
KAUNAS UNIVERSITY OF TECHNOLOGY 

INFORMATICS FACULTY 

DEPARTMENT OF COMPUTER SYSTEMS 
 
 
 
 
 
 
 
 
 
 

 
 

Dynamic Scene Analysis and Beautification for 
Hand-drawn Sketches  

 
 

Master thesis 
        

  

                                         

                                                               

Done by:    

Milda Gusaite             

    

Supervisors:  

prof. dr. E. Kazanavičius 

prof. dr. T. Barkowsky 
 
 

 
 
 
 

 
 
 

Kaunas, 2006 



KAUNO TECHNOLOGIJOS UNIVERSITETAS 

INFORMATIKOS FAKULTETAS 

KOMPIUTERIŲ KATEDRA 
 
 
 

 
 
 
 
 

Milda Gusaitė 
 
 

Ranka pieštų eskizų dinaminė analizė ir 
gražinimas  

 
 

Magistro darbas 
        

  

                                

 

             

                                                               

                Darbo vadovai  

prof. dr. E. Kazanavičius 

prof. dr. T. Barkowsky 
 
 

 
 
 

 
 
 
 

Kaunas, 2006 



KAUNO TECHNOLOGIJOS UNIVERSITETAS 

INFORMATIKOS FAKULTETAS 

KOMPIUTERIŲ KATEDRA 
 
 
 
 
 
 

 
 

Milda Gusaitė 
 
 

Ranka pieštų eskizų dinaminė analizė ir 
gražinimas  

 
Magistro darbas 

        
  

                                                                                            

                    
Kalbos konsultantė 

   Lietuvių k. katedros lekt. 
      I. Mickienė 
2006-05 

 

 

Recenzentas 

      doc. E. Toldinas 
2006-05 

 Vadovai     

        prof. dr. E. Kazanavičius 
                                      prof. dr. T. Barkowsky 
 2006-05 

 

 

 Atliko 

             IFM-0/1 gr. stud. 
                                   Milda Gusaitė 

 2006-05-25 

 
 

 
 
 
 

Kaunas, 2006 



Ranka pieštų eskizų dinaminė analizė ir gražinimas 

Santrauka lietuvių kalba 

 

Įvadas 

Eskizų piešimas yra svarbi kūrybinio proceso dalis, kuri taip pat naudojama projektavimo 

bei inžinerijos disciplinose, tokiose kaip: mechanikos ir civilinė inžinerija, grafinis dizainas, 

architektūra ir kt. Daugelis projektuotojų vis dar pradeda projektuoti piešdami savo idėjų eskizus 

ant popieriaus ir tik po to juos įkelia į kompiuterį. Tai padeda modeliuotojams labai greitai, 

natūraliai reikšti atsirandančias idėjas ir greitina vizualinių problemų sprendimą. Pirminis 

piešimas yra paplitęs ir svarbus kūrimo procese, nes jis skatina kūrybos laisvę. Eskizas – tai 

neišbaigtas modelio ir funkcinių galimybių pristatymas, kuris iš esmės padeda suvokti 

perteikiamą idėją. Be to, piešdamas eskizus projektuotojas tarsi sąveikauja su savo eskizais ir 

detaliau nagrinėja alternatyvias problemos sprendimo galimybes. Daugelis modeliuotojų mąsto 

vizualiai ir įpratę viską įsivaizduoti grafiškai, todėl piešiant yra tiriami alternatyvūs sprendimai ir 

skatinama idėjų plėtra. Šią projektavimo dalį, kurioje yra netikslumų, idėjų formalizavimas, 

greitas alternatyvų tyrinėjimas, inžinierius vis dar atlieka pieštuku popieriuje. 

Nors eskizų piešimas popieriuje yra įprastas ir mėgiamas modeliuotojų, šis būdas turi 

apribojimų. Eskizus galima lengvai piešti popieriuje, tačiau kyla pagrindinis trūkumas, kai tik 

juos reikia taisyti ar tobulinti. Jei projektuotojas nori kažką eskize keisti, dažniausiai jis turi iš 

esmės perpiešti eskizą kitame lape. Šiuo atveju kompiuteriniai įrankiai turi daug privalumų. 

Pirmiausiai, modeliuotojui nereikia kelis kartus perpiešti eskizą popieriuje ir tik po to įkelti 

modelį į kompiuterį. Antra, kaip buvo paminėta anksčiau, modeliuotojui daug lengviau koreguoti 

darbą kompiuteryje nei popieriuje. Dar daugiau, kompiuteris gali tapti asistentu, kuris piešiant 

eskizus siūlo modelio taisymo variantus. 

Daugelis inžinierių, architektų ir kitų profesionalių dizainerių projektuojant naudoja 

pagalbines kompiuterinio modeliavimo sistemas (CAD – computer-aided design systems). Nors 

CAD sistemos turi didelį kompiuterinių įrankių pasirinkimą, bet skirtumas tarp įprasto eskizo 

piešimo ranka ant popieriaus ir jo piešimo kompiuteriu yra vis dar per didelis. Inžinieriai 

dažniausiai kuria pieštuku popieriuje, dažnai neįkeldami modelių į kompiuterį tol, kol šie nebūna 

beveik baigti. Taip yra dėl CAD įrankių teikiamo nenatūralumo piešimo jausmo, kuris slopina 



projektavimo proceso efektyvumą. Viena priežasčių, kodėl CAD įrankiai nepopuliarūs, yra ta, 

kad darbas su jais sudėtingas ir neefektyvus, neatstoja realios modeliavimo aplinkos, kur galima 

būtų piešti ranka. Be to, šios priemonės yra neefektyvios, kai eskizus piešti reikia didesniu 

tikslumu ir reikia atlikti daugiau sudėtingų veiksmų tikslui pasiekti. Nors CAD įrankiai tampa 

pakankamai modernūs ir daugkartiniai, tačiau jie dažniausiai yra naudojami tik paskutiniuose 

projektavimo etapuose.  

Šiuo darbu siekiama pradėti kompiuterį naudoti ankstesniuose modeliavimo etapuose, 

realiu laiku pertvarkant ranka pieštus eskizus, kad šie būtų tikslūs, aiškūs ir tvarkingi. Darbas 

apima kokybinę vaizdų analizę, geometrinį gražinimą, kokybinį erdvinį įvertinimą ir 

konceptualius kaimynystės metodus.  

 

Darbo tikslas 

Darbo tikslas yra tobulinti eskizų piešimo procesą, kuris gali būti padarytas popieriaus 

skiautėje, ir eskizų darymui modeliuoti sistemos prototipą, siekiant, kad kompiuteris būtų 

naudojamas ankstesniuose projektavimo etapuose. Tai labai svarbu, kadangi projektavime eskizai 

vaidina pagrindinį vaidmenį konceptualumo fazėje. Šiame darbe automatiškai, dizaineriui dar 

tebepiešiant, tiriami piešiami objektai ir, atsižvelgus į dizainerio daromus veiksmus, iš karto yra 

gražinamas eskizas. Yra labai svarbu, kad modeliuotojai galėtų greitai ir paprastai, naudodami 

pieštuką, škicuoti viską, ką tik nori. Tokia sistema projektuotojams suteiktų natūralų eskizo 

piešimo jausmą. Eskizų paišymo sistema turi leisti laisvai piešti ranka, atpažinti piešiamą modelį 

ir jį atitinkamai koreguoti pagal dizainerio ketinimus. Taip yra siekiama sukurti asistentą 

modeliuotojui, kadangi eskizai yra ne tik vienas iš modelio tobulinimo būdų, bet ir svarbus 

modeliuotojų tarpusavio bendravimo būdas.  

 

Darbo apimtis 

Darbe yra kuriamas sistemos algoritmas, kuris realiu laiku sąveikauja su vartotoju, 

piešiančiu eskizą (1 pav). 

 



 
1 pav. Sistemos funkcionalumo diagrama 

Kai objekto piešimas yra baigtas, sistema atpažįsta nupieštą objektą, analizuoja ir 

identifikuoja jį. Taip pat po atpažinimo proceso yra atliekamas objekto geometrinis gražinimas 

Tai apima geometrinių taisyklių aptikimą ir įvedimą, defektų koregavimą (linijų tiesinimą, 

teisingų kampų formavimą, linijų sujungimus ir kt.). Po to eskizas yra koreguojamas, 

atsižvelgiant į objektus, kurie buvo nupiešti anksčiau, ir konceptualius kaimyniškus santykius. 

Sistema, pateikdama objektų interpretacijas, sąveikauja su modeliuotoju ir suteikia galimybę 

taisyti klaidingą sistemos interpretavimą. Jei interpretacija teisinga, vartotojas toliau piešia 

eskizą, priešingu atveju vartotojas sistemai turi nurodyti, kad interpretacija yra neteisinga. 

Interpretavimo procesas apima visų galimų interpretacijų sąrašo pagal konceptualius kaimyniškus 

santykius sudarymą. Taigi, atsiradus klaidingam interpretavimui, vartotojui yra pateikiamos 

interpretacijos alternatyvos. 

Galutinis šio darbo rezultatas yra algoritmas, sukurtas dinaminių vaizdų analizei ir 

gražinimui, bei jo dalinė realizacija demonstracinėje programoje. 

 

 

Duomenų apdorojimas 

Objekto  

atpažinimas

Geometrinis 

gražinimas 

Koregavimas

Rezultatų pateikimas 

Objektas nupieštas 

Objekto 
interpretacija

Vaizdo 
interpretacija Procesas įvykdytas 

Ne 

Ne 

Taip 

Taip 



Analizė 
 Šio darbo analizės dalyje nagrinėjami aspektai reikalingi sistemos modeliui sukurti.  

Pradžioje nagrinėjamas pagrindimas diagramomis ir jo efektyvumas. Diagramomis 

perduodama informacija yra savaiminė ir lengviau suprantama nei ta pati informacija 

perduodama teksto pavidalu. Viena iš diagramos savybių yra ta, kad diagrama perduoda ne tik 

specifinę informaciją apie objektą pavaizduotą joje, bet taip pat ir perteikia objekto poziciją ir 

santykius jį supančių kitų objektų atžvilgiu. Kita savybė yra ta, kad diagramoje vaizduojami 

objektai skirtingiems žmonėms gali reikšti skirtingus dalykus, taip sukeliant neteisingas išvadas. 

Vadinasi diagramos ne tik turi savo kūrėjo interpretaciją, bet taip pat ir kiekvieno žiūrovo 

interpretaciją, tuo tarpu kai kitos informacijos formos turi tik vieną tiesioginę interpretaciją. Visų 

šių savybių dėka, pagrindimas ir gebėjimas pažinti diagramų pagalba yra labai mokslininkams 

patraukli sritis. 

Toliau analizėje supažindinama su kokybiniu erdviniu pagrindimu ir erdviniais santykiais. 

Erdvinis pagrindimas ir suvokimas yra sritis nagrinėjanti konceptualią erdvę, kuri susideda iš 

tokių erdvinių pateikimų kaip tipologija, orientacija, forma, dydis ir atstumas. Erdvinis 

pagrindimas neatsiejamas nuo erdvinių santykių, kurie teikia informaciją apie objektą 

neatsižvelgiant į jo konkrečią geometriją. Erdvinius santykius mokslininkai pagrinde skirsto į tris 

grupes: kryptis, atstumus ir topologinius santykius. Krypties santykiai tarp dviejų objektų 

nusakomi kardinaliniais terminais („pietuose“, „rytuose“, „pietvakariuose“ ir t.t.) arba 

kasdieniniame gyvenime naudojamais terminais („priešais“, „dešinėje“ ir pan.) kito objekto 

atžvilgiu. Atstumai tarp dviejų objektų nusakomi abstrakčiais terminais, tokiais kaip „šalia“, 

„toli“ ir pan. Dviejų objektų topologiniai santykiai apibrėžia labiau konkrečius santykius, tokius 

kaip, kad vienas objektas dengia kitą arba vienas objektas yra kito objekto viduje ir pan. 

Tuomet įvedamas konceptualių kaimyninių santykių terminas, naudojamas objekto 

pozicijos koregavimui. Konceptualūs kaimyniniai santykiai – tai ryšys tarp dviejų erdvinių 

santykių, kurie vienas nuo kito skiriasi minimaliu vienu pakitimu. Pavyzdžiui, atstumuose 

santykis „šalia“ yra kaimyninis su santykiu „toli“. Tuo tarpu, santykis „šalia“ negali būti 

kaimyninis su santykiu „labai toli“, nes tarp šių santykių yra per didelis perėjimas ir daugiau nei 

vienas pakitimas: „šalia“  „toli“  „labai toli“. 

Galiausiai analizė užbaigiama aptariant ir paaiškinant objektų atpažinimą taikant statistiką 

ir Hu momentus. 

  



Algoritmo sudarymas 
 Šio darbu siekiama sukurti ranka pieštų eskizų dinaminės vaizdų analizės ir gražinimo 

sistemos modelį. Pagrindinė sistemos koncepcija remiasi sistemos realaus laiko sąveika su 

vartotoju tuo metu kai jis piešia eskizą.  

 
2 pav. Sistemos modelio struktūra  

 Sistemos modelio struktūra, pateikta 2 paveiksle, susideda iš SMARTBoard lentos, 

tarpininkės programos (Programa 1) ir objekto atpažinimo ir gražinimo programos (Programa 2). 

Šios sistemos pagalba vartotojas piešia eskizus ant sąveikaujančios SMARTBoard lentos, kuri 

suteikia natūralaus eskizų piešimo jausmą. Tarpininkės programos užduotis yra aptikti objekto 

nupiešimo įvykį ir perduoti lentoje esantį eskizą objekto atpažinimo ir gražinimo programai. Šiai 

programai atpažinus ir pagražinus objektą, pakoreguotas eskizas yra perduodamas programai 

tarpininkei, kuri savo ruožtu pateikia jį vartotojui SMARTBoard lentoje. Kadangi šis darbas 

sutelktas ties dinamine scenų analize ir gražinimu, dėmesys sutelkiamas į Programa 2 algoritmo 

sudarymą. 

 
3 pav. Algoritmo struktūra 

 Dinaminės vaizdų analizės ir gražinimo algoritmui siūloma struktūra (3 pav.), susidedanti 

iš keturių dalių, kurios toliau aptariamos detaliau. 

 

Duomenų apdorojimas 
 Ši algoritmo dalis paruošia iš tarpininkės programos gautus duomenis kitiems algoritmo 

etapams. Gautas eskizo paveikslas yra konvertuojamas į dvejetainio tipo paveikslą, kur 0 

simbolizuoja baltą tašką, o 1 reiškia juodą tašką. Toliau yra išskiriamas naujai nupieštas objektas, 

aptinkant pakeitimus eskize atliktus nuo praėjusio karto. Tuomet, yra nustatoma paveikslo 

reikšmingumo sritis, kuri turima omeny kaip stačiakampio formos sritis, kuri  apima objektą ir 

tam tikrą kiekį baltų taškų. Iškirpus reikšmingumo sritį iš paveikslo, ji perduodama atpažinimo 

procesui. 

 

 
Duomenų 

apdorojimas 

 
Objekto 

atpažinimas 

 
Geometrinis 
gražinimas 

 
Koregavimas

 
SMARTBoard 

lenta 

 
Programa 1 

 
Programa 2 



Objekto atpažinimas 
 Objekto atpažinimas atliekamas, norint priskirti objektą tam tikrai klasei, kad vėliau 

galima būtų tą objektą pagražinti. Šis algoritmo žingsnis atliekamas remiantis Hu momentais, 

kurie yra nekintantys mastelio ir pozicijos keitimo atžvilgiu. Objektas vienu metu gali priklausyti 

tik vienai objektų grupei. Šis darbas sutelkiamas ties elementarių apskritimų ir kvadratų 

atpažinimu. Prieš sistemai pradedant darbą, ši algoritmo dalis turi būti apmokyta vartotojo pieštų 

objektų rinkiniu, kadangi yra manoma, kad žmonės piešia skirtingu būdu. Baigus apmokymą, 

rezultatai yra saugomi programos duomenų bazėje kaip objektų ir jiems būdingųjų Hu momentų 

vektorių rinkinys. Būdingasis Hu momentų vektorius, apibūdinantis tam tikrą figūrą, susideda iš 

septynių Hu momentų. 

