KAUNAS UNIVERSITY OF TECHNOLOGY
INFORMATICS FACULTY
DEPARTMENT OF COMPUTER SYSTEMS

Dynamic Scene Analysis and Beautification for
Hand-drawn Sketches

Master thesis

Done by:
Milda Gusaite

Supervisors:

prof. dr. E. Kazanavicius

prof. dr. T. Barkowsky

Kaunas, 2006

KAUNO TECHNOLOGIJOS UNIVERSITETAS
INFORMATIKOS FAKULTETAS
KOMPIUTERIU KATEDRA

Milda Gusaité

Ranka pieSty eskizy dinaminé analizé ir
grazinimas

Magistro darbas

Darbo vadovai
prof. dr. E. KazanaviCius

prof. dr. T. Barkowsky

Kaunas, 2006

KAUNO TECHNOLOGIJOS UNIVERSITETAS

INFORMATIKOS FAKULTETAS

KOMPIUTERIU KATEDRA

Milda Gusaité

Ranka pieSty eskizy dinaminé analizé ir
grazinimas

Kalbos konsultanté

2006-05

Recenzentas

2006-05

Magistro darbas

Lietuviy k. katedros lekt.

I. Mickiené

doc. E. Toldinas

Kaunas, 2006

Vadovai

2006-05

Atliko

2006-05-25

prof. dr. E. Kazanavicius
prof. dr. T. Barkowsky

IFM-0/1 gr. stud.
Milda Gusaité

Ranka pieSty eskizy dinaminé analizé ir grazinimas

Santrauka lietuviy kalba

Ivadas

Eskizy pieSimas yra svarbi kiirybinio proceso dalis, kuri taip pat naudojama projektavimo
bei inZinerijos disciplinose, tokiose kaip: mechanikos ir civiliné inzinerija, grafinis dizainas,
architektra ir kt. Daugelis projektuotoju vis dar pradeda projektuoti pieSdami savo idéjuy eskizus
ant popieriaus ir tik po to juos ikelia i kompiuteri. Tai padeda modeliuotojams labai greitai,
natiiraliai reikSti atsirandancias id¢jas ir greitina vizualiniy problemy sprendima. Pirminis
pieSimas yra paplites ir svarbus kiirimo procese, nes jis skatina kiirybos laisve. Eskizas — tai
neiSbaigtas modelio ir funkciniy galimybiy pristatymas, kuris i§ esmés padeda suvokti
perteikiama idéja. Be to, pieSdamas eskizus projektuotojas tarsi saveikauja su savo eskizais ir
detaliau nagrinéja alternatyvias problemos sprendimo galimybes. Daugelis modeliuotoju masto
vizualiai ir jpratg viska isivaizduoti grafiskai, todél pieSiant yra tiriami alternatyviis sprendimai ir
skatinama idéjy plétra. Sia projektavimo dali, kurioje yra netikslumuy, idéjy formalizavimas,
greitas alternatyvy tyrin¢jimas, inzinierius vis dar atlieka piestuku popieriuje.

Nors eskizy pieSimas popieriuje yra iprastas ir mégiamas modeliuotojy, Sis budas turi
apribojimy. Eskizus galima lengvai piesti popieriuje, taciau kyla pagrindinis trikumas, kai tik
juos reikia taisyti ar tobulinti. Jei projektuotojas nori kazka eskize keisti, dazniausiai jis turi i$
esmés perpiesti eskiza kitame lape. Siuo atveju kompiuteriniai jrankiai turi daug privalumy.
Pirmiausiai, modeliuotojui nereikia kelis kartus perpiesti eskiza popieriuje ir tik po to ikelti
modeli 1 kompiuteri. Antra, kaip buvo paminéta anks¢iau, modeliuotojui daug lengviau koreguoti
darba kompiuteryje nei popieriuje. Dar daugiau, kompiuteris gali tapti asistentu, kuris pieSiant
eskizus sitilo modelio taisymo variantus.

Daugelis inZinieriy, architekty ir kity profesionaliy dizaineriy projektuojant naudoja
pagalbines kompiuterinio modeliavimo sistemas (CAD — computer-aided design systems). Nors
CAD sistemos turi dideli kompiuteriniy irankiy pasirinkima, bet skirtumas tarp iprasto eskizo
pieSimo ranka ant popieriaus ir jo pieSimo kompiuteriu yra vis dar per didelis. Inzinieriai
dazniausiai kuria pieStuku popieriuje, daznai neikeldami modeliy i kompiuteri tol, kol Sie nebiina

beveik baigti. Taip yra dél CAD jrankiy teikiamo nenatiiralumo pieSimo jausmo, kuris slopina

projektavimo proceso efektyvuma. Viena priezasciy, kodél CAD jrankiai nepopuliarts, yra ta,
kad darbas su jais sudétingas ir neefektyvus, neatstoja realios modeliavimo aplinkos, kur galima
biity piesti ranka. Be to, Sios priemonés yra neefektyvios, kai eskizus piesti reikia didesniu
tikslumu ir reikia atlikti daugiau sudétingy veiksmy tikslui pasiekti. Nors CAD irankiai tampa
pakankamai moderniis ir daugkartiniai, tac¢iau jie dazniausiai yra naudojami tik paskutiniuose
projektavimo etapuose.

Siuo darbu sickiama pradéti kompiuterj naudoti ankstesniuose modeliavimo etapuose,
realiu laiku pertvarkant ranka piestus eskizus, kad Sie buty tikslus, aiskiis ir tvarkingi. Darbas
apima kokybing vaizdy analizg, geometrini grazinima, kokybini erdvini ijvertinima ir

konceptualius kaimynystés metodus.

Darbo tikslas

Darbo tikslas yra tobulinti eskizy pieSimo procesa, kuris gali biiti padarytas popieriaus
skiautéje, ir eskizy darymui modeliuoti sistemos prototipa, siekiant, kad kompiuteris biity
naudojamas ankstesniuose projektavimo etapuose. Tai labai svarbu, kadangi projektavime eskizai
vaidina pagrindinj vaidmenj konceptualumo fazéje. Siame darbe automatiskai, dizaineriui dar
tebepiesiant, tiriami pieSiami objektai ir, atsizvelgus i dizainerio daromus veiksmus, i§ karto yra
grazinamas eskizas. Yra labai svarbu, kad modeliuotojai galéty greitai ir paprastai, naudodami
piestuka, Skicuoti viska, ka tik nori. Tokia sistema projektuotojams suteikty natiiraly eskizo
piesimo jausma. Eskizy paiSymo sistema turi leisti laisvai piesti ranka, atpazinti pieSiama modelj
ir ji atitinkamai koreguoti pagal dizainerio ketinimus. Taip yra siekiama sukurti asistenta
modeliuotojui, kadangi eskizai yra ne tik vienas i§ modelio tobulinimo budy, bet ir svarbus

modeliuotojy tarpusavio bendravimo biidas.

Darbo apimtis

Darbe yra kuriamas sistemos algoritmas, kuris realiu laiku saveikauja su vartotoju,

piesianciu eskiza (1 pav).

Duomeny apdorojimas Objektas nupiestas

A 4
Objekto

A

atpazinimas

A 4

Geometrinis

grazinimas

v

Koregavimas

A 4

\ 4

Rezultaty pateikimas

Objekto
interpretacija

Taip
—» Procesas jvykdytas

Vaizdo
interpretacija

1 pav. Sistemos funkcionalumo diagrama

Kai objekto pieSimas yra baigtas, sistema atpaZista nupieSta objekta, analizuoja ir
identifikuoja ji. Taip pat po atpazinimo proceso yra atlickamas objekto geometrinis grazinimas
Tai apima geometriniy taisykliy aptikima ir jvedima, defekty koregavima (linijy tiesinima,
teisingy kampy formavima, linijju sujungimus ir kt.). Po to eskizas yra koreguojamas,
atsizvelgiant | objektus, kurie buvo nupiesti anksciau, ir konceptualius kaimyniskus santykius.
Sistema, pateikdama objekty interpretacijas, saveikauja su modeliuotoju ir suteikia galimybg
taisyti klaidinga sistemos interpretavima. Jei interpretacija teisinga, vartotojas toliau pieSia
eskiza, prieSingu atveju vartotojas sistemai turi nurodyti, kad interpretacija yra neteisinga.
Interpretavimo procesas apima visy galimy interpretacijy saraso pagal konceptualius kaimyniskus
santykius sudaryma. Taigi, atsiradus klaidingam interpretavimui, vartotojui yra pateikiamos
interpretacijos alternatyvos.

