntpp |= < ec |= no-info
tpp−1 |= > po |= no-info
ntpp−1 |= > eq |= =

(b) Size to Topology
φsize φtop

= |= dc ∨ ec ∨ po ∨ eq
> |= dc ∨ ec ∨ po ∨ tpp−1 ∨ ntpp−1

< |= dc ∨ ec ∨ po ∨ tpp ∨ ntpp

Table 1: Mutual Entailments for Topology and Size

ment (tpp, ntpp and their inverses) relationships. Similarly, if
it is known that object o is a tangential part of object o

′
, then

it can also be presumed that the size of object o is less than the
size of o

′
. The other forms of interaction are compositional

in nature and may be illustrated with topological and naive
intrinsic orientational primitives. Consider the illustration in
Fig. 3(b) where the composition of topological and orienta-
tion relations front and inside involving 3 objects a, b and
c is depicted. Here, topological and orientation relationships
between [b,c] and [a,b] respectively implies an orientation re-
lation between [a,c]. This and other forms of interactions are
formally exemplified in the section to follow.

Applying Lin’s Causal minimisation
A solution to the problem of ramifications for this particular
case (of ensuring global compositional consistency of spa-
tial scene descriptions) is obtainable from the general works
of Lin and Reiter [1994], Lin [1995]. The solution basically
involves appeal to causality (i.e., modeling all ramification
yielding constraints in the form of causal rules) and apply-
ing non-monotonic reasoning (using circumscription) to min-
imise the effects of occurrences whilst deriving the successor
state axioms or the causal laws of the domain. Note that this
manner of deriving the successor state axioms is an extension
to the original approach proposed by Reiter [1991], where
only a solution to the frame problem is included under a gen-
eral ‘completeness assumption’ stipulating that there are no
indirect effects within the domain theory.

A reformulation of all ramification yielding state con-
straints as causal rules of the form proposed by Lin [1995]
is necessary: (4a) and (4b) exemplify one composition the-
orem each for the RCC-8 and the OPRA2 calculi respec-
tively. Similarly, (5a–5c) respectively exemplify the non-
compositional and compositional axioms of interaction with
topological, size and naive orientation primitives.3 Notice the
difference between axioms (5a) and (5b) – whereas the latter
is compositional in nature, the former is not. Furthermore,
(5c) represents yet another form where spatial relationships
from two calculi entail a relationship of both types.

(∀s). [Holds(φtop(o1, o2), tpp, s) ∧ Holds(φtop(o2, o3), eq, s)

⊃ Caused(φtop(o1, o3), tpp, s)]
(4a)

(∀s). [Holds(φort(~o1, ~o2), 2∠6
2 , s) ∧ Holds(φort(~o2, ~o3), 2∠6

1 , s)

⊃ Caused(φort(~o1, ~o3), 2∠7
1 , s)]

(4b)

(∀s). [Holds(φtop(o, o
′
), tpp, s)

⊃ Caused(φsize(o, o
′
), <, s)]

(5a)

3For readability, naive labels are used instead ofOPRAm prim-
itives since the latter are non-linguistic and hence, counter-intuitive.



(∀s). Holds(φort(oa, ob), front, s) ∧ Holds(φtop(oc, ob), inside, s)

⊃ Caused(φort(oa, oc), front, s)
(5b)

(∀s). [Holds(φtop(o1, o2), ec, , s) ∧ Holds(φort(o1, o2), right, s) ∧
Holds(φtop(o2, o3), ec, s) ∧ Holds(φort(o2, o3), right, s) ⊃
Caused(φtop(o1, o3), dc, s) ∧ Caused(φort(o1, o3), right, s)]

(5c)