 Kai gaunamas naujai nupiešto objekto reikšmingumo sritį iš aukščiau esančio algoritmo 

etapo, atpažinimo procesas apskaičiuoja tos srities būdingąjį vektorių: 

{ }1 2 3 4 5 6 7AHU I I I I I I I=    (1) 

kur AHU  yra A  objekto būdingasis Hu momentų vektorius, o kI  yra atitinkamas Hu momentas, 

kai 1, 2,...,7k = . 

 Kai objekto būdingasis Hu momentų vektorius apskaičiuotas, pradedamas atpažinimo 

procesas lyginant atstumus tarp šio vektoriaus ir duomenų bazėje esančių objektų vektorių. 

Trumpiausias atstumas nulemia klasę, kuriai nupieštas objektas priklauso. 

 

Geometrinis gražinimas 
 Kai baigiamas atpažinimo procesas, gauta informacija panaudojama objekto gražinime, 

norint atlikti geometrinius pataisymus ir sukurti tvarkingą ir aiškią ranka piešto objekto versiją. 

Gražinimo procesas gauna pradinius duomenis objekto pavadinimo ir jo reikšmingumo srities 

pavidalu (4 pav.). 

 
4 pav. Gražinimo proceso pradiniai duomenys 

Rectangle Square Circle 



  Skirtingo sudėtingumo formos objektai reikalauja atitinkamo sudėtingumo gražinimo. 

Elementarių objektų, tokių kaip kvadratas, stačiakampis, apskritimas ir kt., gražinimas, 

nereikalauja sudėtingų skaičiavimų ir veiksmų. Pavyzdžiui, stačiakampio gražinimo procesas (5 

pav.) yra paprastas ir reikalauja tik objekto reikšmingumo srities matmenų: aukščio ir pločio. 

Pagal šiuos matmenis yra sukuriamas tvarkingas idealus stačiakampis. 

 

 

 

 

 

 
 

5 pav. Stačiakampio gražinimas 

 Jei nustatytas objektas priklauso sudėtingų objektų klasei, geometrinį gražinimą 

rekomenduojama atlikti remiantis H. Hse ir A. R. Newton (Hse ir Newton, 2005) pasiūlytu 

metodu. Šis metodas naudoja objektų segmentaciją į elementariąsias dalis: tiesias linijas ir 

elipsines arkas. Sudarius objekto segmentacijos modelį, jis yra naudojamas figūros geometrinių 

duomenų, tokių kaip kampai, kraštinių ilgis ir kt.,  nustatymui ir tvarkingo idealaus objekto 

atkūrimui.  

 

Koregavimas 
Algoritmo koregavimo dalis siekia patalpinti atpažintą ir pagražintą objektą toje 

pozicijoje, kurioje vartotojas ketino tą objektą nupiešti. Objekto patalpinimo vieta nustatoma 

remiantis erdviniais santykiais su prieš tai nupieštais objektais. Šis algoritmas naudoja visus tris 

erdvinių santykių tipus: kryptis, atstumus ir topologinius santykius. Yra sudaromas sąrašas 

santykių tarp einamojo objekto ir penkių paskutinių objektų. Neseni objektai yra naudojami, o 

seni objektai yra atmetami, nes manoma, kad tarpusavyje susijusius objektus žmonės paprastai 

piešia beveik vieną paskui kitą. Sudarius sąrašą nustatomas artimiausias objektas ir pagal jį 

atliekamas naujai nupiešto objekto pozicijos koregavimas, taikant erdvinius tų objektų tarpusavio 

santykius. Atlikus objekto pozicijos eskize koregavimą, rezultatas yra pateikiamas vartotojui. 

  

hnew

wnew 

h

w 

h = hnew 
w = wnew 



Realizacija 
 Siekiant patikrinti algoritmo modelį, dalinai realizuojamas algoritmas be koregavimo 

dalies. Realizacija atlikta Java programavimo kalba, nes SMARTBoard lenta yra suderinama su 

Java programavimo kalba ir ši dalinė realizacija gali būti panaudota tolimesniam sistemos 

kūrimui.  

 
6 pav. Pradinis programos langas 

 Realizacijos programos langas imituoja SMARTBoard lentos vaizdą (6 pav.). Paspaudus 

mygtuką Draw yra parodomas vaizdas (7 pav. kairėje), vartotojui nupiešus objektą lentoje. 

Algoritmas paleidžiamas vykdyti, paspaudus mygtuką Perform, o algoritmo rezultatas iš kart 

pateikiamas programos lange (7 pav. dešinėje). Šiuo atveju matome, kad vartotojas norėjo 

nupiešti kvadratą, o sistemą atitinkamai jį atpažino, pagražino ir pateikė vartotojui. 

  
7 pav. Nupieštas kvadratas (kairėje), atpažintas ir pagražintas kvadratas (dešinėje) 

 Taip pat yra pateikiamas atvejis, kai vartotojo nupieštas objektas yra neteisingai 

interpretuojamas. Tai atsitinka, kai nupieštas objektas yra deformuotas ir turi per mažai jo klasei 

būdingų savybių. Pavyzdžiui, pav. pavaizduotas eskizas, kuriame nupieštas naujas deformuotas 

apskritimas (8 pav.). 



 
8 pav. Nupieštas deformuotas apskritimas 

 Atpažinimo procedūra yra tokia pati, kaip paminėta ankstesniame pavyzdyje. Algoritmo 

interpretuotas objektas yra pagražinamas ir pateikiamas vartotojui (9 pav. kairėje). 

  
9 pav. Neteisinga interpretacija (kairėje) ir teisinga interpretacija (dešinėje) 

 9 paveikslo kairėje pusėje pateikiama pirminė objekto interpretacija, kuri akivaizdžiai yra 

neteisinga. Tokiu atveju, spaudžiamas mygtukas Change ir algoritmas pateikia artimiausią pagal 

tikimybę kitą interpretaciją (9 pav. dešinėje). Šį kartą, interpretacija yra teisinga. Algoritmas 

objekto interpretacijų turi tiek, kiek objektų yra sistemos duomenų bazėje, ir rūšiuoja jas pagal 

tikimybę, kuri nustatoma pagal panašumą į sistemos objektus. 

 Atlikta algoritmo dalinė realizacija patvirtino sukurto algoritmo veiksmingumą. 

 



Išvados 
 Atlikus darbą paaiškėjo, kad statistiniai metodai efektyvūs objekto atpažinimo sistemose, 

bet efektyvumo lygis labai priklauso nuo objektų sudėtingumo ir kiekio saugomo sistemos 

duomenų bazėje. Kuo sudėtingesni objektai ir kuo didesnis objektų rinkinys, tuo sudėtingesni 

statistiniai metodai turėtų būti naudojami sistemoje.  

Elementarioms geometrinėms figūroms atpažinti pakanka algoritmo paremto pastoviais 

Hu momentais, tačiau naudojamas sudėtingesnės formos objektams atpažinti šis metodas 

nepasiekia labai gerų rezultatų.  

Sudėtingų figūrų atpažinimui rekomenduojama naudoti sudėtinius Zernike momentus. 

Tokiu atveju, reikia patartina naudoti optimizuotus Zernike momentų apskaičiavimo metodus, 

nes Zernike momentų eilei didėjant, didėja ir jų apskaičiavimo sudėtingumas. Yra nustatyta, kad 

pakanka apsiriboti momentais nuo 2-os iki 8-os eilės, kadangi eilės padidinimas pastebimai 

pagerina efektyvumą tik apie 1%. Taip pat, kuo didesnės eilės momentai naudojami 

algoritmuose, tuo labiau jie yra jautrūs triukšmo efektui.  

Kitas variantas sudėtingų objektų atpažinimui būtų panaudoti metodą, apjungiantį objekto 

karkaso Hu momentus ir Furje transformacijos savybes. Šio metodo sudėtingiausia dalis būtų 

objekto karkaso nustatymas, kurį galima būtų atlikti Voronojaus diagramų pagalba ar kitais 

metodais. Prieš pasirenkant vieną iš šių metodų, reikėtų įvertinti kiekvieno metodo reikalaujamų 

skaičiavimo sudėtingumo ir jo teikiamą efektyvumo santykį ir pasirinkti optimaliausią. 

Gražinimo procesas įvairaus sudėtingumo objektams yra skirtingas. Elementarių figūrų 

gražinimas atliekamas nesudėtingais veiksmais, remiantis fundamentaliais figūros duomenimis. 

Tuo tarpu, sudėtingesnių objektų gražinimas reikalauja atlikti segmentaciją prieš pradedant 

geometrinį objekto koregavimą. 

Objekto pozicijos eskize koregavimas pagal jo erdvinius santykius su jį supančiais 

objektais yra efektyviausias ir rekomenduojamas tik naudojant metodus, kure apima visus tris 

erdvinių santykių tipus. 

  

Literatūra 
Hse H. H.; Newton A. R. (2005). Recognition and Beautification of Multi-Stroke Symbols 

in Digital Ink. Computers & Graphics, 2005 



 1

Preface 
 

 

This document reports on the thesis entitled “Dynamic Scene Analysis and Beautification 

for Hand-drawn Sketches”, carried out at the Department of Computer Systems, Informatics 

Faculty, Kaunas University of Technology and the Department of Cognitive Systems, Bremen 

University in partial fulfillment of the requirements for a Masters degree in Computer Science. 

This thesis is organized into five chapters. The first chapter presents an introduction, 

motivation and the scope of the project. Chapter 2 focuses on problem analysis: qualitative scene 

analysis, geometric beautification, qualitative spatial reasoning and conceptual neighborhoods. 

The algorithm of dynamic scene analysis and beautification for hand-drawn sketches is described 

in Chapter 3. Chapter 4 discusses the implementation of the designed algorithm. Finally, there is 

provided a conclusion of the thesis. 



 2

 

 
Contents 
 

INTRODUCTION..............................................................................................................6 

1.1 Motivation of the thesis ..................................................................................................... 7 

1.2 Scope of the thesis .............................................................................................................. 8 

PROBLEM ANALYSIS ..................................................................................................10 

2.1 Reasoning with diagrams ................................................................................................ 10 
2.1.1 Nature of Diagrams ................................................................................................... 11 
2.1.2 Cognition with Diagrams........................................................................................... 12 

2.2 Qualitative Spatial and Temporal Reasoning ............................................................... 13 
2.2.1 Topological Relations ................................................................................................ 14 
2.2.2 Directions................................................................................................................... 16 
2.2.3 Distances.................................................................................................................... 17 
2.2.4 Temporal Relations.................................................................................................... 17 

2.3 Conceptual Neighborhoods............................................................................................. 19 
2.3.1 Neighborhoods of Topological Relations .................................................................. 19 
2.3.2 Neighborhoods of Direction Relations ...................................................................... 20 
2.3.3 Neighborhoods of Distance Relations ....................................................................... 21 

2.4 Recognition ....................................................................................................................... 22 
2.4.1 Statistical Moments.................................................................................................... 22 

DESIGN .........................................................................................................................25 

3.1 System Model ................................................................................................................... 25 

3.2 Algorithm for dynamic scene analysis and beautification ........................................... 26 
3.2.1 Input Processing ........................................................................................................ 27 
3.2.2 Recognition Process .................................................................................................. 27 
3.2.3 Geometric Beautification Process ............................................................................. 30 

3.2.3.1 Beautification of Basic Shapes ..........................................................................................31 
3.2.3.2 Beautification of Complex Shapes.....................................................................................32 

3.2.4 Adjustment ................................................................................................................. 34 
3.2.4.1 Determination of Directions...............................................................................................34 
3.2.4.2 Determination of Distances................................................................................................36 
3.2.4.3 Determination of Topological Relations............................................................................41 
3.2.4.4 Adjustment of Object .........................................................................................................45 



 3

IMPLEMENTATION.......................................................................................................47 

4.1 Implementation of the Algorithm................................................................................... 47 
4.1.1 Class Diagram of the Algorithm................................................................................ 47 
4.1.2 Core-mechanics of the Implementation ..................................................................... 50 

4.1.2.1 Instructions for Running the Program................................................................................50 
4.1.2.2 Scenario of Using Program................................................................................................50 

CONCLUSIONS.............................................................................................................56 

APPENDIX.....................................................................................................................57 

Source Code of the Implementation Part .................................................................................. 57 

BIBLIOGRAPHY............................................................................................................71 
 

 



 4

List of Figures 

 

Figure 1: Flow diagram of system functionality ............................................................................. 8 
Figure 2: Transitivity in Euler's circle in textual representation (taken from Gurr C. A, 1999, p. 

4). ........................................................................................................................................... 11 
Figure 3: Transitivity in Euler’s circle in diagrammatic representation (taken from Gurr C. A, 

1999, p. 4). ............................................................................................................................. 11 
Figure 4: A region without holes (a), a region with holes (b), a simple line (c) and a complex line 

(d) ( taken from Egenhofer & Herring, 1990, p. 6) ............................................................... 15 
Figure 5: Geometric interpretation of the 8 relations between two regions in 2-D (taken from 

Egenhofer & Khaled, 1992, p. 200)....................................................................................... 16 
Figure 6: Cone-shaped (a) and projection-based (b) models for cardinal directions (taken from 

Sharma el at., 1994, p. 6)....................................................................................................... 17 
Figure 7: Allen’s thirteen 1-dimensional interval relations (taken from Rauh et al., 2000, p 872).

............................................................................................................................................... 18 
Figure 8: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p. 

33). ......................................................................................................................................... 20 
Figure 9: Conceptual neighborhood of cardinal relations of two squares (taken from Bruns & 

Egenhofer, 1996, p. 34). ........................................................................................................ 21 
Figure 10: Conceptual neighborhood of distance relations (taken from Bruns & Egenhofer, 1996, 

p. 33). ..................................................................................................................................... 22 
Figure 11: Structure of the system model ...................................................................................... 25 
Figure 12: Structure of the algorithm for dynamic scene analysis and beautification ................. 26 
Figure 13: Determination of Hu feature vector a circle shape ..................................................... 28 
Figure 14: Determination of  Hu feature vector a square shape .................................................. 29 
Figure 15:  Sample testing............................................................................................................. 29 
Figure 16: Input to the beautification step of the algorithm ......................................................... 30 
Figure 17: Beautification of a rectangle ....................................................................................... 31 
Figure 18: Beautification of a square............................................................................................ 31 
Figure 19: Beautification of a circle ............................................................................................. 32 
Figure 20: Beautification of an ellipse .......................................................................................... 32 
Figure 21: Sketched parallelogram (a), beautified parallelogram (b) and graphical description of 

the parameters (c) (taken from Hse & Newton, 2005, p. 4) .................................................. 33 
Figure 22: Sketched trapezoid (a), beautified trapezoid (b) and graphical description of the 

parameters (c) (taken from Hse & Newton, 2005, p. 4) ........................................................ 33 
Figure 23: Determination of the direction between objects A and B ............................................ 35 
Figure 24: Object’s A interest area covers object’s B interest area ............................................. 36 
Figure 25: Object’s A interest area intersects with object’s B interest area ................................ 37 
Figure 26: The calculation of distance between object A and object B with direction defined as 

“west”.................................................................................................................................... 38 
Figure 27: The calculation of distance between objects A and B with direction defined as “north-

west” ...................................................................................................................................... 39 
Figure 28: The interpretation of 6 topological relations between two objects (after from 

Egenhofer & Khaled, 1992, p. 200)....................................................................................... 42 
Figure 29: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p. 