Galutinis Sio darbo rezultatas yra algoritmas, sukurtas dinaminiy vaizdy analizei ir

grazinimui, bei jo daliné realizacija demonstracinéje programoje.

Analizé

Sio darbo analizés dalyje nagrinéjami aspektai reikalingi sistemos modeliui sukurti.

Pradzioje nagrinéjamas pagrindimas diagramomis ir jo efektyvumas. Diagramomis
perduodama informacija yra savaiminé ir lengviau suprantama nei ta pati informacija
perduodama teksto pavidalu. Viena i§ diagramos savybiy yra ta, kad diagrama perduoda ne tik
specifing informacija apie objekta pavaizduota joje, bet taip pat ir perteikia objekto pozicija ir
santykius ji supanciy kity objekty atzvilgiu. Kita savyb¢ yra ta, kad diagramoje vaizduojami
objektai skirtingiems zmonéms gali reiksti skirtingus dalykus, taip sukeliant neteisingas iSvadas.
Vadinasi diagramos ne tik turi savo kiiréjo interpretacija, bet taip pat ir kiekvieno zilirovo
interpretacija, tuo tarpu kai kitos informacijos formos turi tik vieng tiesioging interpretacija. Visy
Siy savybiy déka, pagrindimas ir gebéjimas pazinti diagramy pagalba yra labai mokslininkams
patraukli sritis.

Toliau analizéje supazindinama su kokybiniu erdviniu pagrindimu ir erdviniais santykiais.
Erdvinis pagrindimas ir suvokimas yra sritis nagrin¢janti konceptualia erdve, kuri susideda i$
tokiy erdviniy pateikimy kaip tipologija, orientacija, forma, dydis ir atstumas. Erdvinis
pagrindimas neatsiejamas nuo erdviniy santykiy, kurie teikia informacija apie objekta
neatsizvelgiant i jo konkrecia geometrija. Erdvinius santykius mokslininkai pagrinde skirsto i tris
grupes: kryptis, atstumus ir topologinius santykius. Krypties santykiai tarp dvieju objekty
nusakomi kardinaliniais terminais (,,pietuose®, ,rytuose®, ,pietvakariuose* ir t.t.) arba
kasdieniniame gyvenime naudojamais terminais (,,priesais®, ,,deSinéje ir pan.) kito objekto
atzvilgiu. Atstumai tarp dviejy objektu nusakomi abstrakciais terminais, tokiais kaip ,,Salia®,
»toli*“ ir pan. Dviejuy objekty topologiniai santykiai apibrézia labiau konkrecius santykius, tokius
kaip, kad vienas objektas dengia kita arba vienas objektas yra kito objekto viduje ir pan.

Tuomet jvedamas konceptualiy kaimyniniy santykiy terminas, naudojamas objekto
pozicijos koregavimui. Konceptualiis kaimyniniai santykiai — tai rySys tarp dvieju erdviniy
santykiy, kurie vienas nuo kito skiriasi minimaliu vienu pakitimu. Pavyzdziui, atstumuose
santykis ,,8alia® yra kaimyninis su santykiu ,toli“. Tuo tarpu, santykis ,Salia* negali buti
kaimyninis su santykiu ,labai toli*, nes tarp Siy santykiy yra per didelis peréjimas ir daugiau nei
vienas pakitimas: ,,Salia® € toli* © ,labai toli.

Galiausiai analizé uzbaigiama aptariant ir paaiSkinant objekty atpaZinima taikant statistika

ir Hu momentus.

Algoritmo sudarymas
Sio darbu sickiama sukurti ranka pie$ty eskizy dinaminés vaizdy analizés ir grazinimo
sistemos modelj. Pagrindiné sistemos koncepcija remiasi sistemos realaus laiko saveika su

vartotoju tuo metu kai jis piesia eskiza.

SMARTBoard
lenta

Programal |« p{ Programa 2

A
v

2 pav. Sistemos modelio struktiira

Sistemos modelio struktiira, pateikta 2 paveiksle, susideda i§ SMARTBoard lentos,
tarpininkés programos (Programa 1) ir objekto atpazinimo ir grazinimo programos (Programa 2).
Sios sistemos pagalba vartotojas piesia eskizus ant saveikaujan¢ios SMARTBoard lentos, kuri
suteikia nattiralaus eskizy pieSimo jausma. Tarpininkés programos uzduotis yra aptikti objekto
nupiesimo jvyki ir perduoti lentoje esanti eskiza objekto atpaZinimo ir grazinimo programai. Siai
programai atpazinus ir pagrazinus objekta, pakoreguotas eskizas yra perduodamas programai
tarpininkei, kuri savo ruoZtu pateikia ji vartotojui SMARTBoard lentoje. Kadangi Sis darbas
sutelktas ties dinamine sceny analize ir grazinimu, démesys sutelkiamas { Programa 2 algoritmo

sudaryma.

—»| Duomeny Objekto | Geometrinis

1C A e Koregavimas —p
apdorojimas atpazinimas grazinimas

A 4

\ 4

3 pav. Algoritmo struktiira

Dinaminés vaizduy analizés ir grazinimo algoritmui sitiloma struktiira (3 pav.), susidedanti

1§ keturiy daliy, kurios toliau aptariamos detaliau.

Duomeny apdorojimas

Si algoritmo dalis paruosia i§ tarpininkés programos gautus duomenis kitiems algoritmo
etapams. Gautas eskizo paveikslas yra konvertuojamas i dvejetainio tipo paveiksla, kur 0
simbolizuoja balta taska, o 1 reiSkia juoda taska. Toliau yra iSskiriamas naujai nupiestas objektas,
aptinkant pakeitimus eskize atliktus nuo pra¢jusio karto. Tuomet, yra nustatoma paveikslo
reikSmingumo sritis, kuri turima omeny kaip stac¢iakampio formos sritis, kuri apima objekta ir
tam tikra kieki balty tasky. ISkirpus reikSmingumo sritj i§ paveikslo, ji perduodama atpazinimo

procesui.

Objekto atpaZinimas

Objekto atpazinimas atliekamas, norint priskirti objekta tam tikrai klasei, kad veliau
galima biity ta objekta pagrazinti. Sis algoritmo Zingsnis atliekamas remiantis Hu momentais,
kurie yra nekintantys mastelio ir pozicijos keitimo atzvilgiu. Objektas vienu metu gali priklausyti
tik vienai objekty grupei. Sis darbas sutelkiamas ties elementariy apskritimy ir kvadraty
atpazinimu. Prie§ sistemai pradedant darba, $i algoritmo dalis turi biiti apmokyta vartotojo piesty
objekty rinkiniu, kadangi yra manoma, kad Zmonés pieSia skirtingu btidu. Baigus apmokyma,
rezultatai yra saugomi programos duomeny bazéje kaip objekty ir jiems buidingyju Hu momenty
vektoriy rinkinys. Biidingasis Hu momenty vektorius, apibiidinantis tam tikra figtra, susideda i§
septyniy Hu momenty.

Kai gaunamas naujai nupiesto objekto reikSmingumo sritj i§ auk$ciau esancio algoritmo
etapo, atpazinimo procesas apskaiciuoja tos srities buidingaji vektoriy:

HUA:{[l I, I, I, Iy I]7} (1)
kur HU , yra A objekto biidingasis Hu momenty vektorius, o /, yra atitinkamas Hu momentas,
kai k=1,2,...,7.

Kai objekto budingasis Hu momenty vektorius apskaiciuotas, pradedamas atpazinimo
procesas lyginant atstumus tarp Sio vektoriaus ir duomenuy bazéje esanciy objekty vektoriy.

Trumpiausias atstumas nulemia klasg, kuriai nupiestas objektas priklauso.

Geometrinis graZinimas

Kai baigiamas atpazinimo procesas, gauta informacija panaudojama objekto grazinime,
norint atlikti geometrinius pataisymus ir sukurti tvarkinga ir aiSkia ranka pieSto objekto versija.
Grazinimo procesas gauna pradinius duomenis objekto pavadinimo ir jo reikSmingumo srities

pavidalu (4 pav.).

Rectanale Sauare Circle

4 pav. Grazinimo proceso pradiniai duomenys

Skirtingo sudétingumo formos objektai reikalauja atitinkamo sudétingumo grazinimo.
Elementariy objekty, tokiy kaip kvadratas, sta¢iakampis, apskritimas ir kt., grazinimas,
nereikalauja sudétingy skai¢iavimy ir veiksmy. Pavyzdziui, stac¢iakampio graZinimo procesas (5
pav.) yra paprastas ir reikalauja tik objekto reikSmingumo srities matmeny: aukscio ir plocio.

