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Abstract

Decision making in a realistic environment necessitates a formal rep-

resentation of its dynamics, a speci�cation of actions and their e�ects.

Existing reactive approaches work in a hardwired stimulus-response man-

ner thereby not utilising complex goal oriented planning. Reasoning about

action & change, excluded from reactive systems, instead relies on a for-

mal approach to represent knowledge pertaining to the causal laws of

the domain. Such knowledge is imperative for goal oriented planning in

even the most simplest of domains. The aim of this project is to over-

come the limitations of a reactive system through the use of a high-level

deliberative behavioral approach. The control mechanism is based on sit-

uation calculus, which is a �rst order language speci�cally designed for

representing dynamically changing worlds. Our implementation involves

writing programs in the high-level cognitive robotics language 'Indigolog'

to control agents in a simulated soccer environment. Within the context of

Indigolog, we emphasize the suitability of high-level deliberative control,

based on a sophisticated logic of action, in dynamic environment such as

the soccer domain.
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1 Introduction

A signi�cant e�ort in Arti�cial Intelligence has been devoted to studying the
representation of domain knowledge pertaining to dynamic environments. Re-
search in this regard mainly focuses on developing formalisms for representing
knowledge about such systems and reasoning about it, generally referred to as
Reasoning about Action and Change (RAC). Indeed, the real world being
a dynamic place, all attempts to model any but its simplest features must take
change seriously. Certain fundamental issues (that make up the core repre-
sentational problems) from a reasoning viewpoint must be addressed by every
formalism. For example, consider the following problems:

• The Frame problem: How do we reason about those aspects of the
state that remain unchanged as a result of performing an action ? If we
had a number of actions to be performed in sequence, we would have
quite a number of conditions to write down that certain actions do not
change the state in some way. Precisely, with m actions and n values
(representing the state), we might have to write down mn such conditions.
This problem, �rst addressed in [1], is considered to be fundamental from
an RAC viewpoint.

• The Rami�cation problem: The rami�cation problem names the chal-
lenge to accommodate actions whose execution causes indirect e�ects [2].
These e�ects, not formally accounted for in the respective action speci�-
cation, are consequences of general laws describing dependencies between
components of the world description.

• The Quali�cation problem: In formal theories of reasoning about ac-
tions, the quali�cation problem denotes the problem to account for the
many conditions, which albeit unlikely to occur in the general case, may
prevent the successful execution of an action [3]. Note that given a certain
action representation formalism, these preconditions will not be a part of
formal action precondition list.

Many approaches based on mathematically rigorous formalisms for reason-
ing about action and change have been proposed and analyzed. Addressing
problems, in their full generality, pertaining to dynamic domains is a non trivial
task; Apart from addressing the fundamental problems, a general account of
dynamical systems must accommodate the following range of phenomena [4]:

• The causal laws relating actions to their e�ects.

• The conditions under which actions can be performed.

• Exogenous events.

• Probabilistic action occurrences and e�ects.

• Utility theory: Deciding what to do and when to do it.
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• Complex actions and procedures.

• Discrete and continuous time.

• Concurrency.

• Continuous processes.

• Unreliable sensors and e�ectors.

• Planning a course of actions.

• Monitoring the execution of a course of actions and recognizing and re-
covering from failed actions.

Recently, the �eld of Cognitive robotics has emerged with the aim of providing
practical tools for reasoning and/or planning in the real world. The broader re-
search agenda within the community is being centered around issues pertaining
to action and their e�ects. The �eld of cognitive robotics has, as its long term
objectives, the provision of a uniform theoretical and implementation frame-
work for robotic or software agents that reason, act and perceive in changing,
incompletely known, unpredictable environments. The cognitive robotics idea
of a intelligent system, and the metaphor of intelligent individuals that are situ-
ated into dynamic environments and that can interact with each other, updating
their mutual beliefs, is being regarded as the new model of symbolic cognition
[5].

As stated above, most of the research in cognitive robotics aims at unifying
theoretical and implementation frameworks for intelligent agent design. One
approach to meet this end involves use of logic based KRR formalisms as the
underlying theory in order to develop high-level agent languages. For instance,
Situation calculus, which is a sophisticated logic of action, is the underlying
KRR formalism for various high-level action languages such as GOLOG and its
extensions conGolog, Indigolog etc. It is a �rst order language speci�cally de-
signed for representing dynamically changing worlds. In addition to allowing for
the representation of actions and their e�ects, it also facilitates a parsimonious
solution to the frame problem through the speci�cation of the so called frame
axioms [6] . These are axioms that specify the action invariants of the domain,
namely, those aspects of the state that remain unchanged as a result of per-
forming an action. The point being made here is that such a merger between
theory and practice is highly advantageous as the resulting agent framework
tends to be based on mathematically rigorous principles rather than an ad-hoc
implementation e�ort.

The rest of the introductory section is organised as follows: We brie�y present
some theoretical issues pertaining to agents in sub-section 1.1. Speci�cally,
we look at the two popular models of agent cognition, namely the possible
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world model and the belief-desire-intention model. In sub-section 1.2, we cover
issues pertaining to construction of agent systems that satisfy their respective
theoretical properties. We slowly intend to move the discussion from theory
towards practice. However, in this introductory section, we refrain from getting
too much into practical details. These have been covered in greater detail in
other parts of the thesis. Some of the research questions addressed in this thesis
have been pointed out in sub-section 1.3. A complete organisation of the rest
of the thesis has been presented in sub-section 1.4.

1.1 Agent Cognition Models

An agent cognition model can be de�ned as a formal approach for the speci�ca-
tion of the notion of agency. Agent theorists develop formalisms for representing
the properties of agents, and using these formalisms, develop models that cap-
ture desirable properties of agents. Agent theorists address questions such as:
How are we to conceptualize agents ? What properties should agents have and
How are we to formally represent and reason about these properties.

1.1.1 Possible Worlds Model

The possible worlds model for logics of knowledge and belief is based on the
that an agents belief could be characterized as a set of possible worlds [7]. The
idea of the possible worlds model is that when an agent has incomplete infor-
mation, when he does not know the value of some propositions or statements,
he considers all possible values as if there were parallel worlds, one for each
value. Each world represents one state of a�airs considered possible, given what
the agent knows. The term epistemic alternatives has been coined to describe
the worlds possible given an agents beliefs. Something true in all our agents
epistemic alternatives can be said to be believed by the agent. There exist two
well-known problems associated with this model [8] - that of knowing all valid
formulae and that of knowledge/belief being closed under logical consequence -
together, these constitute the well-known logical omniscience problem. It has
been widely argued that this problem makes the possible worlds model unsuit-
able for resource bounded agents - and any real system is resource bounded
[9].

1.1.2 Belief Desire Intention (BDI) Model

The Belief-Desire-Intention architecture draws its inspiration from philosophi-
cal theories of reasoning and planning [10]. It views the system as a rational
agent having certain mental attitudes of Belief, Desire and Intention. These
respectively represent the informational, motivational and deliberative states of
the agent. From a philosophical point of view, beliefs represent the knowledge
about the world. Desires are equivalent to goals whereas intentions are the cho-
sen course of action adopted to accomplish the desires. From a computational
viewpoint, beliefs are some way of representing the state of the world, which

8



generally takes the form of expressions in the language of predicate calculus. In-
tentions are plans to which an agent has committed itself for achieving a desire
are represented a stack of partially instantiated plans. At any point during the
reasoning process, the BDI agent has access to the so called belief-accessible,
desire-accessible and intention-accessible worlds and a event queue consisting
of triggering (internal & external) events in response to which the BDI agent
forms intentions.

Plans, as mental attitudes that guide the agent in its reasoning process, play
a central part within the BDI framework. Plans are basically a part of the
belief set of the agent and they capture the procedural information on how to
achieve certain desires/goals given a set of contextual conditions. In this sense,
plans can be looked upon as context-sensitive, event-invoked recipes that allow
hierarchical decomposition of goals as well as the execution of actions [11].

1.2 Agent Behavioral Models

An agent cognition model establishes the theoretical properties of agents. Agent
behavioral models consider the issues related to the construction of computer
systems that satisfy the properties speci�ed the agent cognition models. Re-
searchers in this area are primarily concerned with the problem of constructing
agent systems that will satisfy the properties speci�ed by agent theorists. Lim-
iting the scope of our discussion to this thesis, we present a widely accepted clas-
si�cation of various agent behavioural approaches in the following sub-sections.

1.2.1 Reactive

There has been wide disagreement on what the term 'Reactive' means when
applied to an agent. The American Heritage dictionary de�nes reactive as
"Tending to be responsive or to react to a stimulus". In AI, a common def-
inition of reactive is "responding quickly and appropriately to changes in the
environment". Wooldridge de�nes a reactive agent to be one that does not
include any kind of central symbolic world model, and does not use complex
symbolic reasoning [8] . The key to reactive agents is that they work in a hard-
wired stimulus response manner. Certain sensory information always results in
a speci�c action being taken. Reactive behavioral approaches have the following
advantages [12]:

• High responsiveness

• Simple to both program and understand

• The system is deterministic and completely predictable

• They require little support infrastructure.

Reactive systems do have a couple of serious drawbacks as well. Firstly, every
possible situation the agent might �nd itself in must be accounted for in the
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representation scheme. This places a huge burden of responsibility on the de-
signer as they must have allowed for every eventuality. Related to this is the
fact that for complex environments the range of possible situations can be vast
making the design of the system very di�cult, if not impossible. Another ma-
jor drawback is that reactive systems have trouble forming all but the simplest
long term plans. Reactive agents have no internal model of the world and so
are incapable of reasoning about it in any abstract way. To reiterate, the agent
simply receives input and react to these through simple rules.