33) , with numbered relations ................................................................................................ 42 
Figure 30: Transition graph for "disjoint" topological relation ................................................... 43 



 5

Figure 31: Transition graph for "meets" topological relation...................................................... 43 
Figure 32: Transition graph for "overlap" topological relation................................................... 44 
Figure 33: Transition graph for "covers" topological relation..................................................... 44 
Figure 34: Transition graph for "contains" topological relation.................................................. 44 
Figure 35: Transition graph for "inside" topological relation...................................................... 44 
Figure 36: Transition graph for "coveredBy" topological relation .............................................. 45 
Figure 37: Transition graph for "equal" topological relation ...................................................... 45 
Figure 38: Class diagram of a program........................................................................................ 48 
Figure 39: Initial window of a program........................................................................................ 51 
Figure 40: Object loading on the sketch panel.............................................................................. 52 
Figure 41: Displaying result to a user........................................................................................... 52 
Figure 42: Loading next object on the sketch panel...................................................................... 53 
Figure 43: Display of the incorrect interpretation........................................................................ 54 
Figure 44: Display of an alternative interpretation of the drawn object ...................................... 54 
 



 6

Chapter 1 

 

Introduction 
 

 

Sketching is an important part of any creativity process and is used in the design 

disciplines, concerned with making physical form: mechanical and civil engineering, graphic 

design, and architecture and physical planning. Almost all designers still begin the design process 

by sketching their ideas before transferring them to a computer. This helps designers to express 

nascent ideas fast, naturally and to speed up visual problem solving. Moreover, the importance of 

sketching in design has been recognized emphasizing that initial drawing allows creative 

freedom. The sketches represent a rough semblance and functionality of the system and can be 

essential in understanding the reasoning behind a design. Furthermore, sketching activity lets 

designers to interact with their sketches, which results in a prospect for all alternative 

possibilities. Almost all designers are visually orientated and are basically used to think 

graphically, so the sketching process encourages designers to develop ideas and explore 

alternative design solutions in their minds. This important part of design, which supports 

imprecision and incremental formalization of ideas as well as rapid exploration of alternatives, is 

still performed by engineers with the help of paper and pencil. 

 Despite praxis and fondness of natural interface provided by paper, sketching on paper 

has its own limitations. Although a designer can easily draw a sketch on paper, the main 

disadvantage lies with the editing and improving of the design which is problematic. If the 

designer wants to make changes in the sketch, usually he has to take another sheet of paper and 

basically redraw the entire sketch. In contrast to a paper, computer tools potentially have many 

advantages. Firstly, the designer would not be forced to express his ideas twice by initially 

sketching on paper and then transferring the design to the computer. Secondly, as mentioned 

before, it would be easier for the designer to edit the design on the computer. Moreover, the 

computer could perform the role of an assistant in the process of sketching by making/offering 

adjustments in the sketch made by the designer. 



 7

 Most engineers, architects and other design professionals use computer-aided design 

systems (CAD) in their design activities. Although CAD systems use a wide range of computer-

based tools, the compromise between the ease of drawing sketches on paper and the power of 

representing it on computer is too great. The engineers design mostly with pencil and paper, 

rarely transferring their designs to the computer often until they are rather complete, because of 

an unnatural feel of CAD tools and simulation software inhibits the design process. One of the 

reasons for the delayed handling of CAD tools is that computers are too difficult to use, 

inefficient in working with drawings and also they lack integration into a real design environment 

where free hand drawing is used. Furthermore, these tools are ineffective for the sketching 

process as they require more precision and effort than it is needed for conceptual design. 

Although CAD tools are becoming suitably sophisticated and multiplex, the main usage of these 

tools is still focused in the final stages of the design.  

This thesis is an attempt to involve computer in the earlier stage of design process. The 

main idea is concentrated on the problem of transforming hand-drawn sketches into neat 

drawings during the sketching process. The work will include qualitative scene analysis, 

geometric beautification, qualitative spatial reasoning and methods of conceptual neighborhoods. 

 

1.1 Motivation of the thesis 

 

This thesis aims at supporting the process of sketching that could be done on a scrap sheet 

and also to design a system prototype for sketching, thus involving computer in early stages of 

design processes. This is a relevant issue, because in the areas of design, sketches play a key role 

in the conceptual phases. This thesis explores the idea of automatically invoking dynamic scene 

analysis and beautifying the sketch based on the designer’s drawing actions. It is important that 

designers would be able to sketch everything they want, quickly and easily using a pencil. With 

such a system, the designers would have a natural common feel of the sketching process. The 

sketching support system should provide freehand drawing, recognize design intent from drawing 

and make corrections according to the designer’s intentions and the context of the drawing. We 

aim at providing contextual assistance to designers in the process of sketching, because it is not 

only means of developing design ideas but also an important mean of communication amongst 

designers.  

 



 8

1.2 Scope of the thesis 

 

 This thesis aims at designing a prototype, which in real-time interacts with the user in the 

process of sketching as shown in Figure 1.  

 

Figure 1: Flow diagram of system functionality 

The system recognizes the drawn object as soon as the drawing process of that object is 

complete. The object is analyzed and identified. After the object recognition process, the system 

starts performing a geometric beautification of the object, if needed. The process of geometric 

beautification encompasses the detection, the imposition of geometric regularities and the 

required correction of defects (such as straightening lines, forming correct angles, connecting 

lines etc). Thereafter, the adjustments of the sketch are performed according to the objects, which 

Input processing 

Recognition of the 

object

Geometric 

beautification 

Adjustment

Display of the result

Object is drawn 

Interpretation 
of the object 

Interpretation 
of the scene Process is completed

False 

False 

True 

True 



 9

have been sketched before the current one, in the context of qualitative scene analysis and 

methods of conceptual neighborhood. The system interacts with the designer by displaying the 

interpretation of objects and giving the means to fixing any misinterpretations made by system. If 

the interpretation is correct the user keeps on sketching, otherwise the user has to indicate to the 

system that the interpretation of the system is incorrect. The process of interpretation involves the 

making a list of possible interpretations by methods of conceptual neighborhoods. Hence, if a 

misinterpretation occurs, the user will be provided with alternative possibilities of interpretation.  

The end result of this thesis is an algorithm designed and developed for dynamic scene 

analysis and beautification, and a partial implementation of it on a demonstrative system. 

 

 



 10

Chapter 2 

 

Problem Analysis 
 

This chapter explores and dissects the questions to be considered, solved, or answered in 

this thesis. As this thesis is concentrated on scene analysis, the issues of reasoning with diagrams 

are overviewed. Moreover, relevant background of qualitative spatial reasoning and conceptual 

neighborhood is revealed here. These are the main issues identified to be necessarily explained 

in this chapter. 

 

2.1  Reasoning with diagrams 

 

Before exploring the field of reasoning with diagrams, the meaning of the basic term 

“diagram” must be clarified. Although this term can mean different things for different people, 

the term “diagram” is used here with the meaning of a drawing that uses geometrical elements in 

order to abstractly represent a case. The situation reasoning can be done in four ways of 

deduction: diagram-to-sentence, sentence-to-sentence, sentence-to-diagram and diagram-to-

diagram (Furnas, 1992). Usually reasoning systems are heterogeneous and use the first three 

ways of deduction. However, work on diagrammatic reasoning in order to express logical and 

set-theoretical properties and integrate it into reasoning systems has become critical and highly 

relevant (Gurr, 1999). As this thesis is concerned with dynamic scene analysis and beautification, 

an overview on issues of reasoning using graphical diagrammatic information is presented. In this 

work, the graphical representations have been classified into three classes, namely: static 

diagrams, animation and virtual reality (cf. Scaife & Rogers, 1996). The main concentration in 

this overview of graphical representations is focused on issues of static diagrams. There is a large 

variation in diagrammatic representations such as maps, flow diagrams, technical illustrations, 

pictures and etc. Each of this representational form is associated with wide range of functions 

(Scaife & Rogers, 1996). 

 



 11

2.1.1 Nature of Diagrams 

 

Reasoning with diagrams attracts scientists, for diagrams can alleviate a problem solving 

process, because it is assumed that diagrams are often more effective than other propositional 

representations. The alleviation of a problem solving also happens, because generally diagrams 

reduce the amount of computation, required to understand the displayed information, by 

replacing relations of words and concepts with lines, arrows, shapes, and spatial arrangements. 

They also facilitate recognizing appropriate objects and inference rules (Cheng & Herbert, 1993; 

Gurr, 1999).  

 

Figure 2: Transitivity in Euler's circle in textual representation (taken from Gurr C. A, 1999, p. 4). 

For example, Figure 2 and Figure 3 show textual and diagrammatic representations of the 

transitivity in Euler’s circles. On one hand, transitive relation of set inclusion in textual 

representation (Figure 2) is captured by symbols in concatenation relation, which must be 

interpreted by intermediary syntax. On the other hand Euler’s circles depicted in diagrammatic 

way (Figure 3) are easier to comprehend as it gives direct semantic information using labeled 

circles and spatial inclusion of the circles. 

 

Figure 3: Transitivity in Euler’s circle in diagrammatic representation (taken from Gurr C. A, 1999, p. 4). 

One of the main features of diagrams is that their space and spatial properties preserve 

information about topological and geometric relations among the objects of the depicted problem. 

It provides information about the object’s location in the way that makes it easier to track 

relations between the objects in space (Scaife & Rogers, 1996). However this characteristic of 

diagrams is not exclusive to them, because diagrammatic properties are also used to encode 



 12

information in other representations just in lesser degree (Cheng et al., 2001). For example, in 

sentential representation of formula “ x y z= + ”, it matters whether “ z+ ” is on the left or on the 

right side of the equal sign. The other example would be logic sentence “ ( )p q r∧ ¬ ∨ ”: it has 

some properties of visual representation, because its symbols are expressed to reader’s visual 

sense by marking them on the page with ink. 

Differently from other types of representations, diagrams have a property of compelling 

specification of certain classes of information. For example, a term “triangle” in sentential 

representation does not contain full information about the object and implies abstract description 

of any object belonging to the class of triangles. In this case, it does not give any information 

about what kind of triangle is considered: equilateral, isosceles or right-angle triangle. On the 

other hand, in a diagrammatic representation of a triangle, information about the specific subclass 

to which the triangle belongs along with its relative size is evident. Different diagrams permit 

different levels of abstraction. Diagrams with little abstraction are easy to use in reasoning, but 

express only limited information. Conversely, diagrams with substantial level of abstraction can 

represent a huge amount of information, but are difficult to reason with (Gurr, 1994). 

 

2.1.2 Cognition with Diagrams 

 

Graphical representation can be regarded as an arrangement of various graphic objects in 

space and is based on directness of information represented by them, which determines the 

effectiveness of this representation to human reader. The usability and suitability of diagrammatic 

representations are influenced by issues of human reaction to representations (Gurr, 1999).  

Visual and spatial characteristics of diagrams and perceptual properties of a diagram’s 

elements enable cognition of the problematic scene. Diagrammatic representations are more 

effective for the cognition process, because some inferences are more immediate or even 

automatic in diagrams. Textual representations require additional logic inference to be made in 

order to make conclusions, whereas diagrams provide conclusions of its own accord. For 

example, Figure 3 provides more direct inference than the same information depicted in Figure 2. 

So, recognizing the desired conclusion is actually not automatic, because the same diagram can 

contain not only the desired conclusion but many other potential conclusions. For example, 

different people can realize the same diagram in quite different ways, which can be far from each 

other. In this sense, a diagram performs more or less the role of a guide by displaying functional 



 13

relations between terms. For example, lines and arrows present in a diagram can show a path that 

has to be followed. Humans can often make the right conclusions more easily if the diagram is 

well matched with the task.  

Furthermore, efficiency of cognition also relies on meanings of elements in the diagram 

(Cheng et al., 2001). Humans can make right conclusions from diagrams, only if perceptual 

information of diagrams is modulated by knowledge about meanings of the graphic elements. 

The more person already knows about the subject matter depicted in diagram, more efficient is 

the use of diagram in reasoning. Moreover, diagrams actually do not contain all the information 

needed to come to the right conclusion. The knowledge and skill of the person is highly domain-

specific and influence the efficiency of diagram usage.  

 

2.2 Qualitative Spatial and Temporal Reasoning 

 

One of the goals of qualitative reasoning and the process itself is to make explicit the 

everyday common-sense knowledge of the physical world. This knowledge with given 

appropriate techniques is needed for a computer to make predictions, analyze and explain the 

actions of physical system (Cohn et al., 1997).  

The research in qualitative reasoning is motivated not only by reasoning in the traditional 

domain of physical systems, but also by a variety of possible areas such as robotic navigation, 

high level vision, spatial propositional semantics of natural languages, engineering design and 

specifying visual language syntax and semantics. Qualitative reasoning approaches perform 

reasoning on the conceptual level and seek to represent continuous properties of the world by 

discrete systems of symbols. One of the ways to do that is to use the relevance principle: “The 

distinctions made by quantization must be relevant to the kind of reasoning performed” (Cohn & 

Hazarika, 2001).  

As the information about surrounding space can be perceived through various channels 

such as vision, touch, hearing, smell and etc., the knowledge of space differs from all other 

knowledge. Physical space is one of the main issues in cognition, because it is the domain in 

which events take place and it is a good reference domain for the interpretation of non-spatial 

concepts (Freksa, 1991b). Spatial reasoning appears as a field dealing with the conceptual 

“space” which comprises spatial representations such as topology, orientation, shape, size and 

distance. The process of the development of spatial reasoning formalism can be divided into three 



 14

steps: preparatory step and two qualitative abstraction steps, which liberate representations from 

insignificant details and focus on the significant distinctions. The aim of preparatory step is to fix 

reasoning task by specifying a configuration space. Next, the set of qualitative relations along 

with appropriate inference rules is described. Finally, the last qualitative abstraction step defines 

a conceptual neighborhood structure for the qualitative relations (Schlieder, 1996). 

Research on qualitative relations and their fundamental theories has been motivated by 

objective of how spatial relations are expressed in natural language and thought. Researchers are 

inclined to divide qualitative relations into two groups: spatial relations and temporal relations. 

Spatial relations provide information about spatial objects regardless of their actual geometry. For 

example, the same information would be given about the triangle, which is placed on the table, no 

matter what kind of triangle it is or what kind of table it is. This group of spatial relations can be 

divided into three subgroups: directions, distances and topological relations. Qualitative temporal 

relations describe objects at different states in time (David & Egenhofer, 1994; Sharma el at., 

1994).  

 

2.2.1 Topological Relations 
 

One definition of topological relations can be based on the relation algebra, which deals 

with algebraic manipulation of symbols that represent geometric configurations and their 

relationships to one another. This algebra analyzes topological relations between any 

combinations of objects such as regions, lines and points (Sharma el at., 1994).  

A 2-complex in 2R  with a non-empty, connected interior is considered to be a region. A 

region with a connected exterior and a connected boundary is called a region without holes 

(Figure 4a), and a region with disconnected exterior and disconnected boundary is a region with 

holes (Figure 4b).   

Definition of a line states that it is a sequence of connected 1-complexes in 2R in a way 

that they do not cross each other and do not form loops. There can be a simple line with two 

disconnected boundaries (Figure 4c) or a complex line with more than two disconnected 

boundaries (Figure 4d). The object point is defined as a single 0-cell in 2R . 



 15

 

Figure 4: A region without holes (a), a region with holes (b), a simple line (c) and a complex line (d) ( taken 

from Egenhofer & Herring, 1990, p. 6) 

Topological relation between two objects, A and B, is described by the comparison of A 

object’s interior ( oA ), boundary ( A∂ ) and exterior ( A− ) with B object’s interior ( oB ), boundary 

( B∂ ) and exterior ( B− ). The method called 9-intersection is based on the idea that these six parts 

combined together form nine fundamental descriptions of a topological relation between two 

objects (Egenhofer & Herring, 1990). These descriptions are: 

• the intersection of A’s interior with B’s interior, noted as ( o oA B∩ ); 

• the intersection of A’s interior with B’s boundary ( oA B∩∂ ); 

• the intersection of A’s interior with B’s exterior ( oA B−∩ ); 

• the intersection of A’s boundary with B’s interior ( oA B∂ ∩ ); 

• the intersection of A’s boundary with B’s boundary ( A B∂ ∩∂ ); 

• the intersection of A’s boundary with B’s exterior ( A B−∂ ∩ ); 

• the intersection of A’s exterior with B’s interior ( oA B− ∩ ); 

• the intersection of A’s exterior with B’s boundary ( A B− ∩∂ ); 

• the intersection of A’s exterior with B’s exterior ( A B− −∩ ). 