Pagal Siuos matmenis yra sukuriamas tvarkingas idealus staiakampis.

A E A
i E h= hnew
E E W= WHCW
h E E |:| |:| : hnew
el |
w Whew

5 pav. Staciakampio grazZinimas
Jei nustatytas objektas priklauso sudétingy objekty klasei, geometrini grazinima
rekomenduojama atlikti remiantis H. Hse ir A. R. Newton (Hse ir Newton, 2005) pasitulytu
metodu. Sis metodas naudoja objekty segmentacija i elementariasias dalis: tiesias linijas ir
elipsines arkas. Sudarius objekto segmentacijos modelj, jis yra naudojamas figliros geometriniy
duomeny, tokiy kaip kampai, krastiniy ilgis ir kt., nustatymui ir tvarkingo idealaus objekto

atktrimui.

Koregavimas

Algoritmo koregavimo dalis siekia patalpinti atpazinta ir pagrazinta objekta toje
pozicijoje, kurioje vartotojas ketino ta objekta nupiesti. Objekto patalpinimo vieta nustatoma
remiantis erdviniais santykiais su prie$ tai nupiestais objektais. Sis algoritmas naudoja visus tris
erdviniy santykiy tipus: kryptis, atstumus ir topologinius santykius. Yra sudaromas sarasas
santykiy tarp einamojo objekto ir penkiy paskutiniy objekty. Neseni objektai yra naudojami, o
seni objektai yra atmetami, nes manoma, kad tarpusavyje susijusius objektus Zmonés paprastai
piesia beveik viena paskui kita. Sudarius saraSa nustatomas artimiausias objektas ir pagal ji
atliekamas naujai nupiesto objekto pozicijos koregavimas, taikant erdvinius ty objekty tarpusavio

santykius. Atlikus objekto pozicijos eskize koregavima, rezultatas yra pateikiamas vartotojui.

Realizacija

Siekiant patikrinti algoritmo modelj, dalinai realizuojamas algoritmas be koregavimo
dalies. Realizacija atlikta Java programavimo kalba, nes SMARTBoard lenta yra suderinama su
Java programavimo kalba ir $i daliné realizacija gali buiti panaudota tolimesniam sistemos

karimui.

v

6 pav. Pradinis programos langas

Realizacijos programos langas imituoja SMARTBoard lentos vaizda (6 pav.). Paspaudus
mygtuka Draw yra parodomas vaizdas (7 pav. kair¢je), vartotojui nupieSus objekta lentoje.
Algoritmas paleidziamas vykdyti, paspaudus mygtuka Perform, o algoritmo rezultatas i§ kart
pateikiamas programos lange (7 pav. desinéje). Siuo atveju matome, kad vartotojas noréjo

nupiesti kvadrata, o sistema atitinkamai ji atpaZino, pagrazino ir pateiké vartotojui.

| L= Ww L X

]

Purform

* Hew object drawn " gt poCesang comphtod,
* Rmcogeition comgleted.
* Deauniication complmted.

7 pav. Nupiestas kvadratas (kairéje), atpazintas ir pagrazintas kvadratas (desinéje)
Taip pat yra pateikiamas atvejis, kai vartotojo nupieStas objektas yra neteisingai
interpretuojamas. Tai atsitinka, kai nupieStas objektas yra deformuotas ir turi per mazai jo klasei
biidingy savybiuy. PavyzdZziui, pav. pavaizduotas eskizas, kuriame nupieStas naujas deformuotas

apskritimas (8 pav.).

Parinem

O

8 pav. Nupiestas deformuotas apskritimas

* B bt drawn

Atpazinimo procediira yra tokia pati, kaip paminéta ankstesniame pavyzdyje. Algoritmo

interpretuotas objektas yra pagrazinamas ir pateikiamas vartotojui (9 pav. kair¢je).
| e Ea‘i £ e Ea‘i

Dvae. D,

Changs

A

O O

* el poCRSSIng Complued. * el poCRSSIng Complued.
* Fiecognition complrind. * Fiecognition complrind.
* Eaamientinn Enmysitad * Eaamientinn Enmysitad

9 pav. Neteisinga interpretacija (kairéje) ir teisinga interpretacija (desinéje)

9 paveikslo kairé¢je puseje pateikiama pirminé objekto interpretacija, kuri akivaizdziai yra
neteisinga. Tokiu atveju, spaudziamas mygtukas Change ir algoritmas pateikia artimiausia pagal
tikimybe kita interpretacija (9 pav. desingje). Si karta, interpretacija yra teisinga. Algoritmas
objekto interpretacijy turi tiek, kiek objekty yra sistemos duomeny bazéje, ir riusiuoja jas pagal
tikimybe, kuri nustatoma pagal panasuma { sistemos objektus.

Atlikta algoritmo daliné realizacija patvirtino sukurto algoritmo veiksminguma.

ISvados

Atlikus darba paaiskéjo, kad statistiniai metodai efektyviis objekto atpazinimo sistemose,
bet efektyvumo lygis labai priklauso nuo objekty sudétingumo ir kiekio saugomo sistemos
duomeny bazeje. Kuo sudétingesni objektai ir kuo didesnis objekty rinkinys, tuo sudétingesni
statistiniai metodai turéty biiti naudojami sistemoje.

Elementarioms geometrinéms figiroms atpazinti pakanka algoritmo paremto pastoviais
Hu momentais, tafiau naudojamas sudétingesnés formos objektams atpazinti Sis metodas
nepasiekia labai gery rezultaty.

Sudétingy figiiry atpazinimui rekomenduojama naudoti sudétinius Zernike momentus.
Tokiu atveju, reikia patartina naudoti optimizuotus Zernike momenty apskai¢iavimo metodus,
nes Zernike momenty eilei didéjant, didéja ir ju apskaiciavimo sudétingumas. Yra nustatyta, kad
pakanka apsiriboti momentais nuo 2-os iki 8-os eilés, kadangi eilés padidinimas pastebimai
pagerina efektyvuma tik apie 1%. Taip pat, kuo didesnés eilés momentai naudojami
algoritmuose, tuo labiau jie yra jautriis triuk§mo efektui.

Kitas variantas sudétingy objekty atpazinimui biity panaudoti metoda, apjungianti objekto
karkaso Hu momentus ir Furje transformacijos savybes. Sio metodo sudétingiausia dalis biity
objekto karkaso nustatymas, kuri galima biity atlikti Voronojaus diagramuy pagalba ar kitais
metodais. Prie§ pasirenkant vieng i§ $iy metody, reikéty ivertinti kiekvieno metodo reikalaujamy
skaiCiavimo sudétingumo ir jo teikiama efektyvumo santyk] ir pasirinkti optimaliausia.

Grazinimo procesas jvairaus sudétingumo objektams yra skirtingas. Elementariy figliry
grazinimas atlickamas nesudétingais veiksmais, remiantis fundamentaliais figtiros duomenimis.
Tuo tarpu, sudétingesniy objekty grazinimas reikalauja atlikti segmentacija prie§ pradedant
geometrinj objekto koregavima.

Objekto pozicijos eskize koregavimas pagal jo erdvinius santykius su ji supanciais
objektais yra efektyviausias ir rekomenduojamas tik naudojant metodus, kure apima visus tris

erdviniy santykiy tipus.

Literatara
Hse H. H.; Newton A. R. (2005). Recognition and Beautification of Multi-Stroke Symbols
in Digital Ink. Computers & Graphics, 2005

Preface

This document reports on the thesis entitled “Dynamic Scene Analysis and Beautification
for Hand-drawn Sketches”, carried out at the Department of Computer Systems, Informatics
Faculty, Kaunas University of Technology and the Department of Cognitive Systems, Bremen
University in partial fulfillment of the requirements for a Masters degree in Computer Science.

This thesis is organized into five chapters. The first chapter presents an introduction,
motivation and the scope of the project. Chapter 2 focuses on problem analysis: qualitative scene
analysis, geometric beautification, qualitative spatial reasoning and conceptual neighborhoods.
The algorithm of dynamic scene analysis and beautification for hand-drawn sketches is described
in Chapter 3. Chapter 4 discusses the implementation of the designed algorithm. Finally, there is

provided a conclusion of the thesis.