The subsumption architecture [13], is arguably one of the best known reactive
agent architectures. It was developed at MIT by Rodney Brooks - one of the
most vocal and in�uential critics of the symbolic (deliberative) approach to
agency [14]. Brooks [8] has propounded three keys ideas in support of the
reactive approach to agency:

1. Intelligent behavior can be generated without explicit representations of
the kind that symbolic AI proposes.

2. Intelligent behavior can be generated without explicit abstract reasoning
of the kind that symbolic AI proposes.

3. Intelligence is a emergent property of certain complex systems.

These ideas indicate the main characteristics of reactive architectures - absence
of a explicit world model, no goal-oriented long term planning and presence of
a huge number of situation-dependent, locally interacting stimulus-action pairs
leading to emergent behavior.

1.2.2 Deliberative

Contrary to a reactive agent, a deliberative agent has an internal model of the
world and uses its model to reason about the e�ects of the actions in order to
select actions that it predicts will achieve its goals. An agents internal model
of the environment must provide certain basic functionality. In order to reason
about the consequences of actions, the model must predict how the actions will
a�ect the external state. The model must also be able to derive information
about the external state from sensor output. In addition to the model, the
deliberative agent needs an estimate of the current external state. It is from
this estimated external state that the agent does projections to infer the con-
sequences of potential actions. Given such a model, reasoning about the state
of the world and planing are modeled as updates to the agents internal state.
The result of the agents deliberation process is a plan to accomplish the task.
The deliberative agent also needs to maintain a representation of the plan to be
able to issue the chosen action execution commands to the control module. The
representation of the plan also allows the agent to further elaborate and revise
the plan as new information is gathered and more computation is done.
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A system such as �rst order logic based on situation calculus can be used in
order to formulate the model and generate plans. Such a system has the distinct
advantage of being capable of planning its course of actions based on a well-
de�ned reasoning formalism. However, due to the use of logic based inference,
a deliberative system cannot make the real time guarantees usually required in
a dynamic, multi-agent setting. Another drawback of a deliberative approach
is that they require constant maintenance of the current state of the world.
In fast moving real-time & dynamic environments, this can be a major issue.
Also, consistency of the system must be maintained often involving updating
any inferences made based on knowledge that may change. However, it must
be noted that deliberative approaches have been at the heart of research in AI
right from its inception.

1.2.3 Hybrid

Many researchers have argued the case for hybrid-systems, which attempt to
combine deliberative and reactive approaches. Obviously, such hybrid system
ought to have the advantages of both deliberative as well as reactive systems.
Another argument put forth by proponents of hybrid systems is that real life
agents need to adopt a situation dependent deliberative or reactive approach
to solve problems. For example, a reactive system can be used for time-critical
behaviors whereas long term planning can be achieved via deliberative reason-
ing. One approach towards hybrid systems is to build an agent out of two or
more subsystems: a deliberative one, containing a symbolic world model, which
develops plans and makes decisions in the way proposed by mainstream sym-
bolic AI; and a reactive one, which is capable of reacting to events that occur
in the environment without engaging in complex reasoning. Often, the reactive
component is given some kind of a precedence over the deliberative one so that
the agent can provide a rapid response to important environmental events [8].

1.3 Problem De�nition and Research Agenda

Before we realise the implementation of an agent, it is important to precisely
formulate its associated properties. The representation of knowledge and the
reasoning approach to be used by the agent in order to make inferences must
be speci�ed formally. In this research, an equal importance shall be assigned to
theory and practice. Beginning with the theoretical underpinnings of agents, we
aim to investigate issues pertaining to representation, architecture and �nally
implementation.

A major drawback of reactive agents is that they are incapable of long-term
goal oriented planning. It may be argued that a reactive approach is based
on a completely di�erent paradigm, which is devoid of a representation scheme
conducive to long-term goal oriented planning. However, this seems to be very
restrictive considering the fact that most real world problems involve making
informed decisions based on a causal & functional representation of it. The

11



aim of cognitive robotics is to provide a theoretical and computational account
of exactly how it is that deliberation can lead to action [4]. Given this, it is
tempting to suggest that cognitive robotics implies a deliberative approach to
reasoning. Our work primarily investigates a deliberative behavioral approach.
However, we do not ignore the possibility that some tasks might be better suited
to more than one approach (or a particular one) and one aim of our research is
to identify instances where this is applicable.

An agent formalism is a mathematical speci�cation of the properties spec-
i�ed by agent theorists. It also includes a de�nition of the semantics of the
reasoning methods that will be employed by the agent to accomplish tasks in
its world. We look at various formalisms primarily with a aim of providing
essential background. However, a brief comparison shall be provided so as to
maintain completeness. Note that the comparisons shall be solely based on
practical insights gained from using languages based on the said formalisms.

As stated before, deliberative behavior necessitates a complete speci�cation
of the causal laws of the domain. There are many di�erent formalisms, based on
various agent theoretical models, that could be utilized for the purposes of this
speci�cation. In this research, we consider the use of a situation calculus based
language called Indigolog . Indigolog primarily provides high-level deliberative
control facilities for dynamic environments. However, it is also possible to utilise
its language constructs for implementing event-driven reactive behavior. The
interpreter for the language automatically maintains an explicit model of the
systems environment and capabilities, which can be queried and reasoned with
at runtime [6]. Indigolog accounts for most of the phenomena (pertaining to
dynamical systems) cited before - speci�cation of causal laws, preconditions of
actions, exogenous actions, complex actions & procedures, planning a course
of actions, sensing, on-line plan generation interleaved with sensing etc. We
believe such an account is necessary in order for a formalism to be utilised for
decision making in the real world.

The central theme of our research is to overcome the limitations of reactive
control by employing a high-level deliberative control mechanism that is based
on mathematically rigorous formalisms for reasoning about action and change.
The control mechanism will be applied in a realistic domain, the RoboCup
Soccer Simulator, so as to e�ectively evaluate the suitability of the high-level
deliberative approach as well as the underlying formalism. Within the context
of our deliberative approach, we demonstrate a methodology for high-level agent
control in the soccer domain whilst maintaining coherency between agent theory
and practice.
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1.4 Organisation of Thesis

• Section 2 presents various languages that can be used to write agent
programs. The languages covered, STRIPS, AgentSpeak(L), Indigolog,
vary in terms of simplicity, expressibility and formalisms on which they
are based. We present a formal introduction to the speci�cation of each of
the languages. A brief comparison, based on experiments using each of the
languages, is also presented so as to indicate the advantages/disadvantages
of each.

• Section 3 is a detailed introduction to the Indigolog framework for in-
cremental planning. It builds upon the language speci�cation introduced
in 2.4 and is aimed at demonstrating the mapping of the theory, which
Indigolog is based on, into practice. A practical walk-through of the com-
plete speci�cation of a Indigolog program is also presented.

• The domain that will be used to experiment our investigated theories
(and their respective implementations) is very crucial. This research fo-
cuses on (simulated) dynamic environments. As such, it is important that
the selected domain satisfy properties associated with such environments.
Moreover, the simulated environment should be �exible to use so as not to
deviate our e�orts from the primary research agenda. Section 4 details
one such environment, the RoboCup Soccer Simulator, which provides a
simulated soccer environment and user-de�ned control of the soccer agents
in it. It also covers our motivation for using the said simulator.

• In Section 5, we propose the agent architecture to be utilized in the
soccer domain. A brief explanation of each of the components within the
architecture is provided and the reader is referred to relevant parts of the
thesis for a more thorough treatment. This section attempts to relate the
various components that make up the soccer agent architecture used in
this work.

• Section 6 is a detailed account of the methodology adopted for imple-
menting the soccer agents. Beginning with implementing simple soccer
playing rules to complex deliberative strategies, this section presents a
comprehensive treatment of the techniques to write Indigolog programs
and utilize the available languages features.

• Section 7 presents a brief evaluation of Indigolog. The discussion mainly
concerns the language features and issues pertaining to the interpreter.

• In Section 8, 9, and 10, we cover the (low-level) implementation speci�c
aspects of our soccer agent architecture. Section 8 brie�y covers the low-
level primitive skills repository on which high-level behavior of the soccer
agents is based. Section 9 discusses the implementation of the component
that interfaces the high-level prolog based component with the low-level
C++ based skills library. In Section 10, we discuss our approach for
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combining the high-level reasoning component with the low-level skills
component.

• Section 11 discusses our solution to one of the problems, pertaining to
the Indigolog interpreter, pointed out in Section 7.

• We conclude in Section 12 with a brief discussion of related and future
work.

• Section 13 lists some of the software that was utilized or developed during
the course of this thesis.
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2 Agent Languages: A Comparative Study

Agent languages are programming languages that may embody the various prin-
ciples proposed by theorists. They are software systems for programming and
experimenting with agents. Those working in the area of agent languages ad-
dress such questions as: How are we to program agents ? What are the right
primitives for this task ? How are we to e�ectively compile or execute agent
programs ?. In this section, we look at some popular action languages that have
vastly di�erent theoretical underpinnings. A brief comparison is also in place.

2.1 STRIPS

STRIPS (Stanford Research Institute Problem Solver) is a pioneering planning
program developed around 1970 at SRI international. Although back then, the
authors introduced it as a problem solving system, contemporarily it is more
commonly referred to as a planning system. STRIPS, the representation lan-
guage, derives from work on a mobile robot called SHAKEY at SRI International
in the late 1960's.

STRIPS assumes that the world being world being modelled satis�es the
following: [15]

• Only one action can occur at a time

• Actions are e�ectively instantaneous

• Nothing changes except as the result of planned actions

STRIPS operators are speci�ed by pre-conditions and post-conditions. The pre-
conditions are sets of atomic formulas of the language that need to hold before
the operator can be applied. Operator post-conditions come in two parts con-
sisting of a add-list and a delete-list which are sets of atomic formulas that need
to be added to and deleted from the world model respectively. Intuitively, the
delete list represents those properties of the world state that cease to exist after
the operator is applied and the add list represents those properties of the world
state that will hold after the operator is applied. An operator takes the world
model database of some state and transforms it into a database representing
a successor state. The main bene�t of this way of representing and reasoning
about plans is that frame problem can be completely avoided as the operator
will change what it needs to in the database and leave the rest of it una�ected
[15].