A topological relation R between two objects A and B is represented as 3 × 3 matrix of 

above mentioned intersections and noted: 

( , )

o o o o

o

o

A B A B A B
R A B A B A B A B

A B A B A B

−

−

− − − −

⎛ ⎞∩ ∩∂ ∩
⎜ ⎟

= ∂ ∩ ∂ ∩∂ ∂ ∩⎜ ⎟
⎜ ⎟∩ ∩∂ ∩⎝ ⎠

    (1) 

Different topological relations are described by different sets of 9-intersections and 

equivalent topological relations are described by relations with the same specifications 

(Egenhofer & Herring, 1990). In order to simplify the method the intersection content is assumed 

to be value empty (∅ ) or non-empty (¬∅ ). Figure 5 shows the algebraic and visual 

interpretation of the eight relations between two arbitrary regions. 



 16

 

Figure 5: Geometric interpretation of the 8 relations between two regions in 2-D (taken from Egenhofer & 

Khaled, 1992, p. 200). 

Corresponding variety of 9-intersections sets can be obtained to any combination of two 

objects, which can be any regions, any lines or points. The actual number of relations between 

two spatial objects depends on their topological properties.  

 

2.2.2 Directions 
 

Directional relations deal with the order in space and are commonly used in everyday life 

as we often describe one object on the basis of its directional relation with the other object. There 

are basic directions and cardinal directions. The term of basic directions is used here to mean the 

directions very often used in our daily life such as in front of, above, below, on the right and etc. 

The term of cardinal direction claims that it is binary relation involving a reference object and a 

target object. Cardinal directions can be described by quantitative values, such as azimuth or 

bearing, or quantitative symbols, such as east or south-west (Nabil el at., 1996; Sharma el at., 

1994). The specific quantitative symbols, which are available in reasoning, depend on the system 

of directions used. The system of directions can consist only of four symbols: south, north, east 

and west, or it can be also extended by including four more symbols: south-west, south-east, 

north-east, north-west, etc. (Frank, 1996). The choice of description depends entirely on the 

system. 



 17

 

Figure 6: Cone-shaped (a) and projection-based (b) models for cardinal directions (taken from Sharma el at., 

1994, p. 6). 

The main concept of cardinal directions is taken from the compass. This also inspired the 

cone-shaped concept of direction approach, where directions are defined using angular regions 

between objects (Figure 6a). The other useful construction is based on projections (Figure 6b). 

This method defines cardinal directions using projection lines vertical to the coordinate axis 

(Theodoridis et al., 1996).  

 

2.2.3 Distances 
 

As the definition of the term distance proposes, it is quantitative value determined through 

measurements or calculated from known coordinates of two objects in some reference system 

(Sharma et al., 1994). In spite of this, approximations and qualitative concepts such as near and 

far are used to describe distances in reasoning. Measurement theory provides a theoretical base to 

approximate distance, which correspond to a set of ordered intervals and addition rules, which 

provide a complete partition such that the following interval is greater than or equal to the 

previous one (Hong et al., 1995). Reasoning using approximate distances can provide effective 

and meaningful results only if combined with reasoning using cardinal directions (Frank, 1996). 

 

2.2.4 Temporal Relations 
 

Temporal relations are based on James Allen’s popular temporal logic and represent 

temporal changes between spatial objects (Allen, 1983). Allen proposed to describe qualitative 

relations between events or objects using intervals (Sharma et al., 1994) and introduced method 

to derive relationships between intervals (Nabil et al., 1996). The interval is assumed to be a fully 



 18

ordered set of points along a discrete time line between the endpoints of the interval. Based on 

this representation, Allen derived interval algebra with clear semantics (Rauh et al., 2000), 

according to which any ordered pair of intervals is related in one of the thirteen temporal 

relations (Figure 7). 

 

Figure 7: Allen’s thirteen 1-dimensional interval relations (taken from Rauh et al., 2000, p 872). 

Allen’s thirteen 1-dimensional interval relations table is composed of six relationships 

with their inverses and one relationship, which has no inverse (Freksa, 1991b; Nabil et al., 1996). 

In case of the basic relation “equal”, it does not have any inverse. This algebra describes the 

properties of the temporal relations and defines sets of rules that permit inferences about relations 

(Rauh et al., 2000). Reasoning using temporal relations is done by making sets of possible 

relations between two objects in relation to the third object. 

 



 19

2.3 Conceptual Neighborhoods 

 

Reasoning using neighborhoods is used to describe the possibility to transform two spatial 

or temporal configurations of the objects into each other using small changes in the position or 

size of the objects (Dylla & Moratz, 2005).  

The concept of conceptual neighborhoods defines the similarity measures for a set of 

relations.  It is graphically represented as a graph constructed from nodes, which define relations, 

and links, which connect relations which can be directly transformed to each other (Papadias et 

al., 2001). The shorter is the way to reach one relation from the other the more similar those 

relations are. If the structure of conceptual neighborhoods is known, there can be made 

predictions about changes and reasoning with relations.  

As this thesis aims to explore dynamic scene analysis and beautification for hand-drawn 

sketches on geometric and qualitative levels of abstraction, the focus is set on conceptual 

neighborhoods of spatial relations not temporal ones.  

 

2.3.1 Neighborhoods of Topological Relations 
 

Topological relations define spatial configuration between two objects such as metric 

details, topology issues. If some topological constraints are changed, significant alterations 

between relations occur (Bruns & Egenhofer, 1996). Although the number and extent of changes 

can increase with every step, generally the change is gradual. It starts from equivalent scene, then 

transforms to very similar, then to less and less similar ending with totally different variation. 

The concept of gradual change has been the basis for the conceptual neighborhoods model of 

topological relations (Figure 8). 

Figure 8 represents conceptual neighborhood of eight topological relations between two 

simple regions. Each relation in the figure is connected with its conceptual neighbors with the 

help of a line. 



 20

 

Figure 8: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p. 33). 

Individually topological conceptual neighborhoods are effective in reasoning about 

simple two-object scenes (Bruns & Egenhofer, 1996), because the structure of the conceptual 

neighborhood is not so complex. Their usage in more complicated scenes is inefficient, because 

as the complexity of objects increases, the conceptual neighborhoods becomes more complex and 

hard to comprehend. However, the combination of conceptual neighborhoods of topological, 

cardinal and distance relations is an efficient utility for spatial reasoning of scenes consisting of 

more than two objects.  

 

2.3.2 Neighborhoods of Direction Relations 
 

Cardinal directions are very important in specifications of spatial scene, because they 

describe the orientation between spatial objects. The structure of neighborhood graph of cardinal 

relations is derived from Allen’s interval method applied to orthogonal projections with the 

constrain that any object can move continuously and smoothly in any direction but without 

jumping to a new location (Goyal & Egenhofer, 2001).  



 21

 

Figure 9: Conceptual neighborhood of cardinal relations of two squares (taken from Bruns & Egenhofer, 

1996, p. 34). 

Figure 9 depicts conceptual neighborhood graph constructed for cardinal relations of two 

equal squares. In this case, conceptual neighborhood is interpretation of either square in any 

direction. Conceptual neighbors are connected via links, indicating which cardinal relations can 

be gradually derived one from other. The similarity of relations is evaluated by the number of 

intermediate relations on the way from one relation to other. Although such neighborhood graphs 

of cardinal relations can be generated for other shapes, but they are more difficult to depict and 

interpret in the 2-dimensional space (Bruns & Egenhofer, 1996; Goyal & Egenhofer, 2001). 

 

2.3.3 Neighborhoods of Distance Relations 
 

In opposite to above mentioned spatial relations, it is difficult to characterize distance 

relations of spatial objects. All concepts and terms used in reasoning with distance relations are 

not objective ones and very sensitive to the spatial data which is being considered (Bruns & 

Egenhofer, 1996). One of the methods to describe similarity between distance relations is to use 

increasing buffer distances (Figure 10). 



 22

 

Figure 10: Conceptual neighborhood of distance relations (taken from Bruns & Egenhofer, 1996, p. 33). 

Figure 10 graphically shows conceptual neighborhoods of distance relations for a of four 

distance relations. In this case, structure of conceptual neighborhoods is based on an order 

relation. In such neighborhood graph order relation “less than” ( < ) is used to depict the gradual 

transformation of one relation to more and more diverse one. Two adjacent relations are more 

similar to each other than the distant ones. For example, distance relations “close” and “very 

close” are more similar to each other than the latter one and the relation “far”. This is because 

according order relation over distance symbols “very close” < “close” < “far”. This type of 

reasoning can be good utility to determine how many gradual changes are required to complete 

transformation from one scene to another (Bruns & Egenhofer, 1996).  

 

2.4 Recognition 

 

2.4.1 Statistical Moments 
 

Recognition of visual patterns independent of position, size and orientation is a goal of 

research a much long time. Statistical moments are extensively used in many different aspects of 

image processing, ranging from invariant pattern recognition and image encoding to pose 

estimation (Schutler, 2002). Image recognition can be done using statistical moments such as the 

mean, variance, and higher-order moments, because they describe the image distribution with 

respect to its axes (Gonzalez & Woods, 2002). 

The moment of an image is expressed by the standard equation (Taubman, 2005): 

( )
X Y

p q
pq xy

x y

M x y P=∑∑      (2) 



 23

where , 0p q ≥ . In the above equation X  and Y  are the width and height of an image 

respectively and p qx y  is monomial product. xyP  is the value of the pixel, when pixel ,x y  is white 

it is 0, and when it is 1, pixel ,x y  is black. The image usually has to be inverted and adjusted 

according threshold in order to meet binary requirements of xyP . The moments of the image can 

be computed only after these adjustments. 

 As there is infinite number of moments, a subset of moments has to be chosen for 

recognition purposes (Taubman, 2005). Usually all moments from 0, 0p q= =  to 3, 3p q= =  are 

used because they change with image position and image scale. 

 The zero order moment 00M  represents the total mass (or power) of the image. If it is 

applied to binary image, then it is literally a pixel count of the number of pixels comprising the 

object (Schutler, 2002). 

 It is well known, that centralized moments do not change under the translation of 

coordinates. This leads to the statement that centralized moments pqμ  are invariant under 

translation and are defined as (Hu, 1962): 

( ) ( )
X Y

p q
pq xy

x y

x x y y Pμ = − −∑∑      (3) 

where 

10

00

Mx
M

=        (4) 

01

00

My
M

=        (5) 

 In order to enable invariance under scaling normalized moments pqη are calculated: 

00( )
pq

pq γ

μ
η

μ
=        (6) 

where 

1
2

p qγ +
= +   ( ) 2p q∀ + ≥  

 Hu derived seven invariant moments of second- and third-order. The first six Hu moments 

encode shape of the object with invariance to scale, position and rotation. The seventh moment is 

calculated with invariance to skew, which lets to distinguish between mirrored images. Seven Hu 

moments are expressed by these equations (Poppe & Poel, 2006): 



 24

1 20 02I η η= +        (7) 

2 2
2 20 02 11( ) 4I η η η= − +       (8) 

2 2
3 30 12 21 03( 3 ) (3 )I η η η η= − + −      (9) 

2 2
4 30 12 21 03( ) ( )I η η η η= + + +      (10) 

2 2
5 30 12 30 12 30 12 21 03

2 2
21 03 21 03 30 12 21 03

( 3 )( )(( ) 3( ) )

(3 )( )(3( ) ( ) )

I η η η η η η η η

η η η η η η η η

= − + + − + +

+ − + + − +
  (11) 

2 2
6 20 02 30 12 21 03 11 30 12 21 03( )(( ) ( ) 4 ( )( ))I η η η η η η η η η η η= + − + + + +  (12) 

2 2
7 21 03 30 12 30 12 21 03

2 2
30 12 21 03 30 12 21 03

(3 )( )(( ) 3( ) )

( 3 )( )(3( ) ( ) )

I η η η η η η η η

η η η η η η η η

= − + + − + +

+ − + + − +
 (13) 

 These moments can be generalized to accomplish pattern recognition not only 

independently of size, position and rotation but also independently of parallel projection (Hu, 

1962). 

 
 

 



 25

Chapter 3 

 

Design 
 

This chapter presents the algorithm for dynamic scene analysis and beautification of hand-drawn 

sketches. There will be presented and discussed each part of the algorithm separately with the 

focus on recognition, beautification and adjustment methods. 

 

3.1 System Model 
 

 This work is concentrated on the design of system prototype for dynamic scene analysis 

and beautification of hand-drawn sketches. The main concept of the system is that it interacts 

with user in real-time while the process of sketching is going on. Every time user draws an object 

the system should give the response by making appropriate corrections in the sketch.  The 

structure of this system model is presented in Figure 11: 

 

Figure 11: Structure of the system model 

 As it is shown in Figure D1, one of the components of the system is a SMARTBoard. A 

SmartBoard is an interactive whiteboard that is connected to a computer and a data projector. It is 

used because it will give to the user a sense of natural sketching. Next component of the system 

is Application 1, which is designed for drawn object detection. The main aim of this application 

is to detect the event when user finishes drawing of the object on the SMARTBoard. It is 

assumed that application is tracking the motion of pen used by the user and the strength of the 

pen’s pressing. When the pen is withdrawn for longer time then N seconds, it is assumed that the 

user finished drawing of the object. The waiting period of N seconds enables users to draw not 

only continuous shapes but also to sketch using strokes. If the event of object finishing is 

registered the SMARTBoard’s screen is captured and transferred to the Application 2, which is 

 
SMARTBoard 

 
Application 1 

 
Application 2 



 26

designed for dynamic scene analysis. This application analyzes and identifies the object, 

performs geometric beautifications if they are needed and adjustments of the sketch, according to 

the objects which have been sketched before. As the result, Application 2 sends the corrected 

sketch scene back to Application 1, which displays the result to the user on the SMARTBoard. 

When the  responds to the user’s made drawings, the user can indicate whether the interpretation 

of his sketching is correct or not. If the interpretation is incorrect then system gives to the user the 

next more likely interpretation of the sketch. If the user in time duration of N seconds doesn’t 

indicate that the interpretation is incorrect, the system gets ready for the processing of the next 

object.  

 As this thesis is more based on the process of dynamic scene analysis and beautification 

of hand-drawn sketches on geometric and qualitative levels of abstraction, the focus is set on the 

design of Application 2.  

 

3.2 Algorithm for dynamic scene analysis and beautification 
 

 An algorithm has been designed in order to implement the functionality of Application 2 

discussed in the above section.  

As it is shown in Figure 12 the proposed algorithm consists of four steps: 

• Input processing – the preparation of input data for the coming operations. 

• Recognition process – the process of the drawn object recognition in comparison to object 

classes stored in the system. 

• Geometric beautification – the process of the drawn object beautification by the detection 

and imposition of geometric regularities and the required corrections of defects. 

• Adjustment – the adjustment of sketch according to the spatial relations between the 

current object and the object, which has been sketched before the current one. 

 

Figure 12: Structure of the algorithm for dynamic scene analysis and beautification 

 
Input 

processing 

 
Recognition 

process 

 
Geometric 

beautification

 
Adjustment 



 27

 Each step of the algorithm is discussed below in more details introducing the approach, 

which has been used to fulfill the purpose of it. The restrain of this algorithm is that it has been 

designed based mainly on some database of geometric basic shapes. This means that there no 

guarantees, that it will work with the shapes, which were not used for the design of the algorithm. 

 

3.2.1 Input Processing 
 
 This part of the algorithm prepares data for the following steps. It gets the image of 

drawing screen and converts it into binary image, where 0 represents a white pixel and 1 

represents a black one. Afterwards, the changes which have been made to that picture are 

distinguished by comparing the current sketch with the lastly processed sketch. The difference of 

these sketches indicates an object, which has been recently drawn by a user. Next, the object’s 

interest area is clipped out of the sketch area. The term of interest area is used here with intention 

to designate a rectangle shape area containing the actual object and some additional white pixels. 

When the interest area of the object is excised, it is transmitted to the recognition process. 

 

3.2.2 Recognition Process 
 

The recognition process is performed in order to classify to which class of shapes the 

drawn object can be assigned. This step of algorithm is based on Hu moments, which are 

invariant to scale, position and rotation. A sketched object can be only recognized as the one 

belonging to some specific class of shapes. Beforehand, there has to be trained a system with the 

samples of a users drawn shapes. It is done with the assumption that different people have 

different specific way of sketching.  