Contents

INTRODUCTION. ... 6
1.1 MOtIVation OF the TNESISc.eciiiiiice e 7
1.2 SCOPE OF Tthe TNESISoviiii e e ne e 8
PROBLEM ANALYSIS .. 10
2.1 Reasoning WIth QIagramsSc.eoiiieiie et 10
2.1.1 NALUIE OF DIAGIAMSouviiiitiiiieiieeeie ettt nb e 11
2.1.2 Cognition With DIGQIamS........cccvcveiiieieeie et aaesre e nreas 12
2.2 Qualitative Spatial and Temporal Reasoningcccceevuevivereiiiesieerie e e esee e e 13
2.2.1 Topological REIALIONScccviiieiiee et 14
2.2.2 D] =T od o] TSRS PR 16
2.2.3 DIISEANCES ...ttt ettt bbbttt bbb bbbttt b b reenes 17
2.2.4 TemPOral REIATIONS........cviieieieie s 17
2.3 Conceptual NeighbDOrNOOUS.cciiiiiieiee e 19
2.3.1 Neighborhoods of Topological Relations ... 19
2.3.2 Neighborhoods of Direction Relationscccccvviieiiiie i 20
2.3.3 Neighborhoods of Distance Relationscccoveiiiiniiiiieie e 21
2.4 RECOGNITION ...ttt b e e be e b e ebeenbe e e nnes 22
24.1 SEALISTICAl IMOMENTS.......eeiieece e sb e sre e nnes 22
DESIGN L. 25
3.1 SYSTEM MOE ...ttt 25
3.2 Algorithm for dynamic scene analysis and beautificationc.cccccooiiiiiiiienenn, 26
3.2.1 INPUL PIOCESSING ...ttt sttt sttt st b et nbe e nnes 27
3.2.2 RECOGNITION PIOCESSvviveeieiiieiieeitestiesieeste e eeste s e raesae e raeste et e sseesaeaneesnaensneneeas 27
3.2.3 Geometric BeautifiCation PrOCESScociiiiiieiiiie e 30
3.2.3.1 Beautification 0f BasiC SNAPESccccveviiiiiieiiiice e 31
3.2.3.2 Beautification of COMPIEX SNAPES........cccviiiiriiiieee s 32
3.24 AQJUSTMENT ..ttt et e et e s et e et neesbe e e nnes 34
3.2.4.1 Determination OF DIFECLIONS.ccuviiiiiriiriiieieese et sbe e 34
3.2.4.2 Determination Of DIStANCES.......cccveiuiiieiiiiieerie et sre st sre e e e 36
3.2.4.3 Determination of Topological Relations............ccoieiiiiiiii i 41
3.24.4 Adjustment OF ODJECT......cooiiiie e e 45

IMPLEMENTATION ... e 47

4.1 Implementation of the AlGOritNM. ..o 47
4.1.1 Class Diagram of the AlGOrithm...........ccccoeiiiiiiicc e 47
41.2 Core-mechanics of the Implementationcccooeiiiiiieneie e 50

4.1.2.1 Instructions for RUNNING the Program..........c.cccecveieiieie i 50
4.1.2.2 Scenario Of USING PrOgramccoiiiiiiieieieisieiesie sttt 50

CONCLUSIONS. ...ttt et e et e e e e e e e e e eeeaa e e e e e e e eeeeassann e eeeeeeeeennnes 56

APPENDIX ... 57

Source Code of the Implementation Part ..o 57

BIBLIOGRAPHY ..ttt e e e e e e et e e e eeeees 71

List of Figures

Figure 1: Flow diagram of system functionalitycccccceiieiiiii i 8
Figure 2: Transitivity in Euler's circle in textual representation (taken from Gurr C. A, 1999, p.
TSSO USSR RRURURPPPIN 11
Figure 3: Transitivity in Euler’s circle in diagrammatic representation (taken from Gurr C. A,
1999, P.). ettt R e b bt bbb et ne e 11
Figure 4: A region without holes (a), a region with holes (b), a simple line (c) and a complex line
(d) (taken from Egenhofer & Herring, 1990, P. 6) ..c.coovevieiiiieiieieccseee e 15
Figure 5: Geometric interpretation of the 8 relations between two regions in 2-D (taken from
Egenhofer & Khaled, 1992, p. 200)........cccoiiiiiiieii et 16
Figure 6: Cone-shaped (a) and projection-based (b) models for cardinal directions (taken from
Sharma el at., 1994, P. 6)..c.ueciiiieiecie ettt a et nre s 17
Figure 7: Allen’s thirteen 1-dimensional interval relations (taken from Rauh et al., 2000, p 872).
... 18
Figure 8: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p.
K1) RS SUSO RSP PRURURPPPN 20
Figure 9: Conceptual neighborhood of cardinal relations of two squares (taken from Bruns &
EQenhofer, 1996, P. 34). ..o 21
Figure 10: Conceptual neighborhood of distance relations (taken from Bruns & Egenhofer, 1996,
[T) RSSO S SRR 22
Figure 11: Structure of the SyStem MOcooiiiii e 25
Figure 12: Structure of the algorithm for dynamic scene analysis and beautification................. 26
Figure 13: Determination of Hu feature vector a circle shapecccoviinniiiiiccee, 28
Figure 14: Determination of Hu feature vector a square shapec.ccccevevevecve e, 29
Figure 15: SAMPIE TESTINGccuviieiiiiie ettt et ne e b e b e nneas 29
Figure 16: Input to the beautification step of the algorithm ..., 30
Figure 17: Beautification of @ reCtangleccooooiriiiiiiiii e 31
Figure 18: Beautification Of @ SQUAIE.c.cueiierieiie e et ste ettt sae e nnees 31
Figure 19: Beautification Of @ CIFCIEcouiiiiiiiie e 32
Figure 20: Beautification 0f @n €lliPSecceiveiiiieiieie e 32
Figure 21: Sketched parallelogram (a), beautified parallelogram (b) and graphical description of
the parameters (c) (taken from Hse & Newton, 2005, P. 4) .ccvcovviveveeieiiese e 33
Figure 22: Sketched trapezoid (a), beautified trapezoid (b) and graphical description of the
parameters (c) (taken from Hse & Newton, 2005, P. 4) ..covoeiieieiie e re e 33
Figure 23: Determination of the direction between objects Aand Bccocvvviieiciciciciinns 35
Figure 24: Object’s A interest area covers object’s B interest area.........c.ccecvevvviesvesesieesnennn. 36
Figure 25: Object’s A interest area intersects with object’s B interest area...........ccccoeevvinenen, 37
Figure 26: The calculation of distance between object A and object B with direction defined as
BT ST TP TP TPRPPPPTPO 38
Figure 27: The calculation of distance between objects A and B with direction defined as ““north-
L] AT TP PR UPROUPRTPPRPPP 39
Figure 28: The interpretation of 6 topological relations between two objects (after from
Egenhofer & Khaled, 1992, P. 200)......ccuiiiiiiiieii e 42
Figure 29: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p.
33) , With NUMDEred relationS.........ccooiiiiiie e 42
Figure 30: Transition graph for "disjoint” topological relationcccccevvvieiiieic i, 43

Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Transition graph for "meets” topological relation...........ccccoveviveveiieneecc e 43
Transition graph for "overlap" topological relation.............ccccooevininiiiiniee 44
Transition graph for "covers" topological relation.............ccccccoveviveviiieviece e, 44
Transition graph for "contains™ topological relation.............cccoovviinnnniiin i 44
Transition graph for "inside™ topological relation............c.cccovevevievv i, 44
Transition graph for "coveredBy" topological relationcccooceveieiiiiniienen 45
Transition graph for "equal” topological relationc.ccccoovvievecieiccii e 45
Class diagram Of @ PrOgIam.......ccoceiieiieie et snee e 48
Initial WindOW Of @ Program.........cccvoieiiiii e 51
Object loading on the sketch panel............cooiieiii e 52
Displaying reSUIT 10 @ USEFcueiierieeieiiesieeie st se e ee e ae e sae e e sre e sneenneens 52
Loading next object on the sketch panel............cccooieiiiiii e 53
Display of the incorrect interpretation............ccocveierieie e 54
Display of an alternative interpretation of the drawn object...........ccccooveiieiiiicnnnne 54

Chapter 1

Introduction

Sketching is an important part of any creativity process and is used in the design
disciplines, concerned with making physical form: mechanical and civil engineering, graphic
design, and architecture and physical planning. Almost all designers still begin the design process
by sketching their ideas before transferring them to a computer. This helps designers to express
nascent ideas fast, naturally and to speed up visual problem solving. Moreover, the importance of
sketching in design has been recognized emphasizing that initial drawing allows creative
freedom. The sketches represent a rough semblance and functionality of the system and can be
essential in understanding the reasoning behind a design. Furthermore, sketching activity lets
designers to interact with their sketches, which results in a prospect for all alternative
possibilities. Almost all designers are visually orientated and are basically used to think
graphically, so the sketching process encourages designers to develop ideas and explore
alternative design solutions in their minds. This important part of design, which supports
imprecision and incremental formalization of ideas as well as rapid exploration of alternatives, is
still performed by engineers with the help of paper and pencil.