So more precisely, a strips problem is characterized by the tuple <DB0,
Operators, Goal> where,

1. DB0 represents the world model which is a set of ground atomic formulas,
similar to a database of facts.
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2. Goal is a list of atoms whose variables are understood existentially.

3. Operators is a list of operators of the form <Act, Pre, Add, Del> where
Act is the name of the operator and Pre, Add and Del are lists of atoms
specifying the precondition, add-list and the del-list respectively for the
operator.

Given the above formulation, a solution to the planning problem is a set of
operators that can be applied in sequence starting with a initial state without
violating any pre-conditions and which results in a world model that satis�es
the goal formula [15]:

1. solution as a sequence <Act1θ1, ....,Actnθn> where Acti is a operator of
the form <Actsi, Prei, Addi, Deli> and θi is a substitution of constants
for the variables in that operator

2. the sequence satis�es the following:

• for all 1 ≤ i ≤ n, DBi = DBi−1 + Addiθi - Deliθi ;

• for all 1 ≤ i ≤ n, Preiθi ⊆ DBi−1;

• for some θ, Goalθ ⊆ DBn .

2.2 AgentSpeak(L)

AgentSpeak(L) is a �rst-order language that realises BDI agents [11]. The
behavior of the agents, encompassing its interaction with the environment and
other agents, is guided by the programs written in AgentSpeak(L). The current
state of the agent can be viewed as its current belief state whereas states which
the agent wants to bring about based on its external or internal stimuli can
be viewed as desires. The adoption of programs to satisfy such stimuli can be
viewed as intentions. This is also consistent with the BDI theory which de�nes
intentions as the chosen course of action execution to accomplish a desire. Note
that belief, desires and intentions of the agent are not explicitly represented as
modal formulas in the language. Instead, it is the designer who ascribes the
notions to the agent written in AgentSpeak(L). It has been argued in [16] that
such a perspective of taking a simple speci�cation language as the execution
model of a agent and then ascribing notions of beliefs, desires & intentions from
an external viewpoint has a better chance of unifying theory and practice.

The alphabet of the formal language consists of variables, constants, func-
tions symbols, predicate symbols, connectives, quanti�ers and punctuation sym-
bols. In addition to the usual �rst-order connectives, ! (for achievement), ?(for
test). ;(for sequencing) and ←(for implication). Following elements make up
the core part part of the language:
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Let ~t be a vector of �rst order terms.

• Base beliefs: If b is a predicate symbol, and ~t, then b(~t) is a belief atom.
If b(~t) and c(~t) are belief atoms, b(~t) ∧ b(~t) are belief atoms. A belief
atom or its negation is referred to as a belief literal. A belief atom that is
ground is referred to as a base belief.

• Goals: If g is a predicate symbol, and ~t, then !g(~t) and ?g(~t) are goals.
Acquisition of new goals leads to triggering of events.

• Triggering Events: When a agent acquires new goals or notices a change
in its environment, it may trigger additions and/or deletions to its goals
or beliefs. These events are referred to as triggering events. Addition is
denoted by the operator '+' whereas deletion by '-'. Formally, if b(~t) is
a belief atom, !g(~t) and ?g(~t) are goals, then +b(~t), -b(~t), +!g(~t), -!g(~t),
+?g(~t) and -?g(~t) are triggering events.

• Actions: If 'a' is a action symbol and ~t, then a(~t) is an action.

• Plans: If e is a triggering event, b1,...,bm are belief literals1, and h1,...hn
are goals or actions, then e : b1 ∧... ∧ bm ← h1 ∧... ∧ hn is a plan. The
expression to the left of the arrow is the head of the plan whereas that to
the right is referred to as its body. The expression to the right of the colon
in the head is referred to as the context. The expression true denotes a
empty body.

2.3 Situation calculus and Golog

Situation calculus [1] is a formalism speci�cally designed for representing dy-
namically changing domains. The calculus can be used to represent and reason
about actions and their e�ects. All changes to the world are the result of named
actions. A possible world history which is simply a sequence of actions, is rep-
resented by a �rst order term called a situation. The constant S0 is used to
denote the initial situation, namely the situation in which no actions have yet
occurred. There is a distinguished binary function symbol do; do(α, s) denotes
the successor situation to s resulting from performing the action α. Actions may
be parameterised. For example, put(x, y) might stand for the action of putting
object x on object y, in which case do(put(A, B), s) denotes the situation re-
sulting from placing A on B when the world is in situation s. Notice that in the
situation calculus, actions are denoted by �rst order terms, and situations (world
histories) are also �rst order terms. For example, do(putdown(A), do(walk(L),
do(pickup(A), S0))) is a situation denoting the world history consisting the
sequence of actions [pickup(A), walk(L), putdown(A)] .

1Note that by de�nition, these will always be ground.
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Before we introduce the GOLOG programming language, some terminol-
ogy/notation used in the de�nitions [6] follows:

• Fluents: In the context of situation calculus, a �uent is a situation speci�c
property of the domain.

• Functional �uents: Functions whose denotations vary from situation to
situation are called functional �uents.

• Relational �uents: Relations whose truth values vary from situation to
situation are called relational �uents.

• do(α, s): This is a situation calculus term denoting the situation resulting
from performing action α in situation s.de�ne

• Do(δ, s, s'): Intuitively, Do(δ, s, s'), where δ is a complex action ex-
pression, holds whenever s' is a terminating situation of an execution of
complex action δ starting in situation s.

• Positive e�ect axiom: γF
+(~x, a, s) is a formula describing under what

conditions doing the action a in situation leads to the �uent F to become
true in the successor situation do(a, s).

Poss(a, s) ∧ γF
+(~x, a, s) ⊃ F(~x, do(a, s)).

• Negative e�ect axiom: Similar to the positive e�ect axiom, γF−(~x, a,
s) describes the conditions under which performing action a in situation s
results in F becoming false in the successor situation s.

Poss(a, s) ∧ γF−(~x, a, s) ⊃ ¬F(~x, do(a, s)).

A solution to the frame problem (from a situation calculus & golog point of
view) rests on the so called completeness assumption which is that the above
positive and negative e�ect axioms completely characterize all the conditions
under which action a can lead to the �uent F becoming true (respectively, false)
in the successor situation. In e�ect, the axioms describe all the causal laws
a�ecting the truth values of the �uent F.

2.3.1 Golog

GOLOG, which is based on McCarthy's situation calculus [1], is a high-level
language for implementing dynamical systems such as applications in robot-
ics, intelligent software agents, discrete event simulation etc. It is based on a
extended version of situation calculus, which is a �rst order language for repre-
senting dynamically evolving domains. It has situation calculus semantics and
an interpreter that executes actions in real or simulated settings. Its interpreter
is a theorem prover that performs arbitrary �rst order reasoning by maintaining
an explicit representation of the dynamic world being modeled. This is done
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on the basis of user supplied axioms about the preconditions and e�ects of ac-
tions and the initial state of the world. The following subsections present what
constitutes the golog programming language:

• Primitive actions:

Do(a, s, s') = Poss(a[s], s) ∧ s'= do(a[s], s).

The notation a[s] means the result of restoring the situation arguments to
any functional �uents mentioned by the action term a. For example, if
the action term is read(favorite_book(John)) and favorite_book is a functional
�uent then a[s] is read(favorite_book(John, s)).

• Test actions:

Do(ϕ?, s, s') = ϕ[s] ∧ s = s'.

Here, ϕ is a pseudo-�uent expression ( not a situation calculus formula)
which stands for a formula in the language of the situation calculus but with all
situation arguments suppressed. As before, ϕ[s] denotes the situation calculus
formula obtained from ϕby restoring situation variable s as the suppressed sit-
uation argument for all �uent names (relational & functional) mentioned in ϕ.
Examples: If ϕ is

(∀x).ontable(x) ∧ ¬on(x, A).

then ϕ[s] stands for

(∀x).ontable(x, s) ∧ ¬on(x, A, s).

If ϕ is

(∃x)on(x, favorite_block(Mary)).

then ϕ[s] stands for

(∃x)on(x, favorite_block(Mary, s), s).

• Sequence:

Do([δ1;δ2], s, s') = (∃s*). Do(δ1, s, s*) ∧ Do(δ2, s*, s').

• Nondeterministic choice of two actions

Do((δ1|δ2), s, s') = Do(δ1, s, s') ∨ Do(δ2, s, s').

• Nondeterministic choice of action arguments:

Do((Πx)δ(x). s. s') = (∃x) Do(δ(x), s, s').

• Nondeterministic iteration:

Do(δ*, s, s') =

(∀P). {(∀s1)P(s1, s1) ∧ (∀s1, s2, s3)[P(s1, s2) ∧ Do(δ, s2, s3)
⊃ P(s1, s3)]} ⊃ P(s, s').
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In other words, doing action δ zero or more times takes you from s to s' i�
(s, s') is in every set (and therefore, the smallest set) such that:

1. (s1, s1) is in the set for all situations s1.

2. Whenever (s1, s2) is in the set, and doing δ in the situation s2 takes you
to situation s3, then (s1, s3) is in the set.

Note that the above de�nition of nondeterministic iteration utilizes the stan-
dard second order way of expressing this set. This is because transitive closure is
not �rst-order de�nable, and nondeterministic iteration appeals to this closure.