After training is completed, results are kept in a database in a form of shapes’ definition 

with their Hu moments feature properties. A Hu moment feature vector is here assumed to mean 

the vector consisting of seven Hu moments which characterize the shape. This work concentrates 

on the recognition of circles and squares with assumption that user is drawing these shapes in 

small range of sizes. 

When the object A is sketched and its interest area is clipped out of the sketch by the 

input processing part, the recognition process calculates the feature vector of the drawn object: 

{ }1 2 3 4 5 6 7AHU I I I I I I I=   (14) 



 28

where AHU  is a feature vector and kI  is appropriate Hu moment, when 1,2,...,7i = . 
 When the feature vector of the object is calculated, the recognition is processed. There is 

performed the comparison of the distances between object feature vector and feature vector of the 

shapes kept in database. In this way, it is checked to which shape’s domain the drawn object 

belongs. The shortest distance determines the class of the object. 

 In order to confirm that the chosen concept is working as it is assumed, there have been 

made some tests (Figure 13). Testing is performed on the two basic shapes: circle and square. 

There have been made 15 samples for each shape, in total 30 samples. The recognition algorithm 

was trained with all 30 samples. The feature vector of seven Hu moments for each shape has been 

generated by taking mean value of each shape’s Hu moments values for each sample. 

 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Determination of circle shape Hu feature vector

number of a Hu moment

H
u 

m
om

en
ts

 v
al

ue

 

Figure 13: Determination of Hu feature vector a circle shape 

 Figure 13, shows the Hu moments (blue line) for all training 15 samples, which have been 

used to define circle shape’s Hu feature vector (red line). Figure 14, presents the calculation of 

Hu feature  vector for a square shape, where blue lines shows Hu moments of training samples 

and red line indicates the estimated Hu vector for the square shape.  



 29

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Determination of square shape Hu feature vector

number of a Hu moment

H
u 

m
om

en
ts

 v
al

ue

 

Figure 14: Determination of  Hu feature vector a square shape 

It can be seen that these two shapes have some different Hu moments’ features.  Firstly, 

the most informative Hu moments for a circle shape are the first four moments, whereas for a 

square the most informative ones are the first three Hu moments. Moreover we can see that the 

most significant moment is the first Hu moment. In the case of a circle shape first Hu moment 

values are in the range from 1.3 to 1.5, when in the case of a square shape values are in the range 

from 1.5 to 1.8.  

Afterwards, the system is asked to classify 60 test samples, which are the mixture of 

samples from the training set and the completely new samples. From the Figure 15, the efficiency 

of recognition can be seen. Images assumed to be of the circle’s shape are recognized with 85 

percent, and squares are recognized with 95 percent.  

 Object recognition, 
% 

Circle samples 85 

Square samples 95 

Figure 15:  Sample testing 



 30

 Although Hu moments are invariant to scale, rotation and position, their performance is 

limited in some cases. The performed tests showed that the size of the object matters to the 

recognition using Hu moments. 

When the shape database comprises a large range of different shapes, it is more efficient 

to use Zernike moments for the recognition (Hse & Newton, 2004). However, this algorithm is 

not considering the usage of these moments, because in order to calculate Zernike moments there 

have to be performed huge complex calculations.  

As this system prototype is assumed to be more used by designers, who are sketching 

mostly using basic shapes, it is better to use Hu moments which are more fast and easy to 

calculate. 

  

3.2.3 Geometric Beautification Process 
 

After completion of object recognition, the obtained information about the object is 

utilized in the beautification process, in order to make the required corrections such as the 

straightening of lines, the forming of correct angles, connecting lines, etc. and to create a neat and 

clean version of the hand-drawn image.  

The algorithm’s beautification step gets information about an object in two aspects 

(Figure 16). Firstly, the exact area of interest is taken from the sketch. Secondly, the name of the 

object's shape is assigned to the object. This information is passed on from the earlier steps of the 

algorithm. 

 

Figure 16: Input to the beautification step of the algorithm 

 The aim of beautification is to use information, which is provided by object recognition, 

in reproducing the recognized object into an exact and pre-defined shape. Different shapes 

require appropriate beautification of different complexity levels. The process of beautification for 

a few basic shapes such as squares, rectangles, circle, ellipse and etc. does not demand complex 

Rectangle Square Circle 



 31

calculations and amendments, while beautification of complex shapes takes a lot more actions 

and lot more complex computations. 

 

3.2.3.1 Beautification of Basic Shapes 
 

The process of beautification for a few basic shapes does not demand complex 

calculations and amendments. The term of basic shapes is used here to mean the basic two- 

dimensional geometrical objects such as squares, rectangles, circle, ellipse and etc. The methods 

for beautification of each of this method are discussed below in more detail. 

 

 

 

 

 

 
Figure 17: Beautification of a rectangle 

The example shown in Figure 17 presents beautification of the object in the case, when 

the object is recognized to be a rectangle. The beautification process of a rectangle is 

straightforward and involves the measuring of the interest area. According to the size of the 

height and width of interest area, the neat and ideal rectangle is produced. 

 

Figure 18: Beautification of a square 

As it is shown in Figure 18, beautification of an object recognized as a square requires 

more actions. Since the recognized object is a square, the intention is to draw a symmetrical 

shape with four equal borders. In order to define such a shape, the height and the width of the 

object’s interest area are measured. The average of the height and width is calculated to 

determine the length of the border for the beautified square. When the length of the border is 

calculated, the neat and ideal square is generated instead the sketched one. 

h

w 

l new = (h + w) / 2  

l new

l new 

hnew

wnew 

h

w 

h = hnew 
w = wnew 



 32

 

 

 

 

Figure 19: Beautification of a circle 

Similarly, the beautification process of a circle is done (Figure 19). As in the case with a 

square, first the size of a border for a new interest area for object is defined. In addition, the 

beautification process of a sketched circle requires the calculation of the center point for the new 

interest area. If the size of the border is equal to an even number, then an additional point is 

added by the beautification engine. This is done, because an additional point is required to fit 

ideal circle shape into the interest area of the drawn object. Next, a radius of an ideal circle is 

calculated and circle is generated in the new interest area. 

 

Figure 20: Beautification of an ellipse 

Appropriately, when an object is recognized as ellipse (Figure 20), the beautification 

process performs actions very similar as in the case with a rectangle and a square. The interest 

area of an ideal shape is calculated similarly as in the case with a rectangle. Similarly to the case 

of circle beautification, there has to be estimated center of the ellipse. If the width of interest area 

is equal to an even number, then an additional point is added to the width. Appropriately, if the 

height of interest area is equal to an even number, then an additional point is added to the height 

of the interest area. These corrections of the interest area ensures that ellipse is symmetrical along 

x and y axis. When the interest area is amended, two radius of ellipse are calculated and an ideal 

ellipse is produced in the interest area. 

 

3.2.3.2 Beautification of Complex Shapes 
 

If object is recognized to be from the class of complex shapes, geometrical beautification 

is performed based on method proposed by H. H. Hse and A. R. Newton (Hse & Newton, 2005).  

hnew
h

w 

h = hnew 
w = wnew 

wnew 

h

w 

l new = (h + w) / 2  

l new 

l new 



 33

In order to make meaningful beautification of complex shapes such as parallelograms, 

trapezoids, hexagons and etc. more detailed structural information about the object is needed. 

Such information is obtained with the help of object segmentation into straight lines ( L ) and 

elliptical arcs ( E ). As the result of segmentation there is generated a segmentation template 

consisting of the number of L ’s and the number of E ’s. For the better understanding of the 

concept of this method, beautification of several shapes will be explained in more detail below. 

For example, when the object is recognized as a parallelogram, the line segments are 

ordered consecutively (Figure 21). Processing of the data is started with the segment (1) that 

forms an acute angle ( 1H ) with another segment.  

 
Figure 21: Sketched parallelogram (a), beautified parallelogram (b) and graphical description of the 

parameters (c) (taken from Hse & Newton, 2005, p. 4) 

 In the case of a trapezoid (Figure 22), there is computation of the dot products of the 

opposing segments in order to determine two parallel sides. Afterwards, the top-short (1) and 

bottom-long (3 ) sides of trapezoid are defined, all segments arranged in clockwise order stating 

from the top one and rotation angle is computed. 

 

Figure 22: Sketched trapezoid (a), beautified trapezoid (b) and graphical description of the parameters (c) 
(taken from Hse & Newton, 2005, p. 4) 

 Other complex shapes are also beautified applying this method, but extent of 

beautification of all objects is limited by the available support of the designed application in 

terms of how many shapes are definite in the application. 

 



 34

3.2.4 Adjustment  
 

The adjustment step of this algorithm aims to place object on the screen in the position at 

which the user has meant to draw it. The place of the object is located according to its spatial 

relations with other previously drawn objects. This step considers all three above mentioned 

types of spatial relations: directions, distances and topological relations. The list of spatial 

relations between the current object and the five the most recently drawn other objects is 

generated in order to decide which previously drawn object is in the most “closest” relations with 

the current one. The most recently drawn objects are considered and the oldest ones are left out 

assuming that mostly people are sketching objects in turn and structurally. It is assumed that it is 

less likely that a user draws more closely related objects one after each other or within five 

objects. When the “closest” object is determined, adjustments of the current object are made on 

the basis of its relations with the closest one. Basically adjustment step can be divided into three 

sub-steps: 

• Generating list of relations with other objects: directions, distances and topological 

relations.  

• Determining the “closest” object to the current object 

• Performing adjustments according the “closest” object 

There are explained in more detail all sub-steps of the adjustment. The result of the first 

sub-step is the list of previously drawn objects with the description of their spatial relations with 

the current object. The description of spatial relations consists of direction, distance and 

topological relations properties. Below the method of determining each type of spatial relations is 

described more exactly. Furthermore there comes the explanation how the adjustment is done 

according to the properties of spatial relations. 

 

3.2.4.1 Determination of Directions 
 
 This algorithm is using cardinal directions as one of the properties used for the adjustment 

step. Here we are using system of directions defined by eight quantitative symbols: south, north, 

east, west, south-east, south-west, north-east and north-west. The method of directions 

determination between two objects is depicted in Figure 23. 



 35

 

Figure 23: Determination of the direction between objects A and B 

 Figure 23 shows objects A  and B , which have been drawn by a user. It is considered that 

A  object is drawn before B  object, so A  object is used as reference object and B  object is a 

target object. Now the task is to find out in what cardinal position is target object B  according to 

the reference object A . Firstly, there is set an imaginary circle, which center coordinates ( , )a ax y  

are the same as the center coordinates of the reference object A . The length of the radius of the 

imaginary circle is not relevant, but the bigger it is the more distinctive the determination of 

direction is. Eight points are set on the imaginary circle in order to represent all eight cardinal 

directions. South is depicted by S  point, north is N  point, E  is east point and etc. When 

cardinal points are set, the distances between those eight points and the center point ( , )b bx y  of 

the target object B  are calculated. A distance between the N  point and center point of the target 

object is represented by Nd  distance, a distance distances to the south-east point is denoted by 

SEd  line and etc. The shortest distance shows the target object’s B  position according to the 

reference object A . When the direction is defined, it is assigned to the relation between two 

objects. Afterwards the algorithm starts the determination of the distance between these objects. 

 

object B 

(xa, ya) 

NENW

N

EW

SESW

S

(xb, yb) 

object A 

dS 

dSE dSW 

dW 

dNW 
dN 

dE 

dNE 



 36

3.2.4.2 Determination of Distances 
 
 Besides directions this algorithm is also using distances in order to make adjustments of 

the drawn object’s position in the sketch. The distances are defined using the qualitative 

concepts: zero, near and far.  In order to detect where one object is in comparison to the other 

object we are using direction’s relations between two objects. The information about direction 

relations between those objects is obtained from the previous step, which is described in the sub-

section above.  

The determination of the distance between two objects requires several actions. First, it is 

determined whether one of those objects covers the other one. The term “covers” is used here to 

mean that one object’s interest area is covered by other objects interest area (Figure 24). 

 

Figure 24: Object’s A interest area covers object’s B interest area 

 Figure 24 shows the case, where the interest area of object A  covers the interest area of 

object B  and satisfy conditions: 

min_ min_

max_ max_

min_ min_

max_ max_

a b

a b

a b

a b

x x

x x

y y

y y

≤⎧
⎪

≥⎪
⎨ ≤⎪
⎪ ≥⎩

    (15) 

object A 

object B 

(xmin_a, ymin_a) (xmax_a, ymin_a) 

(xmin_b, ymin_b) (xmax_b, ymin_b) 

(xmax_b, ymax_b) (xmin_b, ymax_b) 

(xmin_a, ymax_a) (xmax_a, ymax_a) 



 37

where min_ min_( , )a ax y  and max_ max_( , )a ax y  are coordinates of A  object’s interest area’s upper left 

and bottom right corners, min_ min_( , )b bx y  and max_ max_( , )b bx y are coordinates of B  object’s interest 

area’s bottom right corners. 

In such a case it is claimed, that object A  is in zero distance from object B , otherwise 

next actions of distance determination are performed. 

 When it is clear that object A  is not covering object B , the algorithm checks whether the 

intersection between these objects exists and what the size of it is. Actually the term 

“intersection” is used here to indicate the intersection between one object’s interest area and other 

object’s interest area (Figure 25). 

 

Figure 25: Object’s A interest area intersects with object’s B interest area 

Figure 25 shows the case, where the interest area of object A  intersects with the interest 

area of object B . The intersection region is distinguished by red stripes. The intersection is 

detected, if at least two conditions out of four are satisfied: 

min_ min_

max_ max_

min_ min_

max_ max_

a b

a b

a b

a b

x x

x x

y y

y y

≤

≥

≤

≥

    (16) 

where min_ min_( , )a ax y  and max_ max_( , )a ax y  are coordinates of A  object’s interest area’s upper left 

and bottom right corners, min_ min_( , )b bx y  and max_ max_( , )b bx y are coordinates of B  object’s interest 

area’s bottom right corners. 

 

(xmin_b, ymin_b) 

object A 

object B 

(xmin_a, ymin_a) (xmax_a, ymin_a) 

(xmin_a, ymax_a) (xmax_a, ymax_a) 

(xmin_b, ymax_b) 

(xmax_b, ymin_b) 

(xmax_b, ymax_b) 



 38

When the intersection is detected, the next step is to find out the distances between the 

intersecting borders of objects’ A  and B  interest areas, which determine the distance between 

object A  and object B . If one of the distances between the intersecting borders is bigger than the 

threshold defined by the thickness of the pen, it is considered that the distance between objects A  

and B  is zero. If this is not the case, then objects A  and B are assumed to be near to each other. 

If objects A  and B are not covering and are not intersecting, then it is clear that they can 

be near or far from each other but not in the zero distance. In order to determine whether two 

objects are near or far from each other there have to be measured the distance between 

appropriate borders of two objects (Figure 26) 

 

Figure 26: The calculation of distance between object A and object B with direction defined as “west” 

 Figure 26 shows two objects A  and B , which are in distance defined by ABd  value. This 

vale is used to determine whether objects A  and B are near or far from each other. In order to 

find out distance ABd  direction’s relation between objects A  and B is used. In this example, 

object A  is a reference object, object B is a target object. The direction’s relation is defined as 

“west”, which means that object B  is in west to object B . In this case distance between objects 

A  and B is calculated: 

min_ max_AB a bd x x= −     (17) 

where min_ ax  is x  axis coordinate of A  object’s interest area’s left border, max_ bx  is x  axis 

coordinate of B  object’s interest area’s right border. 

 If direction between objects A  and B is “east”, distance ABd  is calculated appropriately: 

_ max_AB min b ad x x= −     (18) 

where min_ bx  is x  axis coordinate of B  object’s interest area’s left border, max_ ax  is x  axis 

coordinate of A  object’s interest area’s right border. 

 
object A object B 

(xmin_a, ymin_a) (xmax_a, ymin_a) 

(xmin_a, ymax_a) (xmax_a, ymax_a) 

(xmin_b, ymin_b) 

(xmin_b, ymax_b) 

(xmax_b, ymin_b) 

(xmax_b, ymax_b) 

dAB 



 39

 When object’s B  position according to object’s A  position is defined as “north”, 

distance ABd  is: 

_ max_AB min a bd y y= −     (19) 

where min_ ay  is y  axis coordinate of A  object’s interest area’s upper border, max_ by  is y  axis 

coordinate of B  object’s interest area’s bottom border. 