Despite praxis and fondness of natural interface provided by paper, sketching on paper
has its own limitations. Although a designer can easily draw a sketch on paper, the main
disadvantage lies with the editing and improving of the design which is problematic. If the
designer wants to make changes in the sketch, usually he has to take another sheet of paper and
basically redraw the entire sketch. In contrast to a paper, computer tools potentially have many
advantages. Firstly, the designer would not be forced to express his ideas twice by initially
sketching on paper and then transferring the design to the computer. Secondly, as mentioned
before, it would be easier for the designer to edit the design on the computer. Moreover, the
computer could perform the role of an assistant in the process of sketching by making/offering

adjustments in the sketch made by the designer.

Most engineers, architects and other design professionals use computer-aided design
systems (CAD) in their design activities. Although CAD systems use a wide range of computer-
based tools, the compromise between the ease of drawing sketches on paper and the power of
representing it on computer is too great. The engineers design mostly with pencil and paper,
rarely transferring their designs to the computer often until they are rather complete, because of
an unnatural feel of CAD tools and simulation software inhibits the design process. One of the
reasons for the delayed handling of CAD tools is that computers are too difficult to use,
inefficient in working with drawings and also they lack integration into a real design environment
where free hand drawing is used. Furthermore, these tools are ineffective for the sketching
process as they require more precision and effort than it is needed for conceptual design.
Although CAD tools are becoming suitably sophisticated and multiplex, the main usage of these
tools is still focused in the final stages of the design.

This thesis is an attempt to involve computer in the earlier stage of design process. The
main idea is concentrated on the problem of transforming hand-drawn sketches into neat
drawings during the sketching process. The work will include qualitative scene analysis,

geometric beautification, qualitative spatial reasoning and methods of conceptual neighborhoods.

1.1 Motivation of the thesis

This thesis aims at supporting the process of sketching that could be done on a scrap sheet
and also to design a system prototype for sketching, thus involving computer in early stages of
design processes. This is a relevant issue, because in the areas of design, sketches play a key role
in the conceptual phases. This thesis explores the idea of automatically invoking dynamic scene
analysis and beautifying the sketch based on the designer’s drawing actions. It is important that
designers would be able to sketch everything they want, quickly and easily using a pencil. With
such a system, the designers would have a natural common feel of the sketching process. The
sketching support system should provide freehand drawing, recognize design intent from drawing
and make corrections according to the designer’s intentions and the context of the drawing. We
aim at providing contextual assistance to designers in the process of sketching, because it is not
only means of developing design ideas but also an important mean of communication amongst

designers.

1.2 Scope of the thesis

This thesis aims at designing a prototype, which in real-time interacts with the user in the

process of sketching as shown in Figure 1.

Input processing Obiject is drawn

v
Recognition of the

A

object

A\ 4
Geometric

beautification

A 4
Adjustment

A 4

\ 4
Display of the result

False

Interpretation
of the object

False True

Interpretation

of the scene Process is completed

Figure 1: Flow diagram of system functionality

The system recognizes the drawn object as soon as the drawing process of that object is
complete. The object is analyzed and identified. After the object recognition process, the system
starts performing a geometric beautification of the object, if needed. The process of geometric
beautification encompasses the detection, the imposition of geometric regularities and the
required correction of defects (such as straightening lines, forming correct angles, connecting

lines etc). Thereafter, the adjustments of the sketch are performed according to the objects, which

have been sketched before the current one, in the context of qualitative scene analysis and
methods of conceptual neighborhood. The system interacts with the designer by displaying the
interpretation of objects and giving the means to fixing any misinterpretations made by system. If
the interpretation is correct the user keeps on sketching, otherwise the user has to indicate to the
system that the interpretation of the system is incorrect. The process of interpretation involves the
making a list of possible interpretations by methods of conceptual neighborhoods. Hence, if a
misinterpretation occurs, the user will be provided with alternative possibilities of interpretation.

The end result of this thesis is an algorithm designed and developed for dynamic scene
analysis and beautification, and a partial implementation of it on a demonstrative system.

Chapter 2

Problem Analysis

This chapter explores and dissects the questions to be considered, solved, or answered in
this thesis. As this thesis is concentrated on scene analysis, the issues of reasoning with diagrams
are overviewed. Moreover, relevant background of qualitative spatial reasoning and conceptual
neighborhood is revealed here. These are the main issues identified to be necessarily explained

in this chapter.

2.1 Reasoning with diagrams

Before exploring the field of reasoning with diagrams, the meaning of the basic term
“diagram” must be clarified. Although this term can mean different things for different people,
the term “diagram” is used here with the meaning of a drawing that uses geometrical elements in
order to abstractly represent a case. The situation reasoning can be done in four ways of
deduction: diagram-to-sentence, sentence-to-sentence, sentence-to-diagram and diagram-to-
diagram (Furnas, 1992). Usually reasoning systems are heterogeneous and use the first three
ways of deduction. However, work on diagrammatic reasoning in order to express logical and
set-theoretical properties and integrate it into reasoning systems has become critical and highly
relevant (Gurr, 1999). As this thesis is concerned with dynamic scene analysis and beautification,
an overview on issues of reasoning using graphical diagrammatic information is presented. In this
work, the graphical representations have been classified into three classes, namely: static
diagrams, animation and virtual reality (cf. Scaife & Rogers, 1996). The main concentration in
this overview of graphical representations is focused on issues of static diagrams. There is a large
variation in diagrammatic representations such as maps, flow diagrams, technical illustrations,
pictures and etc. Each of this representational form is associated with wide range of functions
(Scaife & Rogers, 1996).

10

2.1.1 Nature of Diagrams

Reasoning with diagrams attracts scientists, for diagrams can alleviate a problem solving
process, because it is assumed that diagrams are often more effective than other propositional
representations. The alleviation of a problem solving also happens, because generally diagrams
reduce the amount of computation, required to understand the displayed information, by
replacing relations of words and concepts with lines, arrows, shapes, and spatial arrangements.
They also facilitate recognizing appropriate objects and inference rules (Cheng & Herbert, 1993;
Gurr, 1999).

i Al A are B
ii All B are C
iii (therefore) All A are C
Figure 2: Transitivity in Euler's circle in textual representation (taken from Gurr C. A, 1999, p. 4).

For example, Figure 2 and Figure 3 show textual and diagrammatic representations of the
transitivity in Euler’s circles. On one hand, transitive relation of set inclusion in textual
representation (Figure 2) is captured by symbols in concatenation relation, which must be
interpreted by intermediary syntax. On the other hand Euler’s circles depicted in diagrammatic
way (Figure 3) are easier to comprehend as it gives direct semantic information using labeled

circles and spatial inclusion of the circles.

(a) (k)

Figure 3: Transitivity in Euler’s circle in diagrammatic representation (taken from Gurr C. A, 1999, p. 4).

One of the main features of diagrams is that their space and spatial properties preserve
information about topological and geometric relations among the objects of the depicted problem.
It provides information about the object’s location in the way that makes it easier to track
relations between the objects in space (Scaife & Rogers, 1996). However this characteristic of
diagrams is not exclusive to them, because diagrammatic properties are also used to encode

11

information in other representations just in lesser degree (Cheng et al., 2001). For example, in

sentential representation of formula “x=y+z”, it matters whether “+z ” is on the left or on the
right side of the equal sign. The other example would be logic sentence “ p A(—qvr)”: it has

some properties of visual representation, because its symbols are expressed to reader’s visual
sense by marking them on the page with ink.

Differently from other types of representations, diagrams have a property of compelling
specification of certain classes of information. For example, a term “triangle” in sentential
representation does not contain full information about the object and implies abstract description
of any object belonging to the class of triangles. In this case, it does not give any information
about what kind of triangle is considered: equilateral, isosceles or right-angle triangle. On the
other hand, in a diagrammatic representation of a triangle, information about the specific subclass
to which the triangle belongs along with its relative size is evident. Different diagrams permit
different levels of abstraction. Diagrams with little abstraction are easy to use in reasoning, but
express only limited information. Conversely, diagrams with substantial level of abstraction can

represent a huge amount of information, but are difficult to reason with (Gurr, 1994).

2.1.2 Cognition with Diagrams

Graphical representation can be regarded as an arrangement of various graphic objects in
space and is based on directness of information represented by them, which determines the
effectiveness of this representation to human reader. The usability and suitability of diagrammatic
representations are influenced by issues of human reaction to representations (Gurr, 1999).