Complex actions in Golog are de�ned using some extralogical symbols (e.g.,
while, if etc.) which act as abbreviations for logical expressions in the language
of situation calculus. The extralogical symbols should be thought of as macros
which expand into genuine formulas of the situation calculus. Note that the
complex actions may be nondeterministic, that is, they may have several dif-
ferent executions terminating in di�erent situations. The language has been
proposed in [6]. A similar but more detailed account can also be found in [4].

2.4 Indigolog

Indigolog is a extension of GOLOG with added functionality for sensing (getting
perceptual input) and exogenous actions (actions occurring in the environment
and not executed by the agent). It allows the programmer control over on-line
and o�ine execution, and in the on-line case, allows sensing information to af-
fect subsequent computation/planning [17]. Contrary to the completely o�ine
execution o�ered by Golog, Indigolog (Incremental Deterministic Golog) pro-
vides a more realistic on-line incremental execution. The following explanation
from [18] should help make the distinction clear:

Let the program execution be speci�ed in terms of two predicates, Final
and Trans. Final(δ, s) holds if program δ can legally terminate in situation s:
Trans(δ1, s1, δ2, s2) holds if one step of δ1 in situation s1 leads to a situation s2
with remaining δ2 to be executed.

• For o�-line execution, we look for a sequence of Trans steps leading to a
�nal termination whereas

• For a on-line incremental execution, we look for any single action A such
that program entails Trans(δ, s, δ1, do(A, s)), commit to it and repeat the
search with the remaining program.

Indigolog supports complex agents that are:

• able to do reasoning and planning

• able to react to exogenous events
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• able to monitor plan execution and sense the environment

• both reactive & proactive

• written using very high level language constructs

An Indigolog program consists of two main parts: A domain theory and behav-
ior speci�cation. The domain theory speci�es the domain dependent primitive
actions and tests of predicates whereas the behavior speci�cation speci�es its
dynamics - the causal laws of the domain. The meaning for each of these will
be made precise in sub-section 3.2.

2.5 Reactive Action Packages (RAP)

A robot acting in the real world must use �exible plans. This is because ac-
tions will sometimes fail to produce their desired e�ects and unexpected events
will sometimes demand the robot shift its attention from one task to another.
A plan is usually construed as a list of primitive robot actions to be executed
one after another but in a complex domain a plan must be structured to cope
e�ectively with the myriad unpredictable details it will encounter during execu-
tion. However, adding structure to a plan involves more than augmenting the
primitive plan representation; it requires adopting a situation-driven model of
interaction with the world.

Situation-driven execution assumes that a plan consists of tasks with three major
components: a satisfaction test, a window of activity, and a set of execution
methods that are appropriate in di�erent circumstances. Execution of such a
plan proceeds by selecting an unsatis�ed task and choosing a method to achieve
it based on the current world state. A task may be executed as many times as
necessary to keep it satis�ed while it is active. Many di�erent sequences of task
execution may be possible with a plan, including concurrent execution of some
tasks, that satisfy certain temporal constraints [19]. The plan may be sketchy,
in the sense that it might include tasks/goals which may not be directly executed
by the agent (IE., tasks are not primitive actions). Presence of sketchy plans
is a characteristic feature of complex, dynamic domains . Tasks/Goals and
Methods are the two basic components of a situation driven execution model.
A brief description for the two follows:

• Tasks: A task can be best thought of as a goal to be achieved.The goal
may be a state to be achieved, a state to be maintained or a action to
carry out. A task consists of two parts: An index to use with the current
situation for selecting a method and a test for determining when the task
should be considered for execution.

• Methods: A method is a set of actions that will achieve the task in a given
situation. It is a prescription for changing the world situation so that a
given task becomes satis�ed. Each method may have certain contextual
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(situation dependent) conditions associated with it. The e�ect of this is
that a task may have more than one associated accomplishment methods
with each of them being applicable in di�erent situations.

The RAP system proposes a plan and task representation based on program-like
reactive action packages. Within the system, execution monitoring becomes an
intrinsic part of the execution algorithm, and the need for separate re-planning
on failure disappears. Rap's are more than just programs that run at execution
time, however, they are also hierarchical building blocks for plan construction.
The RAP representation is structured to make a task's expected behavior ev-
ident for use in planning as well as in execution. The RAP execution system
described includes a sensor memory, representation language and interpreter.

2.6 Comparison

The comparisons here are based on experiments involving design of a delivery
agent using each of the action languages. All related source code can be found in
the appendices. Also, note that RAP has not been included in the comparative
analysis because of time constraints. For STRIPS, a simple means-end plan-
ner based on goal regression [20] has been implemented from scratch whereas
the AgentSpeak(L) planner is a modi�ed version of an existing implementation
based along the lines of [16]. The Indigolog interpreter, publicly available from
the Cognitive Robotics Group at University of Toronto, has been used without
modi�cation.

All the three approaches, STRIPS, AgentSpeak(L) and Indigolog, considered
herein have their own strengths and weaknesses. At one extreme is the STRIPS
implementation, as used here, which o�ers absolutely no reactivity whereas at
the other is the BDI implementation that is a highly reactive. INDIGOLOG
o�ers various degrees of reactive and deliberative control. STRIPS simply deals
with reaching a desired state from a given initial state in a o�ine manner by
chaining through a set of plan operators. Contrarily, AgentSpeak(L) and In-
digolog follow a incremental approach wherein action execution is interleaved
with environment monitoring as well as sensing (in the Indigolog case).

In general, STRIPS is a very simple way to represent actions and their e�ects.
It has no notion of exogenous actions and the STRIPS planner is completely
o�ine. Without incorporating domain speci�c heuristics and/or constraints
into the planner, it is not possible to come up with planner that works well on
large problems. The simple means-ends planner, as used for the purposes of
our comparison, degrades severely on anything but toy problems inspite of the
constraint that all action variables be ground during the planning process. The
AgentSpeak(L) and INDIGOLOG approaches de�nitely rank high in this regard
as a lot of application dependent control is used to guide the planner towards
achieving the goal. For example: in AgentSpeak(L), plans (being event-invoked)
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help the planner to constrain the search to those plans whose head matches the
triggering event. Similarly, Indigolog allows the hard-coding of complex actions
out of primitive ones and various other high level constructs which makes up
the procedural part of the agent. What remains is specifying the dynamics of
the system consisting of a domain theory and behavior speci�cation.
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Figure 1: Generic Framework in Indigolog for Deliberative Control

3 Deliberative Control Using Indigolog

Golog looks a lot like a standard procedural programming language. However,
the interpreter for this language uses the declarative speci�cation to reason
about what the e�ects of various possible actions would be. As explained before,
Indigolog was developed to facilitate incremental execution in which sensing can
be used to a�ect subsequent planning. Later in section, we shall demonstrate
through a practical example the speci�cation of a Indigolog program. In the
following sections, we discuss the Indigolog framework - The interaction between
the planner/interpreter, the Indigolog program & the real or simulated world in
which the agent exists. We also present a practical walk-through demonstrating
the complete speci�cation of a Indigolog program. Fig. 1 shown above shall be
used for referential purposes. Also, the delivery agent code used for comparative
purposes in sub-section 2.6 has been used for the walk-through.

3.1 The Framework

The Indigolog framework illustrated in Fig. 1 conceptually represents three
components - The language interpreter, the program and the agents environ-
ment, which may be a real or simulated. The interpreter works out the next
action to be executed based on the domain theory and behavior speci�cation
represented by the Indigolog program. However, it is left up to the program to
de�ne the semantics of actual execution. Action execution may be de�ned as
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sending a command to a robot working in the real world or a simulated agent
in a arti�cial world. Likewise, sensing (as and when it is necessary) and exoge-
nous action monitoring (at every discrete time-step) is done indirectly via the
program. The program is free de�ne the actual meaning of these operations.

3.2 Indigolog Program Speci�cation - A practical walk-
through

Indigolog's high-level programs contain primitive actions and tests of predicates
that are domain dependent and a interpreter for such programs must reason
about these. In e�ect, we need to provide the domain speci�c details for our
programs. As mentioned before, these come in two parts, the domain theory
& behavior speci�cation, each of which are discussed in the subsections that
follow. The aim here is to illustrate, through a practical walk-through, the
steps involved in the complete speci�cation of a Indigolog program.

3.2.1 Domain Theory

• Primitive Actions: Every action that could be ever executed must be
de�ned using a primitive actions clause. It takes the form; prim_action(α)
where α is a ground atom/symbol denoting the action name. This forms
a SET A of primitive actions that can be executed in the agents environ-
ment.

prim_action(turn_left).

prim_action(go_straight).

• Exogenous Actions: These are the actions/events occurring in the sys-
tem and not executed by the agent. The de�nition of such actions takes
a similar form as primitive actions; exog_action(α) where α is again a
ground atom/symbol denoting the name of the exogenous action. This
forms a SET E of the exogenous actions that may act upon the environ-
ment/agent.

exog_action(button_on_rcx_pushed).

exog_action(delivery_requested(From, To)).

• Primitive Fluents: These characterize the state of the system, IE: the
agent and its environment. Their de�nition takes the form prim_�uent(β)
where β is a symbol denoting the name of the �uent. It may even be a
arbitrary prolog term with variables. This forms a SET F of �uents which
completely characterize the state of the system.

prim_fluent(motion).

prim_fluent(holding_delivery_for(Loc)) :-

way_station(Loc).
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• Initial State: The initial state de�nition takes the form initially(β, value)
where β ε F and value is any symbol or predicate.

initially(motion, stopped).

initially(current_location(station1), 1).

initially(button_on_rcx_pushed, 0).

3.2.2 Behavior Speci�cation

To complete the description of a Indigolog program, one must now encode the
behavior speci�cation for it - the action preconditions, causal laws of the
domain (e�ects of actions), complex actions/condition (if any) and the main
control procedure. what follows is a brief description of each of theses compo-
nents:

Let α and β be the symbols denoting the action name and the �uent name
respectively such that α ε A

∨
α ε E and β ε F.