Indeed, the basic form of the ramification constraint stays
the same, namely as a causal rule, and from an operational
viewpoint, it is expected that all spatial domain constraints
(both ramification and ordinary) shall be generated automat-
ically from external / high-level (algebraic) specifications of
qualitative spatial calculi. Let Σrc denote the set of all ram-
ification constraints; [Σsit ∪ Σrc] refers to the conjunction
of these constraints with the foundational situation calculus
theory as per Def. 2.1. Strictly speaking, other aspects con-
cerning a general spatial calculus (Section 2, P1–P3) that are
not included in this paper would also be needed in this theory
for the causal minimisation to work, but these are not con-
ceptually connected to this paper and hence omitted. What is
relevant is that applying causal minimisation results in causa-
tion axioms, explained shortly, determining all potential ways
in which the spatial relationship φsp of any sort (e.g., topo-
logical, orientational) between two domain objects oi and oj
(within the complete n-clique description) may acquire a par-
ticular situation-specific denotation γ. The manner in which
these causation axioms get utilized is further elaborated on in
Section 3.2. For now, the following is relevant:
Proposition 3.1 (C-Consistent Situation Space). All spa-
tial situation descriptions corresponding to ‘legal’ situations
are C-Consistent as per Def. 3.1.
Proof. The proof sketch rests on the basic premise that the causal
minimisation results in ‘causation axioms’ of the form in (6) [Lin,
1995]. Here, (A) and (B) correspond to the direct effects (not in-
cluded in this paper) and indirect effects (Σrc) respectively that are
either explicitly formulated or derivable from the theory.4

CIRC[Σsit ∪ Σrc ; Caused]

↓

Caused(φsp(oi, oj), γ, s) ≡ {(A) ∨ (B)}
(6)

With (6) as a basic result, note that situation ‘legality’ entails that
permissible spatial changes are only those that adhere to the continu-
ity constraints (Section 2, P3) of the relationship spaceR and other
domain-specific pre-conditions. The direct effects of such continu-
ous changes are covered by (A). Additionally, the formulation of all
indirect-effect yielding constraints (Section 3.1, CI–CII) as causal
rules, i.e., Σrc, ensures that the indirect effects that arise as a result

4Note that the ternary ‘Caused’ relation always occurs on the
right-side of the ‘⊃’ connective (in all causal rules or explicitly for-
mulated direct effects, and ramification constraints Σrc). Applying
circumscription transforms the material implication to an equiva-
lence – a syntactic transformation that follows from a standard result
in circumscription [Lifschitz, 1994, pg. 5]. Lin [1995] presents step-
by-step operational details of the circumscriptive causal minimisa-
tion and Lin [2003] realizes an implementation for the propositional
case.
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of the permissible changes too are taken into consideration as a result
of the causal minimisation. This implies that for all legal situations,
the causation axiom entails all the compositional constraints and ax-
ioms of interactions of the relationship spaceR. In other words, the
legal situation space satisfies C-Consistency.

3.2 Incorporating Spatial Persistence
Global compositional consistency in section 3.1 dealt with
the problem of ramifications, where spatial relationships un-
dergo exceptional changes. With spatial persistence, there
is essentially the need to incorporate the commonsense law
of inertia, i.e., typically things stay the same. At least one
other instance, addressing this line of investigation, can be
found in the work of Shanahan [1995]. Within a real-valued
co-ordinate system, Shanahan investigates the default reason-
ing pattern, also connected to the frame problem, required to
model the commonsense law that ‘space is typically empty’.
For instance, an agent would need to make such a default
assumption before moving itself and/or other objects to a cer-
tain region of space or when other domain specific occur-
rences have happened. The patterns in the following comple-
ment this for the case where such a real-valued quantity space
is reasoned upon qualitatively using formal spatial calculi.