Visual and spatial characteristics of diagrams and perceptual properties of a diagram’s
elements enable cognition of the problematic scene. Diagrammatic representations are more
effective for the cognition process, because some inferences are more immediate or even
automatic in diagrams. Textual representations require additional logic inference to be made in
order to make conclusions, whereas diagrams provide conclusions of its own accord. For
example, Figure 3 provides more direct inference than the same information depicted in Figure 2.
So, recognizing the desired conclusion is actually not automatic, because the same diagram can
contain not only the desired conclusion but many other potential conclusions. For example,
different people can realize the same diagram in quite different ways, which can be far from each
other. In this sense, a diagram performs more or less the role of a guide by displaying functional

12

relations between terms. For example, lines and arrows present in a diagram can show a path that
has to be followed. Humans can often make the right conclusions more easily if the diagram is
well matched with the task.

Furthermore, efficiency of cognition also relies on meanings of elements in the diagram
(Cheng et al., 2001). Humans can make right conclusions from diagrams, only if perceptual
information of diagrams is modulated by knowledge about meanings of the graphic elements.
The more person already knows about the subject matter depicted in diagram, more efficient is
the use of diagram in reasoning. Moreover, diagrams actually do not contain all the information
needed to come to the right conclusion. The knowledge and skill of the person is highly domain-

specific and influence the efficiency of diagram usage.

2.2 Qualitative Spatial and Temporal Reasoning

One of the goals of qualitative reasoning and the process itself is to make explicit the
everyday common-sense knowledge of the physical world. This knowledge with given
appropriate techniques is needed for a computer to make predictions, analyze and explain the
actions of physical system (Cohn et al., 1997).

The research in qualitative reasoning is motivated not only by reasoning in the traditional
domain of physical systems, but also by a variety of possible areas such as robotic navigation,
high level vision, spatial propositional semantics of natural languages, engineering design and
specifying visual language syntax and semantics. Qualitative reasoning approaches perform
reasoning on the conceptual level and seek to represent continuous properties of the world by
discrete systems of symbols. One of the ways to do that is to use the relevance principle: “The
distinctions made by quantization must be relevant to the kind of reasoning performed” (Cohn &
Hazarika, 2001).

As the information about surrounding space can be perceived through various channels
such as vision, touch, hearing, smell and etc., the knowledge of space differs from all other
knowledge. Physical space is one of the main issues in cognition, because it is the domain in
which events take place and it is a good reference domain for the interpretation of non-spatial
concepts (Freksa, 1991b). Spatial reasoning appears as a field dealing with the conceptual
“space” which comprises spatial representations such as topology, orientation, shape, size and

distance. The process of the development of spatial reasoning formalism can be divided into three

13

steps: preparatory step and two qualitative abstraction steps, which liberate representations from
insignificant details and focus on the significant distinctions. The aim of preparatory step is to fix
reasoning task by specifying a configuration space. Next, the set of qualitative relations along
with appropriate inference rules is described. Finally, the last qualitative abstraction step defines
a conceptual neighborhood structure for the qualitative relations (Schlieder, 1996).

Research on qualitative relations and their fundamental theories has been motivated by
objective of how spatial relations are expressed in natural language and thought. Researchers are
inclined to divide qualitative relations into two groups: spatial relations and temporal relations.
Spatial relations provide information about spatial objects regardless of their actual geometry. For
example, the same information would be given about the triangle, which is placed on the table, no
matter what kind of triangle it is or what kind of table it is. This group of spatial relations can be
divided into three subgroups: directions, distances and topological relations. Qualitative temporal
relations describe objects at different states in time (David & Egenhofer, 1994; Sharma el at.,
1994).

2.2.1 Topological Relations

One definition of topological relations can be based on the relation algebra, which deals
with algebraic manipulation of symbols that represent geometric configurations and their
relationships to one another. This algebra analyzes topological relations between any
combinations of objects such as regions, lines and points (Sharma el at., 1994).

A 2-complex in R? with a non-empty, connected interior is considered to be a region. A
region with a connected exterior and a connected boundary is called a region without holes
(Figure 4a), and a region with disconnected exterior and disconnected boundary is a region with
holes (Figure 4b).

Definition of a line states that it is a sequence of connected 1-complexes in R?in a way
that they do not cross each other and do not form loops. There can be a simple line with two

disconnected boundaries (Figure 4c) or a complex line with more than two disconnected

boundaries (Figure 4d). The object point is defined as a single 0-cell inR?.

14

© @ . L

Figure 4: A region without holes (a), a region with holes (b), a simple line (c) and a complex line (d) (taken
from Egenhofer & Herring, 1990, p. 6)

Topological relation between two objects, A and B, is described by the comparison of A
object’s interior (A°), boundary (0A) and exterior (A”) with B object’s interior (B°), boundary
(0B) and exterior (B™). The method called 9-intersection is based on the idea that these six parts

combined together form nine fundamental descriptions of a topological relation between two

objects (Egenhofer & Herring, 1990). These descriptions are:
e the intersection of A’s interior with B’s interior, noted as (A° " B°);
e the intersection of A’s interior with B’s boundary (A° N oB);
e the intersection of A’s interior with B’s exterior (A° N B™);
e the intersection of A’s boundary with B’s interior (JAnB°);
e the intersection of A’s boundary with B’s boundary (0AndB);
e the intersection of A’s boundary with B’s exterior ((ANB™);
e the intersection of A’s exterior with B’s interior (A~ N B°);
e the intersection of A’s exterior with B’s boundary (A" noB);

e the intersection of A’s exterior with B’s exterior (A" nB™).
A topological relation R between two objects A and B is represented as 3 x 3 matrix of
above mentioned intersections and noted:
A°NnB° A°noB A°NB”
R(AB)=| 6ANB° 0ANOB OANB- (1)
A nB° A noB A NnB"

Different topological relations are described by different sets of 9-intersections and
equivalent topological relations are described by relations with the same specifications
(Egenhofer & Herring, 1990). In order to simplify the method the intersection content is assumed
to be value empty (&) or non-empty (—=<). Figure 5 shows the algebraic and visual

interpretation of the eight relations between two arbitrary regions.

15

O
%

o o TS T T =] o = e O =

L] o T & L] G o e o B R =
= = T = = o T /E TE Ta o s]
dizjoint CONtaing inside equal

o o T g TS T = = =] T TS

o TaETE @ e T T T o I = R]
/o Ta Ta o @ T = T v B - v

meet covers coveredBy overlap

Figure 5: Geometric interpretation of the 8 relations between two regions in 2-D (taken from Egenhofer &
Khaled, 1992, p. 200).
Corresponding variety of 9-intersections sets can be obtained to any combination of two
objects, which can be any regions, any lines or points. The actual number of relations between

two spatial objects depends on their topological properties.

2.2.2 Directions

Directional relations deal with the order in space and are commonly used in everyday life
as we often describe one object on the basis of its directional relation with the other object. There
are basic directions and cardinal directions. The term of basic directions is used here to mean the
directions very often used in our daily life such as in front of, above, below, on the right and etc.
The term of cardinal direction claims that it is binary relation involving a reference object and a
target object. Cardinal directions can be described by quantitative values, such as azimuth or
bearing, or quantitative symbols, such as east or south-west (Nabil el at., 1996; Sharma el at.,
1994). The specific quantitative symbols, which are available in reasoning, depend on the system
of directions used. The system of directions can consist only of four symbols: south, north, east
and west, or it can be also extended by including four more symbols: south-west, south-east,
north-east, north-west, etc. (Frank, 1996). The choice of description depends entirely on the

system.

16

NWON [xE NW | N NE

SW | S SE

@ ®

Figure 6: Cone-shaped (a) and projection-based (b) models for cardinal directions (taken from Sharma el at.,
1994, p. 6).

The main concept of cardinal directions is taken from the compass. This also inspired the
cone-shaped concept of direction approach, where directions are defined using angular regions
between objects (Figure 6a). The other useful construction is based on projections (Figure 6b).
This method defines cardinal directions using projection lines vertical to the coordinate axis
(Theodoridis et al., 1996).

2.2.3 Distances

As the definition of the term distance proposes, it is quantitative value determined through
measurements or calculated from known coordinates of two objects in some reference system
(Sharma et al., 1994). In spite of this, approximations and qualitative concepts such as near and
far are used to describe distances in reasoning. Measurement theory provides a theoretical base to
approximate distance, which correspond to a set of ordered intervals and addition rules, which
provide a complete partition such that the following interval is greater than or equal to the
previous one (Hong et al., 1995). Reasoning using approximate distances can provide effective

and meaningful results only if combined with reasoning using cardinal directions (Frank, 1996).