• Preconditions: As the name suggests, these specify the action precondi-
tions. They take the form poss(α, γ) where γ is a condition composed of
any combination of the binary 'and' or 'or' operators and the unary 'not'
operator. Alternatively, the symbol 'true' can be used as the condition
argument to imply that it is always possible to execute the action.

poss(request_delivery(_, _), true).

poss(straight, and(at_station = 1, motion = stopped)).

• Causal Laws: They specify the so called 'e�ects of actions'. They take
the form causes_val(α, β, v, γ). It could be read as : �Action α causes
�uent β to take the value denoted by v i� the condition γ is satis�ed where
γ is as de�ned before with the added provision that it could even consist
of complex conditions.

causes_val(arrive_at_station, motion, stopped, true).

causes_val(dropoff_load, deliveries_held, Update,

and(To = current_location,

and(member([From, To], deliveries_held),

delete(deliveries_held, [[From, To]], Update)))).

• Complex actions/conditions: The complex actions/conditions are of
the form, proc(actionName, body) where actionName may be either a
symbol or a predicate with arguments. The body may consist of primitive
actions, the non-deterministic choice operator and if..else constructs. This
makes our complex actions non-deterministic, in the sense that they may
have several di�erent executions terminating in di�erent situations.

%%Complex Action
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proc(head_to_next_station(P, C, N),

pi(action, %%non-deterministic choice of action arguments

[if(way(P, C, N, action), action,

debug('Could not find the way ->', action))]

)).

%%Complex Condition

proc(any_pickups(Pending_Deliveries, Current_Loc),

member([Current_Loc, _], Pending_Deliveries)).

• Main control procedure: Although technically this is no di�erent from
any other complex action/condition, its just that we pass this main proc to
the the Indigolog interpreter to evaluate the program and in this sense, we
call it the main control procedure. The body of the proc here consists of
a special control structure called prioritized_interrupts which consists
of a series of interrupts in decreasing order of priority. Each interrupt can
be though of as a condition-action pair. This takes the following form:

proc(program_name, prioritized_interrupts(

[interrupt(γ1, [δ1]),
...

interrupt(γn, [δn])
])).

Here, γi will be tested only when all other γk, such that k < i, have been
tested and evaluated to be false in which case the corresponding sequence of
steps are executed. The program fails if none of conditions evaluate to be true.

proc(control, prioritized_interrupts(

[

interrupt(motion = moving,

[

debug('motion is moving, heading to', heading_to),

wait

]),

interrupt(and(pending_deliveries = [], deliveries_held = []), wait),

interrupt(at_station = 1,

[

if(any_pickups(pending_deliveries, current_location),

pickup_load, %% primitive action

debug('No Pickup at', current_location)),

if(any_dropoffs(deliveries_held, current_location),

dropoff_load,

debug('No Droppoff At', current_location)),

head_to_next_station(prev_location, %%complex action

current_location, heading_to),

if(trajec_served(),
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re_schedule, %% internal action

debug('Continuing delivery...', nl))

])

])

).

• The 'execute' clause: This clause is invoked by the interpreter when
there is an action to be executed. The application can decide what it
means to execute a particular action. Along with the action name, a
History of actions performed so far is also passed for debugging purposes.

execute(Action, History, SensingResult) :-

write('Executing action: '), write(Action), nl,

actionNum(Action, N),

sendRcxActionNumber(N, SensingNumber),

translateSensorValue(Action, SensingNumber, SensingResult),

write('Sensing result: '), write(SensingResult), nl.

• The 'exog_occurs' clause: This clause, which returns a list of exoge-
nous actions occurred since the last time it was called must be de�ned for
all application programs. In case there are no exogenous actions, a null
list may be returned. A further restriction that applies is that this clause
must never fail. The following is a prolog code snippet de�ning such a
clause:

exog_occurs(ExogList) :-

checkRcxExog(RcxExogList), %% Check exog at RCX.

(RcxExogList == [] -> true;

(write('Rcx exogenous action: '), write(RcxExogList), nl)),

checkOtherExog(OtherExogList), %% Check keyboard exog.

(OtherExogList == [] -> true;

(write('Other exogenous action: '), write(OtherExogList), nl)),

append(RcxExogList, OtherExogList, ExogList).

• Initialization clause: This will be called by the interpreter upon startup.
All initialization tasks like setting up of sources of exogenous actions etc
can be handled here. For example:

initialize :-

initializeRcx,

initializeExog.

• Finalization clause: Any cleanup can be performed here.

finalize :-

finalizeRcx,

finalizeExog.

Both, the initialization and �nalization clauses are called only once, during
program startup and termination respectively.
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4 The Robocup Soccer Simulator: A testbed for

our Agent Programs

In 1995, Kitano et al. [21] proposed the �rst Robot World Cup Soccer Games
and conferences to take place in 1997. The aim of Robocup is to present a
new standard problem for AI and Robotics, somewhat jokingly referred to as
the life of AI after Deep Blue 2[22]. Robocup di�ers from previous research
in AI by focusing on a distributed solution (in our context, often referred to
as Multi-agent system or Distributed AI) rather than focusing on a central-
ized solution, and by challenging researchers from not only AI-related �elds,
but also researcher in the areas of robotics, sociology, real-time mission critical
systems etc. Currently, ROBOCUP includes four robotic soccer competitions
(simulation, small-sized, mid-size & legged) and two disaster rescue competi-
tions (simulation & real-robot). For our purposes, we focus on the robocup
simulation league3

4.1 Domain characteristics

In our opinion, the RoboSoccer domain provides a perfect test bed for the action
theories introduced in the previous sub-sections. A few characteristics inherent
in the domain are cited here to justify the claim.

• The Environment is non-deterministic: There are potentially many
di�erent ways in which the environment may evolve.

• The System itself is non-deterministic: At any given time, there are
potentially many di�erent actions or procedures the system can execute.

• Multiple Objectives: At any given instant, there are potentially many
di�erent objectives the system is asked to accomplished.

• Hidden state : Each Agent only has a partial view of its environment.

• Noisy Sensors and Actuators: The Agents do not perceive the world
exactly as it is, nor can they a�ect the world exactly as intended.

• Asynchronous: The perception and actions cycles are asynchronous,
prohibiting the traditional AI paradigm of using perceptual input to trig-
ger actions.

• Limited Communication : Communication opportunities are limited;
the agents must make and implement their decisions in real-time.

2see http://www.chess.ibm.com for details on deep blue.
3Henceforth, the terms Robocup and Robocup simulation league might be used inter-

changeably.
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These domain characteristics [23] (dynamic, real-time, distributed, multi-
agent) combine together to make Robocup a realistic and challenging domain
for conducting our experiments. The simulation league is based on the soccer
simulator briefed in the following section.

4.2 The Soccer Simulator

The simulator is the system comprising of several sub-systems which collectively
provide the environment to setup a simulated soccer match. Each player is rep-
resented as an agent program in a arbitrary language. Here, I brie�y enumerate
the core subsystems within the simulator. Details can be found in [22].

• Soccer Server : This is the heart of the simulator. It executes as a server
process and communicates with each of its clients (players) via UDP/IP
sockets. This enables representation of client programs in any arbitrary
language on any system with UDP/IP facilities, with each client control-
ling the movement of one individual player. The soccer server provides a
virtual �eld and simulates all movements of a ball and players. The server
also provides the players with sensory information relating to position of
the ball, goals & other players etc. One important point to note here is
that the server provides a highly realistic environment for the simulated
game; it is a real time system working with discrete time intervals wherein
each cycle has a speci�ed duration and actions that need to be executed
in a cycle, must arrive to the server during the right interval.

• Soccer Monitor : The monitor is a visualization tool that allows people
to see what is happening within the server during a game. The information
shown on the monitor includes the score, team names and the positions
of all the players and the ball. It must be noted however that the monitor
is not required to run a game on the server. Also, multiple monitors may
be connected to the server at the same time if it is desired that the same
game be shown at di�erent terminals.

• Logplayer : When running the server, certain options may be used that
will cause the server to store/record all the details of the match onto the
hard drive. The logplayer, combined with the monitor, is a tool that can
be used to replay a game using the stored data. The logplayer comes
in very handy to debugging purposes, team analysis and discovering the
strong or weak points of a team. It is very �exible in the sense that it
is equipped with play, fast forward, rewind & pause buttons. Also, it is
possible jump to a particular cycle in the game (for eg., if one only wants
to see the goals).
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Figure 2: Soccer Agent Architecture

Figure 2. Soccer Agent Architecture

5 Soccer Agent Architecture

5.1 Design Goals

Our robocup soccer agent architecture (see �gure 2) is a �rst attempt at utilizing
high-level deliberative reasoning in the soccer domain. Most of the design goals
have been set keeping in mind future enhancement of the system so as to be
able to demonstrate the capabilities of Indigolog based reasoning in simulated
soccer arena. Following are the main goals on which our design is based:

• Establish inter-component boundaries: Notice that our system is
composed of many di�erent sub-systems which stand out on their own.
Combining the skills library (C++ based), the Indigolog Framework (Pro-
log based) and the robocup soccer simulator (a complex system in its own
right) has been a challenging task. It is important to avoid coupling of
each of the components by establishing standards to interface each of the
communicating components.
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• Facilitate extensibility: Extensibility is the most important criteria in
our design. The current architecture facilitates easy extension/enrichment
of each of the components without a�ecting the rest of the system. For
example, the skills library may be easily extended and/or replaced with
a new one. Likewise, more complex strategies may be added by extend-
ing the Indigolog program to make use of the enhanced primitive skills
component.

Every run of the simulation involves 22 di�erent instances of the agent, each
working out its own plan, the soccer simulator and the soccer visualisation tool.
It is very important that the system be easy to experiment and debug. Although
no special measure have been taken to ensure this, it follows naturally from the
design if the above two goals are achieved.