 In the case, when object B  is in “south” to object A , distance ABd  is obtained by: 

_ max_AB min b ad y y= −     (20) 

where min_ by  is y  axis coordinate of B  object’s interest area’s upper border, max_ ay  is y  axis 

coordinate of A  object’s interest area’s bottom border. 

 When direction’s relation between two objects is defined in terms of four basic directions 

(“south”, “north”, “west”, “east”), it is assumed that in order to determine distance relation, it is 

enough to calculate distance according to one appropriate axis ( x  or y ). 

 

Figure 27: The calculation of distance between objects A and B with direction defined as “north-west” 

 Figure 27 shows the case, where object B is “north-west” position to object A . In order 

to find the distance ABd  between these objects it is not enough to make calculations utilizing only 

one axis measurements. As the direction property “north-west” indicates, there should be used 

combination of calculations performed in the case of “north” and “west”. In the case depicted by 

 

(xmin_b, ymin_b) 

object A 

object B 

(xmin_a, ymin_a) (xmax_a, ymin_a) 

(xmin_a, ymax_a) (xmax_a, ymax_a) 

(xmin_b, ymax_b) 

(xmax_b, ymin_b) 

(xmax_b, ymax_b) dAB 

dx 

dy 



 40

Figure 27, distance ABd  is calculated using Euclidian distance estimation method and 

calculations performed in the case of “north” and “west”: 

2 2
_ max_ min_ max_( ) ( )AB min a b a bd y y x x= − + −   (21) 

where min_ min_( , )a ax y  are coordinates of A  object’s interest area’s upper left corner, 

max_ max_( , )b bx y are coordinates of B  object’s interest area’s bottom right corner. 

In the case, when object B  is in “north-east” to object’s A , distance ABd  is obtained by: 

2 2
_ max_ _ max_( ) ( )AB min a b min b ad y y x x= − + −   (22) 

where max_ min_( , )a ax y  are coordinates of A  object’s interest area’s upper right corner, 

min_ max_( , )b bx y are coordinates of B  object’s interest area’s bottom left corner. 

When object’s B  position according to object’s A  position is defined as “south-west”, 

distance ABd  is: 

2 2
_ max_ min_ max_( ) ( )AB min b a a bd y y x x= − + −   (23) 

where min_ max_( , )a ax y  are coordinates of A  object’s interest area’s bottom left corner, 

max_ min_( , )b bx y are coordinates of B  object’s interest area’s upper right corner. 

If direction between objects A  and B  is “south-east”, distance ABd  is calculated 

appropriately: 

2 2
_ max_ _ max_( ) ( )AB min b a min b ad y y x x= − + −   (24) 

where max_ max_( , )a ax y  are coordinates of A  object’s interest area’s bottom right corner, 

min_ min_( , )b bx y are coordinates of B  object’s interest area’s upper left corner. 

 It has to be mentioned that ABd  is not the precise distance between objects A  and B , it 

just gives an abstract idea of the position between the two objects. This adjustment’s sub-step 

does not require a precise measuring of distance, because the distance relation is defined by 

qualitative concepts. In the case, when ABd  value is greater than the threshold defined by the 

thickness of the pen, it is considered that two objects are located far from each other. Otherwise, 

the distance relation between two objects is assumed to be near. 

 



 41

3.2.4.3 Determination of Topological Relations 
 

In order to determine the topological relation between two objects there is used the 

distance relation property assigned in the sub-section above. Topological relations, which are 

interpreted as Figure 5 shows, are determined according distance relations in a way described 

below.  

If the distance between objects A  and B  is considered to be far, the topological relation 

between them is determined as disjoint. When object B  is located near to object A , it is 

considered that objects meet each other. If objects A  and B are in zero distance from each other, 

there are several topological relations possible: contains (object A  contains object B ), inside 

(object A  inside object B ), equal (object A  equal to object B ), covers (object A  covers object 

B ), coveredBy (object A  covered by object B ), overlap (object A  overlapped by object B ). In 

this case, there have to be performed some additional actions to determine, which relation of the 

five six ones is the right one.  

Although, in order to determine the topological relation of objects A  and B , Equation 1 

is used, this algorithm is using a simplified its version: 

( , )
o o o

o

A B A B
R A B

A B A B
⎛ ⎞∩ ∩∂

= ⎜ ⎟
∂ ∩ ∂ ∩∂⎝ ⎠

   (25) 

where o oA B∩  is the intersection of object’s A interior with object’s B interior, oA B∩∂  

represents the intersection of object’s A interior with object’s B boundary, oA B∂ ∩  is the 

intersection of object’s A boundary with object’s B interior and A B∂ ∩∂ notes the intersection of 

object’s A boundary with object’s B boundary.  

 It is enough to know only these four intersections, because disjoint and meet relation in 

the case, when distance is zero, is assumed to be not possible. After the application of Equation 

25, the interpretation of six relations could be defined as it is shown in Figure 28: 



 42

 

Figure 28: The interpretation of 6 topological relations between two objects (after from Egenhofer & Khaled, 
1992, p. 200) 

 When the current topological relation of two objects is determined, there has to be 

generated a list of other alternative relations according conceptual neighborhoods. The list is 

needed to perform corrections as fast as possible, if initial adjustment is incorrect. The structure 

of conceptual neighborhoods is used the one defined by Figure 8. In order to make it more clear, 

how the list of possible relations looks like and how those relations are interconnected, all eight 

relations are numbered as it is shown in Figure 29. 

 

Figure 29: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p. 33) , with 
numbered relations 

1

2

3

87

6

5

4

¬∅ ¬∅⎛ ⎞
⎜ ⎟∅ ∅⎝ ⎠

¬∅ ∅⎛ ⎞
⎜ ⎟¬∅ ∅⎝ ⎠

¬∅ ∅⎛ ⎞
⎜ ⎟∅ ¬∅⎝ ⎠

 

¬∅ ¬∅⎛ ⎞
⎜ ⎟∅ ¬∅⎝ ⎠

¬∅ ¬∅⎛ ⎞
⎜ ⎟¬∅ ¬∅⎝ ⎠

¬∅ ∅⎛ ⎞
⎜ ⎟¬∅ ¬∅⎝ ⎠



 43

For each of eight forms of topological relations the list of conceptual neighborhood is 

generated in a form of transition graph. This graph is needed to perform faster correction if the 

initial interpretation of a topological relation between two objects is incorrect. Each node of a 

graph carries the information about the type of relation and its likelihood, which is defined by the 

properties of the objects.  

If the relation between objects A  and B is determined to be as disjoint, then the transition 

graph would be generated according this structure:  

 

Figure 30: Transition graph for "disjoint" topological relation 

 As it can be seen from the Figure 30, the transition graph is completely appropriate to the 

conceptual neighborhood of topological relations presented in Figure 31. The transition between 

relations initially is clear and easy. When the transition from the relation 3 is needed, then it is 

checked which transition is more likely to be the correct one.  

 

Figure 31: Transition graph for "meets" topological relation 

 Transition from one relation to the other, if the initial relation is meets, is depicted in 

Figure 33. In comparison with structure presented in Figure 30, this structure gets more complex 

from the initial state. 

 

2

1

3

54

76

8

21 3

54

76

8



 44

 

Figure 32: Transition graph for "overlap" topological relation 

 Figure 32 shows the transition between conceptual neighbors in the case when initial 

relation is assumed to be overlap.  

 

Figure 33: Transition graph for "covers" topological relation 

 In the case of covers relation, transition structure is depicted as it is shown in Figure 33. 

 

Figure 34: Transition graph for "contains" topological relation 

 Figure 34 shows a case when initial relation between object is assumed to be contains. 

 

Figure 35: Transition graph for "inside" topological relation 

76

8

23

4

5

1

68

23

7

4 1

5

54

8

23

7

6

1

3

54

76

8

12



 45

 When initial relation is assumed to be inside, transition graph is as it is shown in Figure 

35. It can be seen that inside graph is analogical to transition graph of contains relation shown in 

Figure 33. 

 

Figure 36: Transition graph for "coveredBy" topological relation 

 Similarly, transition graph of initial relation coveredBy shown in Figure 36 is analogical 

to the transition graph of relation covers depicted in Figure 34. 

 

Figure 37: Transition graph for "equal" topological relation 

 Lastly, Figure 37 presents transition graph, when the initial topological relation is 

assumed to be equal. From the examples given above, it can be claimed, that the more two 

objects are topologically close to each other, the more complex transition is initially. After all 

spatial relations are determined; the adjustment of the object can be performed. 

 

3.2.4.4 Adjustment of Object  
 

Adjustment of the recognized and beautified object in the sketch is done according to 

spatial relations determined above. Basically, the main focus is set on topological relations and 

other spatial relations are used as supporting information. The adjustments made in every case of 

topological relation are elucidated. 

 If the drawn object is disjoint with the other object, no adjustments are made, because it is 

assumed that a user wanted to draw two objects separately from each other. If the drawn object 

meets the reference object, the beautified object is placed exactly near to the reference object in 

such a way that interest areas of two objects reach each other. It is performed, because it is 

6

8 23

5

4 1

7

48

23

5

6 1

7



 46

supposed that user wanted to draw two objects, which are connected to each other. When target 

object and reference object overlap, as in the case with disjoint relation no actions are made, 

because it is hard to distinguish how much overlapping user intended to make, and the current 

object is placed back into its initial position in the sketch. If target object contains the reference 

object, the target object’s area is placed exactly so that appropriate borders of both objects’ 

interest areas would be connected in such a way that center points of those borders would be 

placed one on the other. Similar adjustments are made in the case when the target object is 

covered by the reference object. When two objects are presumed to be equal to each other, the 

adjustments are made by placing target object in such away that its center point would match 

reference object’s center point. When there is inside or contains relation between the target and 

reference objects, the adjustments are made similarly to the ones made for the case of equal 

relation. 

 When the adjustment of the beautified object is done, the interpretation of the drawn 

object is proposed to a user. If a user denotes that the interpretation is wrong, the algorithm 

assumes that drawn object’s relation to the target object is the next one from the topological 

transition graph and performs appropriate adjustments. This action is performed until the user 

admits the interpretation as the correct one or until the last interpretation offered by the system is 

displayed. 



 47

Chapter 4 

 

Implementation 
 

4.1 Implementation of the Algorithm 

This thesis aimed to design algorithm for a system used for dynamic scene analysis and 

beautification of hand-drawn sketches. In order to prove that designed algorithm is serving the 

purpose, it is partially implemented in Java. As this thesis is focused on the recognition, 

beautification and adjustment processes, which are the essential parts of the algorithm, the 

implementation is basically performed for the Application 2 (Figure 11).  

The concept of the implementation is based on the assumption that algorithm gets the 

screenshot of the SMARTBoard every time the event of an object being drawn is registered. The 

task of the algorithm is to perform the recognition of the shape and beautification of the object, 

whereas the adjustment part is left out as it doesn’t have much value in partial implementation. 

Adjustment of the object’s position is effective if it is implemented fully with the concept of 

conceptual neighborhoods. The implementation is partial and is done for only two basic shapes: 

squares and circles. Basically program loads pictures simulating as if it got the information from 

Application 1 (Figure 11) and partially applies the designed algorithm. If the system interprets an 

object as not appropriate shape, there is given a possibility to indicate it to the system in order for 

it to display other possible shape options.  

The source code of the implementation is presented in the Appendix A. 

 

4.1.1 Class Diagram of the Algorithm 
 

In order to make the implementation more clear the class diagram of the program written 

in Java is provided in Figure 38. There can be seen the structure of the program and all the class 

used to perform the task, which is defined by the algorithm. 



 48

 
Figure 38: Class diagram of a program 

 As it is shown in Figure 38, in order to partially implement the algorithm and verify it 

there are used three classes (Main, Recognition and Beautification) , which are here explained in 

more details. 

Main Class is program’s main class, responsible for implementing user interface, data 

handling and managing all the processes of the algorithm. Moreover, this class is responsible for 

the interaction with a user by reacting to the decisions of the user about the correctness of 

system’s interpretation. One of the most important methods of this class is DSAAB(), which is 

initiated in order to start the process of dynamic scene analyzes and beautification when the 

image is loaded and user indicates that the object is “drawn”. There is no physical fact of 

drawing, as program loads a new screenshot of a SMARTBoard with a new object by the click of 

a user. In order to perform a task of scene analysis and beautification methods of Main class, such 

as Recognition() and Beautification(), initiate methods of other two classes, which are explained 

in more detail below. When the recognition and beautification process is finished Main class 

methods displays the result back to the user for the evaluation of its correctness. If a user 

indicates that algorithm’s interpretation of an object is incorrect, a method ChangeObject() is 

initiated in order to provide other options of interpretation to the user. When the recognition and 

beautification of an object is completed, the user is offered to load another object, as a new and 

additive object of the previous scene.  

Main class consists of these methods: 



 49

• LoadObject() - this method loads a screenshot imitating the persons action of drawing 

an object. 

• DSAAB() – this method handles data and other methods needed for the dynamic scene 

analysis and beautification. It is initiating other Main class methods such as 

InputProcessing(), Beautification(), Draw() and etc. 

• Distance2Points() - makes a list of possible interpretations of the drawn object 

according to the likelihood of its possibility. 

• FixError() – a method, used to fix the probable Hu moments variance caused by the 

difference of the sizes between the target object and the reference objects, according to 

which the Hu moment vectors for the shapes are made. 

• ChangeObject() – this method changes the current interpretation of user’s drawn 

object’s shape  to the other one which is in the list of possible travelers. 

• Distance2Points() - counts the Euclidian distance between the object's Hu moments and 

the reference object's Hu feature vector. 

• ClipOut() -  method which clips out the interest area of the currently drawn object. 

• InputProcessing() – this method is meant to process initial data for the dynamic scene 

analysis and beautification with the help of ClipOut() and CompareTwo(). 

• DistanceList() - makes a list of possible interpretations of the drawn object according to 

the likelihood of it. 

• Beautification() - this method uses Beautification class methods in order to perform 

appropriate beautification actions towards a recognized object. 

• Recognition() - uses the methods of Recognition class in order to recognize a recently 

drawn object. 

• CompareTwo() – method which points out the changes made in the last screen and finds 

the object which is drawn recently. 

• toBuffered Image() - method returns a buffered image with the contents of an image. 

• toImage( ) - this method converts the Buffered Image to an image. 

• hasAlpha() - method returns true if the specified image has transparent pixels. 

• Draw() - method is accountable for interpreted object on the screen 

Moments Class – this class is intended for the calculation of statistical centralized, 

normalized and Hu moments with the help of appropriate methods:  



 50

• CentralMoment() – calculates the central moments of the defined order for the object 

contained as an image. 

• NormalizedMoment()  – calculates the normalized moment of definite order for the 

object contained as an image. 

• HuMoment() – calculates seven Hu moments for the image with the processed object. 

Beautification Class – is designed for the beautification step of the algorithm in order to 

perform object’s beautification in the form of a square or a circle using methods: 

• MakeSquare() – this method draws a nice and neat square within the boundaries of the 

processed object’s interest area. 

• MakeCircle() - this method draws a nice and neat circle within the boundaries of the 

processed object’s interest are. 

The instructions and performance, implemented with the help of these three classes 

partially perform the task defined by the algorithm, is discussed below. 

 

4.1.2 Core-mechanics of the Implementation 
 

4.1.2.1 Instructions for Running the Program 
 

In order to run this algorithm presentation program, a computer is supposed to have Java 

Virtual Machine (JVM), because the partial algorithm has been programmed in Java language. 

Moreover, it is important to use Java of 1.4.2 version or higher. When there must be this 

implementation executed, DSAB.jar file should be executed by clicking on it. It must be ensured 

that DSAB.jar executable file is in the same directory with the pictures needed for the 

demonstration of algorithm’s performance. 