2.2.4 Temporal Relations

Temporal relations are based on James Allen’s popular temporal logic and represent
temporal changes between spatial objects (Allen, 1983). Allen proposed to describe qualitative
relations between events or objects using intervals (Sharma et al., 1994) and introduced method

to derive relationships between intervals (Nabil et al., 1996). The interval is assumed to be a fully

17

ordered set of points along a discrete time line between the endpoints of the interval. Based on
this representation, Allen derived interval algebra with clear semantics (Rauh et al., 2000),
according to which any ordered pair of intervals is related in one of the thirteen temporal

relations (Figure 7).

Relation Natural language Graphical
symbol description example
X=Y X lies to the left of ¥ i
XmY X touches Y at the left e -
Xo¥ X overlaps Y from the left —_—
XsY X les left-justified in Y —
Xdy X 1s completelymn Y [—
XY X lies rightqustified in Y —
X=7%Y Xequals Y s
XA4Y X contains Y right-justified I—
XdiY X surrounds Y —
XayY X contains Y left-justified [
XoY X overlaps Y from the right —
XmY X touches Y at the right I —
=% X lies to the right of ¥ [

—

Figure 7: Allen’s thirteen 1-dimensional interval relations (taken from Rauh et al., 2000, p 872).

Allen’s thirteen 1-dimensional interval relations table is composed of six relationships
with their inverses and one relationship, which has no inverse (Freksa, 1991b; Nabil et al., 1996).
In case of the basic relation “equal™, it does not have any inverse. This algebra describes the
properties of the temporal relations and defines sets of rules that permit inferences about relations
(Rauh et al., 2000). Reasoning using temporal relations is done by making sets of possible

relations between two objects in relation to the third object.

18

2.3 Conceptual Neighborhoods

Reasoning using neighborhoods is used to describe the possibility to transform two spatial
or temporal configurations of the objects into each other using small changes in the position or
size of the objects (Dylla & Moratz, 2005).

The concept of conceptual neighborhoods defines the similarity measures for a set of
relations. It is graphically represented as a graph constructed from nodes, which define relations,
and links, which connect relations which can be directly transformed to each other (Papadias et
al., 2001). The shorter is the way to reach one relation from the other the more similar those
relations are. If the structure of conceptual neighborhoods is known, there can be made
predictions about changes and reasoning with relations.

As this thesis aims to explore dynamic scene analysis and beautification for hand-drawn
sketches on geometric and qualitative levels of abstraction, the focus is set on conceptual
neighborhoods of spatial relations not temporal ones.

2.3.1 Neighborhoods of Topological Relations

Topological relations define spatial configuration between two objects such as metric
details, topology issues. If some topological constraints are changed, significant alterations
between relations occur (Bruns & Egenhofer, 1996). Although the number and extent of changes
can increase with every step, generally the change is gradual. It starts from equivalent scene, then
transforms to very similar, then to less and less similar ending with totally different variation.
The concept of gradual change has been the basis for the conceptual neighborhoods model of
topological relations (Figure 8).

Figure 8 represents conceptual neighborhood of eight topological relations between two
simple regions. Each relation in the figure is connected with its conceptual neighbors with the

help of a line.

19

|
@
7563
o o

Figure 8: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p. 33).

N

Individually topological conceptual neighborhoods are effective in reasoning about
simple two-object scenes (Bruns & Egenhofer, 1996), because the structure of the conceptual
neighborhood is not so complex. Their usage in more complicated scenes is inefficient, because
as the complexity of objects increases, the conceptual neighborhoods becomes more complex and
hard to comprehend. However, the combination of conceptual neighborhoods of topological,
cardinal and distance relations is an efficient utility for spatial reasoning of scenes consisting of

more than two objects.

2.3.2 Neighborhoods of Direction Relations

Cardinal directions are very important in specifications of spatial scene, because they
describe the orientation between spatial objects. The structure of neighborhood graph of cardinal
relations is derived from Allen’s interval method applied to orthogonal projections with the
constrain that any object can move continuously and smoothly in any direction but without
jumping to a new location (Goyal & Egenhofer, 2001).

20

.
NNW N NNE
B N
N z E|‘J Z NE
EEE \\ //\
N £l
WNW \Ej %]TI EE EJH/
Ny — & —_— ENE
K g Bl /™
AN

Figure 9: Conceptual neighborhood of cardinal relations of two squares (taken from Bruns & Egenhofer,
1996, p. 34).

Figure 9 depicts conceptual neighborhood graph constructed for cardinal relations of two
equal squares. In this case, conceptual neighborhood is interpretation of either square in any
direction. Conceptual neighbors are connected via links, indicating which cardinal relations can
be gradually derived one from other. The similarity of relations is evaluated by the number of
intermediate relations on the way from one relation to other. Although such neighborhood graphs
of cardinal relations can be generated for other shapes, but they are more difficult to depict and
interpret in the 2-dimensional space (Bruns & Egenhofer, 1996; Goyal & Egenhofer, 2001).

2.3.3 Neighborhoods of Distance Relations

In opposite to above mentioned spatial relations, it is difficult to characterize distance
relations of spatial objects. All concepts and terms used in reasoning with distance relations are
not objective ones and very sensitive to the spatial data which is being considered (Bruns &
Egenhofer, 1996). One of the methods to describe similarity between distance relations is to use

increasing buffer distances (Figure 10).

21

e 0 0O

zero very close close far

Figure 10: Conceptual neighborhood of distance relations (taken from Bruns & Egenhofer, 1996, p. 33).

Figure 10 graphically shows conceptual neighborhoods of distance relations for a of four
distance relations. In this case, structure of conceptual neighborhoods is based on an order
relation. In such neighborhood graph order relation “less than” (<) is used to depict the gradual
transformation of one relation to more and more diverse one. Two adjacent relations are more
similar to each other than the distant ones. For example, distance relations “close” and “very
close” are more similar to each other than the latter one and the relation “far”. This is because
according order relation over distance symbols “very close” < “close” < “far”. This type of
reasoning can be good utility to determine how many gradual changes are required to complete
transformation from one scene to another (Bruns & Egenhofer, 1996).

2.4 Recognition

2.4.1 Statistical Moments

Recognition of visual patterns independent of position, size and orientation is a goal of
research a much long time. Statistical moments are extensively used in many different aspects of
image processing, ranging from invariant pattern recognition and image encoding to pose
estimation (Schutler, 2002). Image recognition can be done using statistical moments such as the
mean, variance, and higher-order moments, because they describe the image distribution with
respect to its axes (Gonzalez & Woods, 2002).

The moment of an image is expressed by the standard equation (Taubman, 2005):

M :ii(xpyq)ny (2)

22

where p,q>0. In the above equation X and Y are the width and height of an image
respectively and x°y® is monomial product. P, is the value of the pixel, when pixel x,y is white
it is 0, and when it is 1, pixel x,y is black. The image usually has to be inverted and adjusted
according threshold in order to meet binary requirements of B . The moments of the image can
be computed only after these adjustments.

As there is infinite number of moments, a subset of moments has to be chosen for
recognition purposes (Taubman, 2005). Usually all moments from p=0,g=0to p=3,q=3 are
used because they change with image position and image scale.

The zero order moment M, represents the total mass (or power) of the image. If it is
applied to binary image, then it is literally a pixel count of the number of pixels comprising the
object (Schutler, 2002).

It is well known, that centralized moments do not change under the translation of

coordinates. This leads to the statement that centralized moments x , are invariant under

translation and are defined as (Hu, 1962):

X Y
zupq =Z (X_Y)p(y_y)qpxy (3)
Xy
where
X = My (4)
I\/IOO
- My
y= ()
MOO
In order to enable invariance under scaling normalized moments 7, are calculated:
/Jpq
Moq = (6)
™ (o)
where
7:¥+1 V(p+Qq)>2

Hu derived seven invariant moments of second- and third-order. The first six Hu moments
encode shape of the object with invariance to scale, position and rotation. The seventh moment is
calculated with invariance to skew, which lets to distinguish between mirrored images. Seven Hu

moments are expressed by these equations (Poppe & Poel, 2006):

23

I, =10 + 10, (7)

L, = (170 = 1102)" + 4103, (8)
g = (17 = 3175)" + (3770~ 71c5)” (9)
Ly = (1 +7115)" + (110 + 1005)° (10)
ls = (1730 = 312) (730 + M) (0 + 7h)” = 301721 +17765)°) + (11)

(31721 = 163) (111 + 1705) (3770 + 7712)2 = (7 + 7703)2)
le = (7207702)((170 + 7712)2 = (17 + 7703)2 + 4170, (1735 + 1715) (750 + 1103)) (12)

I, = (37,1 = 1703) (1750 +17,5) (7755 + 7712)2 —3(17,4 + 7703)2) +
+(1730 = 31712) (1701 + 1145 (37750 + 7712)2 — (17, + 7703)2)

These moments can be generalized to accomplish pattern recognition not only

(13)

independently of size, position and rotation but also independently of parallel projection (Hu,
1962).