5.2 Main Components

Figure 2 above shows the overall system architecture used in our work. Discus-
sion pertaining to each of the components shall be (or has already been) treated
in greater detail in appropriate places. Here, we provided a brief overview of
each of the components of our system. A more thorough treatment of each can
be found in the cross-referenced sections.

• Soccer Agent: This represents the highest level of abstraction in our sys-
tem. The soccer agents are represented by a high-level Indigolog program,
whose domain theory consists of the primitive actions and �uents speci�c
to the soccer domain and whose behavior speci�cation would consist of
soccer playing rules. We would like to re-iterate here that developing a
soccer agent using Indigolog is conceptually similar to writing a program
in any other language with the di�erence that the basic statements of
the language are domain dependent actions that can be performed by the
agent and that conditions are based on �uents, the agents beliefs about
the world. More details regarding the development of the soccer agents
can be found starting Section 6.1 onwards.

• Indigolog Interpreter: This is the most important component within
the soccer agent architecture. It is representative of our deliberative ap-
proach to reasoning applied in the soccer domain. Details can be found in
Section 3.

• Foreign Language Interface: The foreign language interface does the
job of connecting the high level reasoning component with the low level
primitive skills library. More precisely, it makes available the primitive
skills that are written in C++ to a prolog program. Although it might ap-
pear that implementing the interface involves development at both ends,
both prolog and C++, that is not true. SWI-Prolog facilitates a very
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�exible mechanism to support such functionality, which only involves de-
velopment on the foreign language4 side of the interface. Details can be
found in Section 9.1.

• Primitive Skills Library: The primitive skill library is the repository
consisting of low-level skills relevant to the soccer domain. It encapsulates
the complex protocol which need to be implemented in order to commu-
nicate with the soccer server and implements the basic behavioral blocks
that lie at the very foundation of our system. Further details can be found
in Section 8.

• The Simulated Soccer World: As discussed in Section 4, this pri-
marily consists of two main components - the soccer server and the soccer
monitor. The server maintains the soccer world model and makes the
same available to client programs connected to it. Note that most of the
rules enforced by the server are user con�gurable. The monitor in turn
provides a visual display of the soccer game.

6 Soccer Agents: Implementation Methodology

Illustration 1: Kid Soccer like behavior emerging out of

minimally deliberative control

In this section, we begin the discussion pertaining to the implementation of
soccer agents. Our use of Indigolog for agent control in the soccer domain is new.
As such, we present our implementation using a demonstrative approach. Such
an approach facilitates our aim to establish a methodology for the construction

4As of now, only C/C++ is supported as a foreign language.
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of high-level deliberative behavior within the context of Indigolog and the soccer
domain.

6.1 The 'Hello World' Stage - Minimal Deliberation

One of the earliest experiments involved writing agent programs with minimal
deliberative capabilities. All the agents essentially adopt the same rule, shown
below in RULE 1, for playing soccer. Note that emphasized words represent
domain speci�c primitives or conditions.

if game_not_started

wait5

else

{

if ball_moving

wait

else

gotoStaticBall

if ball_kickable

kick_and_run

}

Rule 1: A simple decision rule.

proc(minimalDeliberation, prioritized_interrupts(

[

interrupt(play_mode = before_kick_off, wait),

interrupt(and(play_mode = play_on, ballKickable),

[

debug('Ball is Kickable'),

kick_and_run

]),

interrupt(play_mode = play_on,

[

if(ballMoving,

[

debug('Ball Moving: True'),

wait

],

[

debug('Ball Moving: False'),

5Wait is a Indigolog keyword which puts the agent program in a passive mode. The wait

is non-deterministic in the sense that further execution completely depends on the happening
of a exogenous action/event that is causally related to some property/�uent of the current
situation.
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Figure 3: Agents maintain proximity from each other

gotoStaticBall

])

])

])

).

Code Listing 1: A Minimally Deliberative control procedure.

The code snippet above realizes Rule 1. It is minimally deliberative because
it does not make use of any complex reasoning and uses a very small subset of
the available primitive actions. As such, the behavior it results in too is very
simple and fails to achieve soccer playing goals. The resultant behavior is shown
in illustration 1. As can be seen, all the players quickly6 converge near the ball
and �ght for it with the e�ect of no player ever getting the ball inspite of
being in kicking range. Note that the agent implicitly assumes knowledge of
the ball-position and its validity. For brevity, this has been purposely built into
the 'gotoStaticBall' primitive as the intent here is to demonstrate the behavior
arising out of minimal deliberative control.

6.2 Prevent Crowding of Players

The minimally deliberative rule was based on a few complex conditions and
primitive actions. It did not make use of its sensing capability which is indeed
essential for any reasonably complex behavior. Since it is our aim to make
soccer agents increasingly exhibit deliberative behavior, the next task at hand
is to prevent the crowding of players that results from minimal deliberative
control 6.1. For this purpose, it seems appropriate to make use of a domain

6Precisely, 627 simulation steps.
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�uent that captures the number of team mates that are closer to the ball than
the particular agent under consideration. Lets consider the following procedural
rule:

if game_not_started

wait

else

{

scanFieldWithBody

if ball_kickable

kickStraight 7

else if myTeamWithBall

{

senNumberTeamCloseToBall %% sensing action causally

%% related to app. fluent

if(numTeamMatesCloseToBall < someThreshold )

getBall

}

else

getBall

}

Rule 2 : A simple decision rule.

proc(preventCrowdingControl, prioritized_interrupts(

[

interrupt(play_mode = before_kick_off,

[

scanFieldWithBody,

wait

]),

interrupt(and(ballPositionValid(X), X = false),

[

scanFieldWithBody

]),

interrupt(and(play_mode = play_on,

ballKickable),

[

kickStraight

]),

interrupt(and(play_mode = play_on,

7Note that this primitive involves kicking straight which is obviously not the same as
kicking towards the goal.
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myTeamWithBall),

[

senNumTeamMatesCloseToBall,

if(numTeamMatesCloseToBall < 3,

getBall,

debug('****RUNFREE****'))

]),

interrupt(play_mode = play_on,

[

getBall

])

])

).

Code Listing 2: Adding sensing capability to Minimal Deliberation.

The above code snippet realizes Rule 2. Note that a new complex con-
dition that checks for the validy of the ball position has been added. This is
di�erent from Rule 1 which implicitly incorporated the condition into one of
its primitives. As such, this modi�cation fails to have any behavioral impact
to the result produced by Rule 2. Also, note the use of the sensing action
'senNumTeamMatesCloseToBall' prior to using the �uent 'numTeam-
MatesCloseToBall' in the conditional construct. Invoking the sensing action
prior to using its linked �uent in such a manner has at least two advantages:

1. Every time the �uent is used in a conditional construct, the most re-
cent/accurate state of a�airs (pertaining the �uent) will be taken into
account.

2. Repeated invocations of the sensing action are not necessary to keep the
�uent value updated. This can save a lot time execution time.

The result produced by this rule can bee see in illustration 2. The agents
consistently maintain proximity to each other while 2-3 of them from each team
attempt to get the ball and kick it straight. The resulting behavior can be
primarily attributed to the sensing capability that was incorporated into Rule
2.

6.3 Extending the Domain Theory and Behavior Speci�-
cation

Rule 1 and 2 primarily served a demonstrative purpose. The intent there was
to exhibit the high-level nature of an Indigolog program for our soccer domain.
We start the next experiment with the following two goals in mind:

1. Soccer Playing Behavior: Encode control rules such that a reason-
ably good soccer playing behavior emerges. We consider (at least at this
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point) that the players should exhibit basic collaborative capabilities. For
example: The players should adopt situation speci�c attacking or defen-
sive strategies. Passing the ball between team mates or opportunistically
kicking directly towards the opposition goal are essential primitives that
might lead to such a behavior.

2. Stability: The above mentioned behavior should persist for most part
of the simulation. Although short bursts of undesirable behavior, such as
crowding, cant be avoided, it is necessary that the team quickly recover
from such situations.

The perception & action related capabilities of each agent are limited. Be-
sides, there is a high level of noise in the system. The state of the world, as
believed by the agent, rarely has a one-to-one correspondence with the actual
state of a�airs. As such, we �nd it appropriate at this stage to mostly make use
of the agents sensing capabilities and let almost all planning to be contingent on
complex conditions involving the sensed �uents. The control procedure result-
ing out of Rule 2 shall be the basis of further extension. The extension involves
further enrichment of both the domain theory and behavior speci�cation.

6.3.1 Extending the Primitive Skill Set

The following primitives will be utilised in the current extension:

• Kicking to Goal: Rule 2 involved a primitive for kicking straight. Kick-
ing at a particular angle is actually available as a general primitive. Here,
we use a specialisation of it, called kickToGoal, that involves kicking at an
angle that matches the center of the opponents goalpost.

• Dribbling the ball: Dribbling being a continuous action cannot be di-
rectly implemented using the Indigolog language. As such, we make use
of what we call a 'oneStepDribble'. oneStepDribble is also de�ned to be
a sensing action, associated with a �uent that keeps track of the result
of the oneStepDribble act. Depending upon the sensed result after per-
forming the action, the oneStepDribble act may or may not be repeated
again. Apart from the sensed result, further dribbling is also contingent
on the satis�ability of certain situation speci�c conditions, for example:
It may no longer be safe to continue to dribble because of the presence of
too many opponents around.

• Go to/near a particular position on the �eld: A general primi-
tive for going to a particular position on the �eld is available. For now,
we use four specializations of it, viz - goNearBall, gotoOpponent(Opp),
goNearGoal(ourGoalPost) & goNearGoal(theirGoalPost).
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6.3.2 Adding Sensing Actions and Associated Fluents

It is imperative that the agent possess the most accurate knowledge of the
important domain �uents that would assist it in making strategic decisions. As
stated earlier, sensing will be extensively used in the current extension to meet
this end. The following sensing actions along with their associated �uents will
be utilized:

• Sense the number of teammates/opponents near to a given goal post.