Property/Relational Persistence
Spatial property persistence, i.e., the intuition that the topo-
logical, orientational or other spatial relationship between
two objects typically remains the same, is one default rea-
soning pattern rooted in the frame problem that is identifiable
within the spatial context. For instance, assuming that dy-
namic topological and orientational information constitutes
the state descriptions corresponding to the unique ‘situa-
tions’, the problem is that of formalizing the intuition that
the topological relationship between two objects or the orien-
tation of an object relative to another ‘typically’ remains the
same, unless if there is ‘cause’, whatever be the nature of such
cause, to believe to the contrary. Consider Fig. 4(a), which
qualitatively depicts the relationship of an agent, modeled as
a directed line-segment (‘b’) to a containing object (‘a’) that
is interpreted as a room. Given that the spatial relationship
of the agent with that of the room is that of containment, the
problem of spatial property persistence is that of formalizing
the intuition that this containment relationship persists in the
situation resulting from the occurrence of an action such as
turn around.

Absolute Positional Persistence
In addition to persistence at the qualitative or relational level,
absolute positional persistence at the metric level is also re-
quired to formalize the intuition that the absolute spatial ex-
tension of an object, whatever that may be (Section 2), and its



intrinsic orientation and/or implicit direction parameter typi-
cally stays the same. Depending on the nature of the spatial
ontology that is adopted, the inertial aspects that need to be
accounted for at the metric-level include:

I1 for spatially extended objects, their planar or volumetric exten-
sion typically stays the same. This implies that the ‘qualified’
region of space occupied by an object typically stays the same
as a result of occurrences.

I2 for point and line-segment approximated objects, its point-
vector(s) and the additional direction parameter stays the same.

I3 for an empty region of space, the intuition that it typically re-
mains empty.

Generic Frame Assumption
Given the causal minimisation determining what changes di-
rectly or indirectly as a result of ramification constraints, the
question of what does not change becomes almost trivial.
In the context of the situation calculus formalism in use, a
generic frame assumption of the form in (7) incorporating
the principal of inertia whilst deriving the standard successor
state axioms [Reiter, 1991] is sufficient to handle all forms
of persistence. Separate inertial assumptions are required to
model each of (I1-I3), however their generic form remains the
same as that required for property persistence as modeled by
(7):

Poss(θ, s) ∨ Occurs(θ, s) ⊃

[¬(∃ γ
′
) Caused(φsp(oi, oj), γ

′
, Result(θ, s)) ⊃

Holds(φsp(oi, oj), γ, Result(θ, s)) ≡ Holds(φsp(oi, oj), γ, s)]
(7)

What is essentially required to be done is to compile the
causation axioms (6) within the generic frame axiom (7) to
derive the final causal laws determining all changes as well
as non-changes.

4 Discussion and Outlook
Qualitative spatial methods have primarily remained focused
on reasoning with static spatial configurations. However, for
applications such as cognitive robotics, these methods re-
quire different interpretation, where sets of spatial relations
undergo change as a result of named occurrences in the en-
vironment. Consequently, the formal embedding of arbitrary
spatial calculi – whilst preserving their high-level axiomatic
semantics and low-level algebraic properties – has to be in-
vestigated from the viewpoint of formalisms such as the situ-
ation calculus, event calculus and fluent calculus. At a higher
level of abstraction, this will result in the (native) incorpo-
ration of commonsense notions of space and spatial change
within languages such as GOLOG and FLUX for their use
in arbitrary dynamic domains. In general, the areas of com-
monsense reasoning, and action and change are mature and
established tools, formalisms and languages from therein are
general enough to be applied to the case of dynamic spa-
tial systems, where relational spatial models undergo change
as a result of interaction in the environment. In this paper,
we highlighted (some) aspects of embedding arbitrary spa-
tial calculi within the situation calculus formalism and the

utility of commonsense inference patterns, connected to the
frame and the ramification problems, whilst achieving the
suggested embedding. This is primarily done with the aim
of consistently preserving the high-level axiomatic properties
determining the constitution of a qualitative spatial calculus.
As research in qualitative spatial representation and reason-
ing moves form theory to practice, it will be necessary to
integrated formal spatial calculi within general logic-based
frameworks in AI, and to further broaden the interpretation
of a (re-usable) qualitative spatial theory.
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