 

4.1.2.2 Scenario of Using the Program 
 

After the loading of the program is done as it is explained above, a user is presented with 

the initial program window (Figure 39). 



 51

 
Figure 39: Initial window of a program 

As it is shown in Figure 39, the initial window is designed in a simple way and not over-

burdened with some additional stuff. The main components of this program are three buttons and 

one panel. Each of the buttons has its own purpose. For example, button named Draw performs 

loading the new drawn object on the sketch. The other button called Perform is used to initialize 

the dynamic scene analysis. Finally, Change button clicked by a user performs the beautification 

of the other object when user considers current interpretation to be incorrect. 

By clicking on the only one enabled button Draw the object is drawn on the sketch panel 

(Figure 40). 



 52

 

Figure 40: Object loading on the sketch panel 

 As it is shown in Figure 40, the distorted object is displayed on the sketch screen. By 

clicking the button Perform, it is simulated the event of algorithm getting the data in order to 

perform dynamic scene analysis and beautification. 

 

Figure 41: Displaying result to a user 



 53

 Figure 41 shows a view of systems interpreted object presented to the user after 

completion of the input data processing, recognition and beautification. If you look at Figure 40, 

it is seen with the naked eye that the object has been intended to be a square, and the system’s 

interpretation is correct. Further, we can “draw” another object, by clicking on Draw button. 

 

Figure 42: Loading next object on the sketch panel 

 The newly drawn object displayed in Figure 42, seems to be a circle but a much distorted 

one. By clicking Perform button, the scene analysis and beautification is initiated in order to 

make the sketch more clear and neat. 



 54

 

Figure 43: Display of the incorrect interpretation 

 Figure 43 shows the result of the recognition of the newly drawn object in Figure 42. It 

can be seen that the interpretation is incorrect. In this case, a button Change should be pressed 

asking the system to show some other interpretation. 

 

Figure 44: Display of an alternative interpretation of the drawn object 



 55

 Figure 44 shows the program window which displays the alternative interpretation of a 

drawn object, when the user indicated to the program that its previous interpretation (Figure 43) 

is not what the user intended to draw. The displaying of alternative interpretations of the 

processed object depends on the amount of shapes in a database. In this case, as the database 

consists of only two shapes, only one alternative interpretation is possible. 

 This partial implementation showed that the designed algorithm serves its purpose, as it 

recognizes and beautifies the sketched objects with the possibility of alternative interpretations if 

the system performed incorrect interpretation. 

 



 56

Conclusions 
 
 Although statistical methods are quite efficient in object recognition, the real efficiency 

depends on the difficulty and the amount of shapes contained in a database of objects’ shapes. 

The more complex shapes are stored in database and the more intelligent system is designed to be 

the more complex statistical methods should be used in the process of object recognition. For the 

basic geometric shapes it is enough to use Hu moments. One of the options for the recognition of 

more complex shapes would be to use complex Zernike moments. In this case, there should be 

considered the necessity of optimization of the Zernike moments calculation methods, as the 

complexity of its calculations augment with the increase of the order of moments. It has been also 

determined that it is enough to use statistical moments of order ranging from second to eighth, 

because the increase of the order gives only the significant improvement in recognition of around 

1% and the more higher-order moment is the more it is susceptible to noise. Another option for 

the recognition of complex shapes could be usage of method where Hu moments’ features are 

combined with Fourier transformation’s features calculated for the object’s skeleton. The 

complex part of this method is the determination of the skeleton, which could be performed with 

the help of Voronoi diagrams or other methods. Before choosing any of these methods, there 

should be considered ratio of the method’s calculations complexity and the efficiency provided 

by this method. 

 The beautification process is different for different complexity of the shapes. 

Beautification of basic shapes requires only basic information about the size of the object and/or 

the center point of the object, whereas the beautification of more complex shapes can require 

segmentation of the object and only then the steps of beautification.   

 Adjustment of the object according to its spatial relations with surrounding objects is the 

most efficient and recommended to apply only using the method where all three types of spatial 

relations are used. 



 57

Appendix 
 

Source Code of the Implementation Part 
 

  The source code of Main.java: 

 
package dsab; 

import java.awt.*; 

import java.awt.event.*; 

import java.awt.Graphics2D; 

import javax.swing.*; 

import java.io.*; 

import javax.imageio.stream.ImageInputStream; 

import java.awt.image.*; 

import java.awt.color.*; 

import java.lang.Math; 

import javax.imageio.*; 

import java.awt.geom.*; 

  

public class Main { 

        JFrame pagrindas = new JFrame(); 

        JPanel p1 = new JPanel(); 

        JPanel p2 = new JPanel(); 

        JPanel p3 = new JPanel(); 

        JPanel p4 = new JPanel(); 

        JPanel p5 = new JPanel(); 

        JPanel p6 = new JPanel(); 

        JButton load = new JButton("Draw"); 

        JButton perform = new JButton("Perform"); 

        JButton change = new JButton("Change"); 

        JLabel scr_label = new JLabel(); 

        static Image image = null; 

        JPanel scr = new JPanel(); 

        String[] pics_List; 

        public static int[][] differenceA, objA, IA; 

        static double[] HM_IA; 

        double[][] HM_shapes = new double[3][8]; 



 58

        double[][] CMoments = new double [5][5]; 

        double[] distance_list = new double[3]; 

        String[] name_list = new String[3]; 

        Moments m = new Moments(); 

        Beautification b = new Beautification(); 

        double error = 0.000015; 

        BufferedImage b_image_obj, b_image_last; 

        static int w, h, i, j, count = 0, width = 640, height = 480; 

        static int IA_w, IA_h, IA_wn, IA_hn; 

        static int xMin[] = new int[20]; 

        static int yMin[] = new int[20]; 

        static int xMax[] = new int[20]; 

        static int yMax[] = new int[20]; 

        static int counter = 0; 

        boolean right = false; 

        JLabel status1 = new JLabel(" "); 

        JLabel status2 = new JLabel(" "); 

        JLabel status3 = new JLabel(" "); 

        JLabel status4 = new JLabel(" "); 

    /** Creates a new instance of Main */ 

   public Main() { 

         // Main panel 

        pagrindas.setLayout(new BorderLayout()); 

        pagrindas.getContentPane().add(p2, BorderLayout.CENTER); 

        pagrindas.getContentPane().add(p1, BorderLayout.BEFORE_FIRST_LINE); 

        pagrindas.getContentPane().add(p4, BorderLayout.BEFORE_LINE_BEGINS); 

        pagrindas.getContentPane().add(p5, BorderLayout.AFTER_LINE_ENDS); 

        pagrindas.getContentPane().add(p3, BorderLayout.AFTER_LAST_LINE); 

        // Center panel 

        p2.setLayout(new GridLayout(1, 1)); 

        p2.add(scr); 

        scr.setSize(640, 480); 

        scr.add(scr_label); 

        // Button panel 

        p6.setLayout(new GridLayout(5, 1)); 

        p5.add(p6); 

        p6.add(load); 

        p6.add(perform); 

        p6.add(change); 



 59

        //Status bar panel 

        p3.setLayout(new GridLayout(4, 1)); 

        p3.add(status1); 

        p3.add(status2); 

        p3.add(status3); 

        p3.add(status4); 

        //Setting the screen size 

        Dimension d = Toolkit.getDefaultToolkit().getScreenSize(); 

        pagrindas.setBounds(0, 0, 700, 500); 

        pagrindas.setResizable(false); 

        pagrindas.setVisible(true); 

        image = new ImageIcon("screen.jpg").getImage(); 

        scr_label.setIcon(new ImageIcon(image)); 

        b_image_last = toBufferedImage(image); 

        perform.addActionListener( new ActionListener() { 

     public void actionPerformed(ActionEvent evt)  

         { DSAAB(); } }); 

        change.addActionListener( new ActionListener() { 

     public void actionPerformed(ActionEvent evt)  

         { ChangeObject(); } }); 

        load.addActionListener( new ActionListener() { 

     public void actionPerformed(ActionEvent evt)  

         { LoadObject(); } }); 

        // Hu moments feature vectors for a square and circle shapes 

        HM_shapes[1][1] = 1.6259902276143283; 

        HM_shapes[1][2] = 0.00831938637943255; 

        HM_shapes[1][3] = 31.323960471113846; 

        HM_shapes[1][4] = 3.003469282995453; 

        HM_shapes[1][5] = -15.317351600218247; 

        HM_shapes[1][6] = -0.17739450541462043; 

        HM_shapes[1][7] = 15.940870668599066; 

        HM_shapes[2][1] = 1.6444676698320924; 

        HM_shapes[2][2] = 0.011664203402877578; 

        HM_shapes[2][3] = 33.40893125317925; 

        HM_shapes[2][4] = 81.2581228164873; 

        HM_shapes[2][5] = 0.29732616824797675; 

        HM_shapes[2][6] = 20.254375262463274; 

        HM_shapes[2][7] = 1.601712657504255; 

        File dir = new File("Sample/"); 



 60

        pics_List = new String[1]; 

        if ( dir.isDirectory() ){ 

            pics_List = dir.list(); 

 } 

        perform.setEnabled(false); 

        change.setEnabled(false); 

    } 

    /* loads a screenshot of "SMARTBoard" provided by Application1 

     */ 

    public void LoadObject(){ 

        if (right == true){ 

            b_image_last = b_image_obj; 

        } 

        status1.setText("  *   New object drawn"); 

        status2.setText(" "); 

        status3.setText(" "); 

        status4.setText(" "); 

        image = new ImageIcon("Sample/" + pics_List[counter]).getImage(); 

        scr_label.setIcon(new ImageIcon(image)); 

        scr_label.repaint(); 

        load.setEnabled(false); 

        change.setEnabled(true); 

        count = 0; 

        right = false; 

        perform.setEnabled(true); 

    } 

    /* FixError() fixes the probable Hu moments variance caused  

     * by the differenece of the sizes between the target object 

     * and the reference objects, according to which the Hu moment 

     * vectors for the shapes are made. 

     */ 

    public double FixError(){ 

        double fix = 0;        

        double d = 0; 

        if ((IA_w + IA_h)/2 > 163 ) 

            d = (-1)*((IA_w + IA_h)/2)/163;     

        else 

            d = ((IA_w + IA_h)/2)/163; 

        if (d == 1) 



 61

            d = 0; 

        fix = d * error; 

        return fix; 

    } 

    /* ChangeObject() changes the interpreted object to the other shape which  

     * is the next by the likelihood. 

     */ 

    public void ChangeObject(){ 

        count++; 

        b_image_obj = b_image_last; 

        Beautification(1 + count); 

        Draw(); 

        change.setEnabled(false); 

    } 

    /* Distance2Points(...) counts the Euclidian distance between the object's  

     * Hu moments and the reference object's Hu feature vector 

     */ 

    public double Distance2Points(double[] target, double[] reference){ 

        double distance = 0; 

        double a = 2; 

        double d = 0; 

        d = FixError(); 

        target[1] = target[1] + d; 

        distance = Math.sqrt(Math.pow((target[1] - reference[1]),a) + Math.pow((target[2] - reference[2]),a)+  

                Math.pow(target[3] - reference[3],a) + Math.pow((target[4] - reference[4]),a) + 

                Math.pow((target[5] - reference[5]),a) + Math.pow((target[6] - reference[6]),a) + 

                Math.pow((target[7] - reference[7]),a)); 

        return distance; 

    } 

    /* ClipOut(...) clips out the interest area of the currently drawn  

     * object. 

     */ 

    public void ClipOut(int n){ 

        xMin[n] = new Integer(10000); 

        xMax[n] = new Integer(0); 

        yMin[n] = new Integer(10000); 

        yMax[n] = new Integer(0); 

        for (int i = 1; i <= width; i++){ 

            for (int j = 1; j <= height; j++) { 



 62

                if (differenceA[i][j] == 1){ 

                    if (i < xMin[n]) 

                        xMin[n] = i; 

                    if (i > xMax[n]) 

                        xMax[n] = i; 

                    if (j < yMin[n]) 

                        yMin[n] = j; 

                    if (j > yMax[n]) 

                        yMax[n] = j;                     

                } 

            } 

        }       

        IA_h = yMax[n] - yMin[n] + 1; 

        IA_w = xMax[n] - xMin[n] + 1; 

        IA = new int[IA_w + 1][IA_h + 1]; 

        for (int i = 1; i <= IA_w; i++){ 

            for (int j = 1; j <= IA_h; j++) { 

                IA[i][j] = differenceA[xMin[n] - 1 + i][yMin[n] - 1 + j];         

            } 

        } 

        Graphics2D g2d = b_image_obj.createGraphics(); 

        g2d.setColor(Color.red); 

        for (int i = xMin[n]; i <= xMax[n]; i++){ 

            g2d.drawRect(i - 1, yMin[n] - 1, 1, 1 ); 

            g2d.drawRect(i - 1, yMax[n] - 1, 1, 1 ); 

        } 

    } 

    /* Processes initial data for the dynamic scene analysis and beautification. 

     */ 

    public void InputProcessing(){ 

        b_image_obj = toBufferedImage(image); 

        CompareTwo(counter); 

        ClipOut(counter); 

    } 

    /* DistanceList() makes a list of possible interpretations of the drawn object 

     * according to the likelihood of it 

     */ 

    public void DistanceList(){ 

        double a = Distance2Points(HM_IA, HM_shapes[1]); 



 63

        double b = Distance2Points(HM_IA, HM_shapes[2]); 

        if (a < b) { 

            distance_list[1] = a; 

            name_list[1] = "square"; 

            distance_list[2] = b; 

            name_list[2] = "circle"; 

        } 

        else { 

            distance_list[1] = b; 

            name_list[1] = "circle"; 

            distance_list[2] = a; 

            name_list[2] = "square"; 

        } 

    } 

    /* Beautification() he method which uses Beautification class methods in 

     * order to perform appropriate beautification actions towards a recognized 

     * object 

     */ 

    public void Beautification(int n){ 

        if (name_list[n].equals("square")) 

        {   

            b.MakeSquare(IA_w, IA_h, b_image_obj, b_image_last, xMin[counter], xMax[counter], 

yMin[counter], yMax[counter]); 

        } 

        else 

            b.MakeCircle(IA_w, IA_h, b_image_obj, b_image_last, xMin[counter], xMax[counter], 

yMin[counter], yMax[counter]); 

    } 

    /* Recognition() uses the metods of Recognition class in order to 

     * recognize a recently drawn object 

     */ 

    public void Recognition(){ 

        CMoments = m.CentralMoment(3, 3, IA_w, IA_h, IA); 

        HM_IA = m.HuMoments(CMoments); 

    } 

    /* The method which encompases all the parts of algorithm 

     */ 

    public void DSAAB(){ 

        counter++; 



 64

        perform.setEnabled(false); 

        status1.setText("  *   Input processing..."); 

        status1.repaint(); 

        InputProcessing(); 

        status1.setText("  *   Input processing completed."); 

        status1.repaint(); 

        status2.setText("  *   Recognition..."); 

        status2.repaint(); 

        Recognition();        

        DistanceList(); 

        status2.setText("  *   Recognition completed."); 

        status2.repaint(); 

        status3.setText("  *   Beautification..."); 

        status3.repaint(); 

        Beautification(1 + count);         

        status3.setText("  *   Beautification completed."); 

        status3.repaint(); 

        Draw(); 

        load.setEnabled(true); 

    } 

    /* CompareTwo() method points out the changes made in the last screen and 

     * finds the object which is drawn recently. 