• Sense the number of teammates/opponents around the agent.

• Sense the number of teammates/opponents close to the ball.

6.3.3 Complex Actions and Conditions

The complex actions we make use of in this extension mostly do the job of gluing
together of sensing actions and actions that depend on sensed �uents. Note
that other high-level features supported by Indigolog, such as non-deterministic
choice points etc, have not been utilized.

• Go to the closest Opponent

proc(gotoClosestOpp,

[

senClosestOpp,

?(X = closestOpp),

goNearOpp(X)

]

).

• Pass ball to teammate which the agent believes to be closest to
the oppositions goal post.

proc(passToClosestToGoal,

[

senClosestMateToOppGoal,

?(X = closestMateToOppGoal),

passTo(X)

]

).

• Pass ball to the closest team mate.

proc(passToClosestMate,

[

senClosestMate,

?(X = closestMate),

passTo(X)

]

).
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The following self-explanatory complex conditions have been used to com-
plement the above complex actions.

• Is defense in place?

proc(isDefenceInPlace,

or(and(swiBallInTheirHalf,

numMatesNearOurGoal >= 2),

and(not(swiBallInTheirHalf),

numMatesNearOurGoal >= 4))).

• Am I very close to opposition goal?

proc(veryCloseToGoal,

and(swiBallInTheirHalf,

or(swiDirectKickCrit, numOppNearTheirGoal =< 2))).

6.3.4 Adding More Control Rules

Finally, we are ready to design the procedural part of the agent; the control rules
that would govern the ultimate soccer playing behavior. Limiting our scope to
the previously mentioned aim, we consider the following three rules as possible
extensions to Rule 28:

interrupt(and(play_mode = play_on,

and(amIDribbling = true, ballKickable)),

[

senNumOppNearGoal(theirGoalPost),

if(veryCloseToGoal,

[

kickToGoal

],

[

oneStepDribble

])

])

• Rule 3 - When to Dribble: The agent has the liberty to dribble the
ball towards any other point (the opposition goal post for now) only when
it is safe to do so. Moreover, the ball should be kickable in the �rst
place. We regard any situation in which the agent is not surrounded (in a
certain circular region around the agent) by even one opponent as a safe
situation to dribble the ball. Because dribbling is a continuous action, its
execution needs constant monitoring. Also, at any given stage, if a direct
kick to goal becomes feasible, the respective action must be executed, in
e�ect resulting in termination of the continuous dribbling act. Note that

8From now on, we refrain from illustrating the associated pseudocode.
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such a formulation of dribbling is more manipulative rather than natural.
In reality, there is no built-in notion of a continuous action within the
formalism.

• Rule 4 - Going to defensive/o�ensive positions: Any position within
a certain area of the agent's or his opponents goalpost will be consid-
ered as a defensive or o�ensive position respectively. The notion of a
defense/o�ense being in place is situation dependent and will be subject
to certain complex conditions pertaining to determining which team holds
the ball, Is the ball in the agents half or the opponents half etc.

• Rule 5 - When to pass and who to pass: An extremely simple passing
rule will be utilised for the purposes of this experiment. If the agent holds
the ball and there is an opponent very close-by, the agent considers passing
the ball to the closest mate provided the mate is well away from the agent
to avoid passing back by the receiving agent. This is necessary as the
receiving agent (upon reception) does not know that the ball was received
as a part of a passing act.

6.4 Implementing a Defensive Goalie

Notice that until now, we have only concentrated on controlling the players. The
aim was to make the soccer agents get the ball up to the opponents goal post
in a strategic manner. As our primary intent has been satis�ed, we now focus
on programming the goalie. To begin with, we intend to implement a goalie
with completely defensive traits. Our defensive goalie's foremost concern shall
be to keep the ball as far away from the goal post as possible. In addition to
any previously mentioned primitive actions that may be required, the following
makes up the skill set of the goalie:

• goalieCatch: This action is successful if the ball is in the goalie's catch-
able area.

• gotoHomePosition: Go to the center of the goal post.

• getBehindBall: Go to a co-ordinate position lesser than that of the
ball's current location. This primitive takes care of issues pertaining to
maintaining boundary regulations.

• goalieKick: We currently use a very crude form of a goalieKick whereby
the goalie simply kicks the ball towards the opponents goal post with full
power. Ideally, a goalie's kick should be based various strategic conditions
pertaining to the position of teammates as well as opponents in order
for the goalie's teammates to retain control of the ball after the kick is
executed.

proc(goalieControl, prioritized_interrupts(

[
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interrupt(play_mode = before_kick_off,

[

scanFieldWithBody,

wait

]),

interrupt(and(play_mode = play_on,

ballCatchable),

[

goalieCatch,

goalieKick

]),

interrupt(and(play_mode = play_on,

ballKickable),

[

goalieKick

]),

interrupt(and(play_mode = play_on,

and(ballPositionValid(X), X = true)),

[

if(safeGoingHome,

gotoHomePosition,

[

if(isBallBehind,

getBallBehind

faceBall)

]),

]),

interrupt(play_mode = play_on,

[

scanFieldWithBody

]),

interrupt(true,

[

wait

])

])

).

Code Listing 3: Defensive Goalie Control.

Currently, the goalies follows a simple control rule as depicted above in code
listing 3: Every time it catches the ball from the catchable area on the �eld, it
almost instantaneously kicks it away from the goal post. When the ball is not
catchable, it quickly moves onto its home position if the ball is pretty far o�
or else tries to move to a co-ordinate (only the X-coordinate is important here)
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position lower than that of the ball. Note that like other players, the goalie has
to constantly scan the �eld in order to utilise the most recent state of a�airs.
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7 Evaluating Indigolog

• Expressiveness: Indigolog features all the high-level constructs of im-
perative languages. For example, IF...ELSE statements, WHILE loops,
boolean operators AND, OR, NOT. Besides the fact that iteration in
Indigolog is non-deterministic, it also supports non-deterministic selection
of actions & action arguments using the Π operator and a special construct
for prioritized execution. However, the di�erence between Indigolog and
conventional imperative languages is that the basic statements in Indigolog
are domain dependent actions that are performed by the agent and con-
ditions are based on �uents that re�ect the agents belief about the world.
Indigolog scores very high in this regard as it supports all the features
deemed essential of a language that ought to provide high-level control of
deliberative agents.

• E�ciency: Currently (at least in the public domain), only prolog based
experimental versions of the Indigolog interpreter are available. For In-
digolog to be used in a real world (and real-time) application, e�cient
implementations based on production languages (such as C++) must be
developed. The prolog based interpretor used in this work severely re-
stricts the relative capabilities of the soccer agents when compared to
other teams participating in RoboCup.

• Agent Behavioral Models: The use of Indigolog in this work may
wrongly suggest that it is only possible to implement deliberative behavior
models using it. Our experience with implementing Soccer agents using
Indigolog suggests that both deliberative as well as reactive behavioral
models are supported. For example, it is possible that in addition to the
main control procedure, all complex procedures may consist of prioritized
interrupts. We believe that such a interrupt driven execution driven by
exogenous actions resembles a reactive program.

• Representing Static Aspects: Fluents may be used to denote the state
speci�c properties of the domain. However, there must also be a consistent
mechanism to characterise the static aspects of the domain. For example,
the predicate way(station_A, station_B) may be used to denote the fact
that there exists a way between station_A and station_B. This is true in
all situations that may arise and therefore is not a candidate for de�nition
as a primitive �uent in the program. Currently, such de�nitions are de�ned
directly in the language of predicate calculus and reasoned upon using
the �rst-order capabilities of Prolog. However, this has the a�ect that we
couple the use of Indigolog with that of prolog. Clearly, this is not desirable
and there needs to be a standard approach for such representational issues.

• Code clarity: The high-level constructs supported in Indigolog facilitate
easy understanding. Currently, since the language is implemented using
prolog, some familiarity with prolog is also necessary for a in-depth under-
standing of the program. Our experience suggests that it is even possible

44



for someone with minimal understanding of Indigolog/Golog semantics to
understand most of the high-level Indigolog code. This is necessary as
clarity of code goes a long way in attracting new developers towards the
language.
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8 Primitive Skills Library

The primitive skills library in use, Robolog, is a initiative of the AI research
group at University Koblenz [24]. Robolog is both the name of the soccer team
hosted by the group in the simulation league of RoboCup as well as the name
of a primitive skills library implementing a subset of the interface provided by
the soccer server.

The Robolog skills library is just a small part, albeit a crucial one, of a
much larger e�ort aimed at combining logical and procedural techniques for the
speci�cation and implementation of multi-agent systems [25]. Indeed, the high
level programming of agents requires the careful implementation of low-level
skills as well as the possibility of abstracting quantitative sensor data onto a
qualitative level, such that more general qualitative reasoning becomes feasible.

For our purposes, the skills library represents the procedural component
aimed at facilitating high-level qualitative reasoning involving perception and
action execution. As the name implies, the library provides a set of domain spe-
ci�c implementation of skills/primitive actions out of which complex high-level
behavior may be constructed . Apart from that, it also provides primitives facil-
itating perception and sensing of the environment. The library is implemented
in C++ heavily utilises the low-level skills of the CMUnited-99 simulator team
[25].
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9 Interfacing SWI-Prolog and C

9.1 SWI-Prolog Foreign Language Interface

One of the main reasons behind the use of SWI-Prolog for our system is the
powerful foreign language interface it o�ers. It provides a very �exible and
e�cient interface to the C language [26]. Arbitrary low level functionality can
be implemented in the C language and be made easily accessible to a prolog
program via its foreign language interface. This mechanism has been used to
achieve all low level initialization and communication with the soccer server.
What follows is a brief introduction to the concept of a foreign predicate and the
current setup involving the Robolog library, SWI-Foreign interface & Indigolog.
This information will be helpful for future e�orts aimed at making use of the
system and possibly extending it in di�erent ways.

9.2 Foreign Predicates

A foreign predicate is a C-function with same number of arguments as the
predicate represented. C-functions are provided to analyse the passes terms,
convert them to primitive C-types as well as to instantiate arguments using
uni�cation. Every C-function intended to serve as a predicate must be registered
with the system. Registration basically involves exporting a foreign name for
the predicate under consideration (so that the same may be used from prolog)
and other low chores such as specifying the predicate arity etc. Details can be
found in [26]. The exported set of predicates is what constitutes yet another
layer in the system.

Currently, every registered predicate is simply a wrapper over one of the
primitive skills provided by the Robolog library (Section 8). This might obvi-
ously not hold in future versions as the interface is extended to include ancillary
predicates9. The advantage of such a layered design is two-fold; It ensures a
clear separation of various levels of abstraction as well as helps provide im-
proved maintainability and extensibility.

Extensions to the low-level capability of the system would primarily consist
of complementing the primitive skills library. Following are a few guidelines for
doing the same:

• Extending Robolog skill set: The skill library does not implement the
complete interface provide by the RoboCup Soccer Server. Also, because
Robocup is a on-going initiative, there are frequent additions to server
capabilities/interface. Extending the skill set would simply involve imple-
menting the required code (following the soccer server protocol) so that

9For example: Utilities implemented directly in C++.
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the same can be made available to Indigolog soccer agents in the higher
level layers of the system10.

• Providing Wrappers in the Foreign Interface: For each of the skills
added to the skill set, there has to be a registered foreign predicate in the
SWI-foreign interface.

9.3 Communication between Prolog and C

SWI-Prolog facilitates two-way, nested communication between C and prolog:
i.e. Prolog can call C, C can call prolog etc up to a arbitrary depth. There
is no limit to the amount of nesting in the communication. Currently, all the
communication is prolog initiated and the only time a C - to - Prolog com-
munication occurs is during system startup when the embedded prolog engine
(Section 10) needs to be initialised. At all other times, all communication is
initiated by prolog and basically involves queries to get the world state or send
action execution commands.

10 Embedding SWI-Prolog as a Logical Engine

Prolog is generally used as a part of some other larger application so as to make
use of its reasoning capabilities. This is referred to as 'embedding' prolog in
that application. This section discusses some of the issues related to 'embedding'
with regard to our system, its need in the current framework and how it a�ects
the overall design.

10.1 The Need for Embedding

The primary purpose of prolog is to provide automated reasoning capabilities at
a level of abstraction not supported by other imperative languages generally used
for production purposes. Embedding is not strictly necessary for our system.
The other option would have been to to use prolog directly and make use of
dynamic linking to connect to the foreign interface. However, (as it was correctly
hypothesized) embedding greatly enhanced the overall development and testing
process besides facilitating easy distribution for demonstration purposes.

10.2 Using PLLD

Plld is a utility that may be used to link a combination of C and Prolog �les
into a standard standalone executable . plld basically automates the creation
of a single image consisting of some application program, the prolog kernel and
a prolog program. Note that all the three components are statically linked to
create a self-complete executable.

10Obviously, because ROBOLOG skills layer is completely independent of other layers, its
usage will not be restricted only to Indigolog Soccer Agents.
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10.3 The Result of embedding

From a implementation viewpoint, our system can be thought of as consisting
of two main components; One consisting of the low-level primitive skills library
& the associated SWI foreign language interface, both implemented in C++ ,
and the other consisting of the prolog reasoning engine & the agent program
implemented in prolog. For purposes of embedding, we simply use a third stub
program that acts as a glue between the two components and feed it in to the
plld utility. The result is a statically linked composite program that makes up
our system.
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11 Program Preprocessor

Typographical errors and/or omissions in the Indigolog program speci�cation
can go unnoticed because of the unavailability of program pre-processing facil-
ities. For exam, a primitive action given by 'prim_action(gotoStaticBall)' and
erroneously used as 'gotStaticBall ' (or anything else) elsewhere in the program
may simply cause the Indigolog interpreter to simply fail on the respective ac-
tion execution and formulate an alternative plan. This will result in undesirable
behavior that is hard to track down or probably identify in the �rst place in our
fast moving soccer environment. A similar argument applies to other aspects
of the program such as presence of initial values for all �uents, preconditions of
actions etc.

A program pre-processing module has been implemented for each of the In-
digolog, BDI and STRIPS programs. This module can successful detect &
report syntactic errors (by checking for ambiguities between de�nitions and ac-
tual usage or references elsewhere in the program), missing axioms etc. The
following are some of the checks made by the pre-processing module:

• All de�ned actions have a associated action number;

• All actions have associated add lists;

• All actions have del lists;

• All �uents used in the add/del lists are a subset of those actually de�ned;

• All possible actions are previously de�ned;

• All actions have valid pro-conditions;

• All triggering events have associated plans;

• Plans de�ned have a valid body;

• All �uents have a initial value etc.

Note that some of the above checks may be language speci�c.
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12 Related and Future Work

12.1 Related Work

There is (at least) one related approach that employs logic for controlling agents
in the robocup domain, namely the Robolog team at University Koblenz [25].
The Robolog Koblenz team focuses on a declarative approach for controlling
agents. Agents are implemented in a logic-and rule-based manner, thereby
directly using the �rst-order reasoning capabilities of Prolog. State machines,
represented using state charts, are employed to specify the procedural aspects
of the agent.

Note that this approach does not utilize any formal approach for reasoning about
action. Behavior is completely based on pre-de�ned scripts and decision rules
that are implemented in Prolog. As such, explicit planning and extrapolation of
future behavior, which is so important from a arti�cial intelligence viewpoint,
is indeed not possible using this approach. Our approach is more formal, by
making use of the extended situation calculus based formalism for representing
the dynamics of soccer domain. Execution using our approach is de�ned as a
real-time planning task that is based on a well-de�ned action formalism.

12.2 Conclusion and Future Work

Our research was based on two main objectives: (a). To overcome the limita-
tions posed by reactive approaches to agent control and (b). To achieve the �rst
objective by using a mathematically rigorous action representation formalism.
We achieved these objective by employing a deliberative control mechanism
comprising of implementing agent programs in the high-level cognitive robotics
language, Indigolog. Indigolog is similar to other imperative languages with the
di�erence that the basic statements of the language consist of domain dependent
actions and tests of predicates. The program consists of a domain theory and
behavior speci�cation that is used by its interpreter to reason about the e�ects
of actions and make decisions in the real or simulated world. In order to per-
form reasoning, the interpreter itself uses the situation calculus, which is a �rst
order language (with some second order features) for representing knowledge
pertaining to dynamically changing domains.

The event-driven behavior of reactive agents is not suitable for long-term
goal oriented planning . Because of the absence of a symbolic world model &
knowledge of the causal laws of the domain, reactive agents cannot be utilised in
realistic, dynamic environments such as the robocup soccer simulator. Decision
making in such environments must utilise domain knowledge, as exempli�ed by
our use of Indigolog, so as to reason about action and their e�ects. Moreover,
such a knowledge representation scheme must be based on a sophisticated logic
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of action11 as has been done in this work.

Our work represents a �rst attempt at utilizing high-level reasoning, based
on a formal theory of action, for controlling agents in the soccer domain. The
Indigolog based domain theory and behaviour speci�cation currently being used
are not extensive. Moreover, the complete set of available primitive skills and
sensory capabilities provided by the soccer simulator have not been utilised.
The programs need to be further extended in order to be able to compete in the
RoboCup tournament. Future work in this regard could involve further re�ne-
ment and/or extension of the strategies being used by the soccer agents. Also,
completely new strategies for collaborative game play may be implemented.

The primitive skills library itself may be extended to account for more prim-
itive skills out of which high-level behaviour may be constructed. High level
reasoning may be complemented by utilizing machine learning capabilities at
the lower primitive skills level. Such a hybrid approach seems interesting enough
to be given due consideration as it represents a merger between symbolic and
non-symbolic approaches to arti�cial intelligence.

11Formalisations based on approaches other than logic are indeed possible. However, dis-
cussion pertaining to them is beyond the scope of this research.
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13 Software Used

• Indigolog Interpreter/Planner: Publicly available from http://www.cs.toronto.edu/cogrobo/Legolog

• STRIPS Planner: A simple planner based on the STRIPS formalism
implemented using goal-regression. Customised version as used in this
work available upon request.

• AgentSpeak(L) Planner: Available upon request.

• Delivery Agent Code (STRIPS): Available upon request.

• Delivery Agent Code (BDI): Available upon request.

• Delivery Agent Code (Indigolog): Available upon request.

• Soccer Agent Code: Available upon request.

• Language Pre-Processor: Available upon request.

• SWI-Prolog: Freely available from http://www.swi-prolog.org. Provides
a very �exible foreign language interface.

• Robolog Library: The Robolog Primitive skills Library publicly avail-
able from http://www.robolog.org. However, a modi�ed version as used
in this work is available upon request.

• Robocup Soccer Server: Available on sourceforge.

• Soccer Monitor: Available at sourceforge.

• LogPlayer: Available at sourceforge. Very useful for debugging purposes.

• Robolog2Flash: A tool to create Macromedia Flash (SWF) �les from
version 3 soccer log�les. Freely available from http://www.robolog.org.

• LYX: A front-end to latex based on the 'What You See Is What You
Mean' philosophy. Available on source-forge.

• Pybliographic: Manage your bibliography, In Style. Freely available on
SourceForge.
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