     */ 

    public void CompareTwo(int n){ 

        int i, j; 

        differenceA = new int[width + 1][height + 1]; 

        for (i = 1; i <= width; i++){ 

            for (j = 1; j <= height; j++) { 

                if (((b_image_obj.getRGB(i - 1, j - 1) == -16777216) ||(b_image_obj.getRGB(i - 1, j - 1) == -

16711423) || (b_image_obj.getRGB(i - 1, j - 1) < -1100000))  & (b_image_last.getRGB(i - 1, j - 1) == -1)) 

                { 

                    differenceA[i][j] = 1; 

                } 

                else 

                {       

                    differenceA[i][j] = 0; 

                } 

            } 

        } 



 65

    } 

    /* This method returns a buffered image with the contents of an image 

     */ 

    public static BufferedImage toBufferedImage(Image image) { 

        if (image instanceof BufferedImage) { 

            return (BufferedImage)image; 

        } 

        image = new ImageIcon(image).getImage(); 

        boolean hasAlpha = hasAlpha(image); 

        BufferedImage bimage = null; 

        GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment(); 

        try { 

            int transparency = Transparency.OPAQUE; 

            if (hasAlpha)  

            { 

                transparency = Transparency.BITMASK; 

            } 

            GraphicsDevice gs = ge.getDefaultScreenDevice(); 

            GraphicsConfiguration gc = gs.getDefaultConfiguration(); 

            bimage = gc.createCompatibleImage(image.getWidth(null), image.getHeight(null), transparency); 

        } 

        catch (HeadlessException e) {} 

        if (bimage == null) { 

            // Create a buffered image using the default color model 

            int type = BufferedImage.TYPE_INT_RGB; 

            if (hasAlpha) { 

                type = BufferedImage.TYPE_INT_ARGB; 

            } 

            bimage = new BufferedImage(image.getWidth(null), image.getHeight(null), type); 

        } 

        Graphics g = bimage.createGraphics(); 

        g.drawImage(image, 0, 0, null); 

        g.dispose(); 

        return bimage; 

    }    

    /* This method returns true if the specified image has transparent pixels 

     */ 

    public static boolean hasAlpha(Image image) { 

        if (image instanceof BufferedImage) { 



 66

            BufferedImage bimage = (BufferedImage)image; 

            return bimage.getColorModel().hasAlpha(); 

        } 

        // Use a pixel grabber to retrieve the image's color model; 

        // grabbing a single pixel is usually sufficient 

        PixelGrabber pg = new PixelGrabber(image, 0, 0, 1, 1, false); 

        try { 

            pg.grabPixels(); 

        }  

        catch (InterruptedException e) { } 

        ColorModel cm = pg.getColorModel(); 

        return cm.hasAlpha(); 

    } 

    /* This method converts the Buffered Image to an image 

     */ 

    public static Image toImage(BufferedImage bufferedImage) { 

        return Toolkit.getDefaultToolkit().createImage(bufferedImage.getSource()); 

    } 

    /* Draw() method displayes interpreted object on the screen 

     */ 

    public void Draw(){ 

          image = toImage(b_image_obj); 

          scr_label.setIcon(new ImageIcon(image)); 

          scr_label.repaint(); 

          File f = new File ("anImage.jpg"); 

          try 

          { ImageIO.write (b_image_obj, "jpeg", f);} 

          catch(IOException e){} 

    } 

    public static void main(String[] args) { 

        final Main a = new Main(); 

    } 

} 

 

The source code of Moments.java: 
 

package dsab; 

import java.lang.Math; 

 



 67

public class Moments { 

    /** Creates a new instance of Moments */ 

    public Moments() { 

    } 

    /* This method estimates the Central Moments 

     */ 

    static double[][] CentralMoment(int p, int q, int IA_w, int IA_h, int[][] IA){ 

        double[][] R = new double[p + 2][q + 2]; 

        double sum; 

        double sx, sy, sxl, syl, m00 = 0, m01 = 0, m10 = 0; 

        for (int i = 1; i <= IA_w; i++){ 

             for (int j = 1; j <= IA_h; j++){ 

                m00 += IA[i][j]; 

                m10 += IA[i][j]*i; 

                m01 += IA[i][j]*j; 

             } 

        } 

        sx = m10/m00; 

        sy = m01/m00; 

        for (int ip = 0; ip <= p; ip++){     

            for (int iq = 0; iq <= q; iq++){ 

                sum = 0; 

                for (int i = 1; i <= IA_h; i++){ 

                    for (int j = 1; j <= IA_w; j++){ 

                        sxl = Math.pow((j - sx), ip); 

                        syl = Math.pow((i - sy), iq); 

                        sum = sum + sxl*syl*IA[j][i]; 

                    } 

                } 

                R[iq + 1][ip + 1] = sum; 

            } 

        } 

        return R; 

    } 

    /* This method estimates the normalized moment M_pq 

     */ 

    static double NormalizedMoment(int p, int q, double[][] CM){ 

        double alpha = (p + q + 2)/2.0 ; 

        double momval = CM[p + 1][q + 1]; 



 68

        double norm = 1; 

            for (int i = 1; i <= alpha; i++) 

                norm = norm * CM[1][1]; 

            if (norm == 0) 

                momval = 0; 

            else 

                momval = momval/norm; 

        return momval; 

    } 

    // estimates the Hu moments for a given area of pixel 

    static double[] HuMoments(double[][] CMoments){ 

        double[] HM_IA = new double[8]; 

        int xMin = Integer.MAX_VALUE; 

        int xMax = Integer.MIN_VALUE; 

        int yMin = Integer.MAX_VALUE; 

        int yMax = Integer.MIN_VALUE; 

        double dx; 

        double dy; 

        double n01 = NormalizedMoment(0, 1, CMoments); 

        double n02 = NormalizedMoment(0, 2, CMoments); 

        double n03 = NormalizedMoment(0, 3, CMoments); 

        double n10 = NormalizedMoment(1, 0, CMoments); 

        double n11 = NormalizedMoment(1, 1, CMoments); 

        double n12 = NormalizedMoment(1, 2, CMoments); 

        double n20 = NormalizedMoment(2, 0, CMoments); 

        double n21 = NormalizedMoment(2, 1, CMoments); 

        double n30 = NormalizedMoment(3, 0, CMoments); 

        HM_IA[1] = n20 + n02; 

        HM_IA[2] = ((n20 - n02) * (n20 - n02)) + (4 * n11 * n11); 

        HM_IA[3] = ((n30 - (3 * n12)) * (n30 - (3 * n12))) + ((n03 - (3 * n21)) * (n03 - (3 * n21))); 

        HM_IA[4] = ((n30 + n12) * (n30 + n12)) + ((n03 + n21) * (n03 + n21)); 

        HM_IA[5] = ((n30 - (3 * n12)) * (n30 + n12) * (((n30 + n12) * (n30 + n12)) -  (3 * (n21 + n03) *  

                   (n21 + n03)))) + ((n03 - (3 * n21)) * (n03 + n21) * (((n03 + n21) * (n03 + n21)) -  

                   (3 * (n12 + n30) * (n12 + n30)))); 

        HM_IA[6] = ((n20 - n02) * (((n30 + n12) * (n30 + n12)) - ((n03 + n21) * (n03 + n21)))) + (4 * n11 * (n30 

+ n12) * (n03 + n21)); 

        HM_IA[7] = (((3 * n21) - n03) * (n30 + n12) * (((n30 + n12) * (n30 + n12)) - (3 * (n21 + n03) * (n21 + 

n03)))) 



 69

                   - (((3 * n12) - n30) * (n03 + n21) * (((n03 + n21) * (n03 + n21)) - (3 * (n12 + n30) * (n12 + 

n30)))); 

        return HM_IA; 

    } 

} 

 
 The source code of Beautification.java: 
 
package dsab; 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.Graphics2D; 
import javax.swing.*; 
import java.io.*; 
import java.awt.image.*; 
import java.awt.color.*; 
import java.lang.Math; 
import javax.imageio.*; 
import java.awt.geom.*; 
 
public class Beautification { 
     
    /** Creates a new instance of Beautification */ 
    public Beautification() { 
    } 
    /* Beautification of the object representing a square 
     */ 
    public void MakeSquare(int IA_w, int IA_h, BufferedImage b_image_obj, BufferedImage b_image_last, 
int xMin, int xMax, int yMin, int yMax) 
   { 
        Main.IA_wn = (IA_w + IA_h)/2; 
        Main.IA_hn = Main.IA_wn; 
        Graphics2D g2d = b_image_obj.createGraphics(); 
        g2d.setColor(Color.white); 
        for (int i = 0; i <= IA_w; i++){ 
            for (int j = 0; j <= IA_h; j++){ 
                if (b_image_last.getRGB(xMin + i - 2, yMin + j - 2) == -1 ) 
                {   
                    g2d.drawRect(xMin + i - 2, yMin + j - 2, 1, 1);} 
                 } 
        } 
        // Draw on the image 
        g2d.setColor(Color.black); 
        for (int i = 0; i < 7; i++){ 
            g2d.drawRect(xMin + i, yMin + i, (xMax - xMin + 1 - 2*i), (yMax - yMin + 1 - 2*i));     
        } 
        g2d.setColor(Color.black); 
        for (int i = xMin - 2; i <= xMax; i++) { 
            for (int j = yMin - 2; j <= yMax; j++) { 
                if (b_image_last.getRGB(i, j) == -16777216) 
                    b_image_obj.setRGB(i, j, -16777216); 
            } 
        }        
        g2d.dispose(); 
    } 



 70

    /* Beautification of the object representing a circle 
     */ 
    public void MakeCircle(int IA_w, int IA_h, BufferedImage b_image_obj, BufferedImage b_image_last, 
int xMin, int xMax, int yMin, int yMax) 
    { 
        Main.IA_wn = (IA_w + IA_h)/2; 
        Main.IA_hn = Main.IA_wn; 
        Graphics2D g2d = b_image_obj.createGraphics(); 
        g2d.setColor(Color.white); 
        for (int i = 0; i <= IA_w; i++){ 
            for (int j = 0; j <= IA_h; j++){ 
                if (b_image_last.getRGB(xMin + i - 2, yMin + j - 2) == -1 ) 
                {   
                    g2d.drawRect(xMin + i - 2, yMin + j - 2, 1, 1);} 
                 } 
        } 
        g2d.setColor(Color.black); 
        if (Main.IA_wn%2 == 0) 
            Main.IA_wn++; 
        g2d.setColor(Color.black); 
        g2d.fill(new Ellipse2D.Float(xMin - 1, yMin - 1, Main.IA_wn, Main.IA_wn));     
        g2d.setColor(Color.white); 
        g2d.fill(new Ellipse2D.Float(xMin + 6, yMin + 6, Main.IA_wn - 14, Main.IA_wn - 14));     
        g2d.setColor(Color.black); 
        for (int i = xMin - 2; i <= xMax + 2; i++) { 
            for (int j = yMin - 2; j <= yMax + 2; j++) { 
                if (b_image_last.getRGB(i, j) == -16777216) 
                    b_image_obj.setRGB(i, j, -16777216); 
            } 
        }        
        g2d.dispose(); 
    }    
}



 71

 

Bibliography 
 

Allen J. (1983). Maintaining Knowledge about Temporal Intervals. Communications of 

the ACM 26 (11), p. 832-843, 1983. 

Bruns H. T., Egenhofer M. (1996). Similarity of Spatial Scenes. Seventh International 

Symposium on Spatial Data Handling (SDH '96), p. 4A.31-42, 1996 

Cheng P., Lowe R., Scaife M. (2001). Cognitive Science Approaches to Understanding 

Diagrammatic Representations. Thinking with Diagrams, Kluwer Academic Publishers, 

Dordrecht, 2001 

Cheng P., Herbert S. (1993). Scientific Discovery and Creative Reasoning with Diagrams. 

The Creative Cognition Approach, Cambridge, MA, 1993 

Cohn A.G, Bennett B., Gooday J., Gotts N.M. (1997). Representing and Reasoning With 

Qualitative Spatial Relations about Regions. Temporal and spatial reasoning, 1997 

Cohn A. G., Hazarika S. M. (2001). Qualitative Spatial Representation and Reasoning: 

An Overview. Fundamenta Informaticae 43, 2001, p. 2 -32. 

David M., Egenhofer M. (1994). Modeling Spatial Relations Between Lines and Regions: 

Combining Formal Mathematical Methods and Human Subjects Testing. Cartography and 

Geographical Information Systems 21, p. 195 - 212, 1994 

Dylla F., Moratz R. (2005). Exploiting Qualitative Spatial Neighborhoods in the Situation 

Calculus. Spatial Cognition IV Reasoning, Action, Interaction Vol. 3343, pp. 304 – 322, 2005 

Egenhofer M., Khaled K. A. (1992). Reasoning about Gradual Changes of Topological 

Relationships. Theory and Methods of Spatio-Temporal Reasoning in Geographic Space, volume 

639 of Lecture Notes in Computer Science, p. 196 – 219, 1992.  

Egenhofer M., Herring J. (1990). Categorizing Binary Topological Relations Between 

Regions, Lines, and Points in Geographic Databases. Technical Report, Department of 

Surveying Engineering, University of Maine, 1990 

Frank A. (1996). Qualitative Spatial Reasoning: Cardinal Directions as an Example. 

International Journal of Geographical Information Science, 1996 

Freksa C. (1991a). Conceptual Neighborhood and its Role in Temporal and Spatial 

Reasoning. Workshop on Decision Support Systems and Qualitative Reasoning, p. 181-187, 

Amsterdam, North-Holland, 1991. 



 72

Freksa C. (1991b). Qualitative Spatial Reasoning. Cognitive and Linguistic Aspects of 

Geographic Space, p. 361-372. 

Furnas G. W. (1992). Reasoning with Diagrams Only. AAAI Symposium on Reasoning 

with Diagrammatic Representations, 1992 

Goyal R., Egenhofer M. (2001). Similarity of Cardinal Directions. Seventh International 

Symposium on Spatial and Temporal Databases, Lecture Notes in Computer Science Vol. 2121, 

p. 36-55, 2001 

Gurr C. A. (1994). Diagrams and Human Reasoning, 1994  

Gurr C. A. (1999). Effective Diagrammatic Communication: Syntatic, Semantic and 

Pragmatic Issues. Journal of Visual Languages and Computing Vol. 10, p. 317-342, 1999 

Hong J., Egenhofer M., Frank A. (1995). On the Robustness of Qualitative Distance- and 

Direction-Reasoning. Twelfth International Symposium on Computer- Assisted Cartography, 

1995 

Hse H. H., Newton A. R. (2004). Sketched Symbol Recognition using Zernike Moments. 

International Conference on Pattern Recognition , 2004 

Hse H. H., Newton A. R. (2005). Recognition and Beautification of Multi-Stroke Symbols 

in Digital Ink. Computers & Graphics, 2005 

Hu M. (1962). Visual Pattern Recognition by Moment Invariants. IEEE Transactions on 

Information Theory, 8:179--187, 1962 

Nabil M., Shepherd J., Ngu A. (1996). 2D Projection Interval Relationships: A Symbolic 

Representation of Spatial Relationships. Symposium on Large Spatial Databases, 1996 

Papadias D., Mamuolis N., Delis V. (2001). Approximate Spatio-Temporal Retrieval. 

ACM Transactions on Information Systems Vol. 19 (1), p. 53-96, 2001 

Poppe R., Poel M. (2006). Comparison of Silhouette Shape Descriptors for Example-

based Human Pose Recovery. 2006 

Rauh R., Hagen C., Schlieder C., Strube G., Knauff M. (2000). Searching for alternatives 

in spatial reasoning: Local transformations and beyond. Proceedings of the Twenty Second 

Annual Conference of the Cognitive Science Society, p. 871-876, 2000. 

Scaife M., Rogers Y. (1996). External Cognition: How Do Graphical Representations 

Work? International Journal of Human-Computer Studies, p. 185 – 213, 1996 

Schlieder C. (1996). Qualitative Shape Representation. Proceedings of GISDATA 

Specialist Meeting on Geographical Objects with Undetermined Boundaries, 1996 



 73

Schutler J. (2002). Statistical Moments. 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/, 03 05 2006 

Sharma J., Flewelling D., Egenhofer M. (1994). A Qualitative Spatial Reasoner. Sixth 

International Symposium on Spatial Data Handling, Edinburgh, Scotland, p. 665 - 681, 1994 

Taubman G. (2005). MusicHand: A Handwritten Music Recognition System. Thesis. 

Brown University, 2005 

Theodoridis Y., Papadias D., Stefanakis E. (1996). Supporting Direction Relations in 

Spatial Database Systems. Proceedings of the 7th International Symposium on Spatial Data 

Handling (SDH’96), 1996 

 

 