24

Chapter 3

Design

This chapter presents the algorithm for dynamic scene analysis and beautification of hand-drawn
sketches. There will be presented and discussed each part of the algorithm separately with the

focus on recognition, beautification and adjustment methods.

3.1 System Model

This work is concentrated on the design of system prototype for dynamic scene analysis
and beautification of hand-drawn sketches. The main concept of the system is that it interacts
with user in real-time while the process of sketching is going on. Every time user draws an object
the system should give the response by making appropriate corrections in the sketch. The

structure of this system model is presented in Figure 11:

SMARTBoard

y

Application 1 Application 2

A
A 4

A

Figure 11: Structure of the system model

As it is shown in Figure D1, one of the components of the system is a SMARTBoard. A
SmartBoard is an interactive whiteboard that is connected to a computer and a data projector. It is
used because it will give to the user a sense of natural sketching. Next component of the system
is Application 1, which is designed for drawn object detection. The main aim of this application
is to detect the event when user finishes drawing of the object on the SMARTBoard. It is
assumed that application is tracking the motion of pen used by the user and the strength of the
pen’s pressing. When the pen is withdrawn for longer time then N seconds, it is assumed that the
user finished drawing of the object. The waiting period of N seconds enables users to draw not
only continuous shapes but also to sketch using strokes. If the event of object finishing is

registered the SMARTBoard’s screen is captured and transferred to the Application 2, which is

25

designed for dynamic scene analysis. This application analyzes and identifies the object,
performs geometric beautifications if they are needed and adjustments of the sketch, according to
the objects which have been sketched before. As the result, Application 2 sends the corrected
sketch scene back to Application 1, which displays the result to the user on the SMARTBoard.
When the responds to the user’s made drawings, the user can indicate whether the interpretation
of his sketching is correct or not. If the interpretation is incorrect then system gives to the user the
next more likely interpretation of the sketch. If the user in time duration of N seconds doesn’t
indicate that the interpretation is incorrect, the system gets ready for the processing of the next
object.
As this thesis is more based on the process of dynamic scene analysis and beautification

of hand-drawn sketches on geometric and qualitative levels of abstraction, the focus is set on the

design of Application 2.

3.2 Algorithm for dynamic scene analysis and beautification

An algorithm has been designed in order to implement the functionality of Application 2
discussed in the above section.

As it is shown in Figure 12 the proposed algorithm consists of four steps:

e Input processing — the preparation of input data for the coming operations.

e Recognition process — the process of the drawn object recognition in comparison to object
classes stored in the system.

e Geometric beautification — the process of the drawn object beautification by the detection
and imposition of geometric regularities and the required corrections of defects.

e Adjustment — the adjustment of sketch according to the spatial relations between the

current object and the object, which has been sketched before the current one.

Input »| Recognition Geometric

: > et Adjustment |—»
processing process beautification

\ 4

Figure 12: Structure of the algorithm for dynamic scene analysis and beautification

26

Each step of the algorithm is discussed below in more details introducing the approach,
which has been used to fulfill the purpose of it. The restrain of this algorithm is that it has been
designed based mainly on some database of geometric basic shapes. This means that there no

guarantees, that it will work with the shapes, which were not used for the design of the algorithm.

3.2.1 Input Processing

This part of the algorithm prepares data for the following steps. It gets the image of
drawing screen and converts it into binary image, where O represents a white pixel and 1
represents a black one. Afterwards, the changes which have been made to that picture are
distinguished by comparing the current sketch with the lastly processed sketch. The difference of
these sketches indicates an object, which has been recently drawn by a user. Next, the object’s
interest area is clipped out of the sketch area. The term of interest area is used here with intention
to designate a rectangle shape area containing the actual object and some additional white pixels.

When the interest area of the object is excised, it is transmitted to the recognition process.

3.2.2 Recognition Process

The recognition process is performed in order to classify to which class of shapes the
drawn object can be assigned. This step of algorithm is based on Hu moments, which are
invariant to scale, position and rotation. A sketched object can be only recognized as the one
belonging to some specific class of shapes. Beforehand, there has to be trained a system with the
samples of a users drawn shapes. It is done with the assumption that different people have
different specific way of sketching.

After training is completed, results are kept in a database in a form of shapes’ definition
with their Hu moments feature properties. A Hu moment feature vector is here assumed to mean
the vector consisting of seven Hu moments which characterize the shape. This work concentrates
on the recognition of circles and squares with assumption that user is drawing these shapes in
small range of sizes.

When the object A is sketched and its interest area is clipped out of the sketch by the
input processing part, the recognition process calculates the feature vector of the drawn object:

HU, ={l, I, 1, 1, 1 1, 1.} (14)

27

where HU , is a feature vector and I, is appropriate Hu moment, when i=1,2,...,7.
When the feature vector of the object is calculated, the recognition is processed. There is

performed the comparison of the distances between object feature vector and feature vector of the
shapes kept in database. In this way, it is checked to which shape’s domain the drawn object
belongs. The shortest distance determines the class of the object.

In order to confirm that the chosen concept is working as it is assumed, there have been
made some tests (Figure 13). Testing is performed on the two basic shapes: circle and square.
There have been made 15 samples for each shape, in total 30 samples. The recognition algorithm
was trained with all 30 samples. The feature vector of seven Hu moments for each shape has been

generated by taking mean value of each shape’s Hu moments values for each sample.

Determination of circle shape Hu feature vector

****************** e ettt
,,,,,,,,, L __L________1		
********* L et		
) | | | |
3 St ity il P
© | | | |
> | | | |
%) | | | |
'E | | | |
o 08r---%----+---------"1-------—~ o — - ————— == e ~
£ l l l l
o | | | |
e | | | |
3 0.6f---- Y- et
T | | | |

| | | |

| | | |

| | | |

777777777 e —_———_—_————.w

X [roT T T T T T

S S . ; .

3 4 5 6 7

number of a Hu moment

Figure 13: Determination of Hu feature vector a circle shape

Figure 13, shows the Hu moments (blue line) for all training 15 samples, which have been
used to define circle shape’s Hu feature vector (red line). Figure 14, presents the calculation of
Hu feature vector for a square shape, where blue lines shows Hu moments of training samples

and red line indicates the estimated Hu vector for the square shape.

28

Determination of square shape Hu feature vector

Hu moments value

number of a Hu moment

Figure 14: Determination of Hu feature vector a square shape

It can be seen that these two shapes have some different Hu moments’ features. Firstly,
the most informative Hu moments for a circle shape are the first four moments, whereas for a
square the most informative ones are the first three Hu moments. Moreover we can see that the
most significant moment is the first Hu moment. In the case of a circle shape first Hu moment
values are in the range from 1.3 to 1.5, when in the case of a square shape values are in the range
from 1.51to0 1.8.

Afterwards, the system is asked to classify 60 test samples, which are the mixture of
samples from the training set and the completely new samples. From the Figure 15, the efficiency
of recognition can be seen. Images assumed to be of the circle’s shape are recognized with 85

percent, and squares are recognized with 95 percent.

Obiject recognition,
%
Circle samples 85
Square samples 95

Figure 15: Sample testing

29

Although Hu moments are invariant to scale, rotation and position, their performance is
limited in some cases. The performed tests showed that the size of the object matters to the
recognition using HuU moments.

When the shape database comprises a large range of different shapes, it is more efficient
to use Zernike moments for the recognition (Hse & Newton, 2004). However, this algorithm is
not considering the usage of these moments, because in order to calculate Zernike moments there
have to be performed huge complex calculations.

As this system prototype is assumed to be more used by designers, who are sketching
mostly using basic shapes, it is better to use Hu moments which are more fast and easy to

calculate.

3.2.3 Geometric Beautification Process

After completion of object recognition, the obtained information about the object is
utilized in the beautification process, in order to make the required corrections such as the
straightening of lines, the forming of correct angles, connecting lines, etc. and to create a neat and
clean version of the hand-drawn image.

The algorithm’s beautification step gets information about an object in two aspects
(Figure 16). Firstly, the exact area of interest is taken from the sketch. Secondly, the name of the
object's shape is assigned to the object. This information is passed on from the earlier steps of the

algorithm.

Rectanale Sauare Circle

Figure 16: Input to the beautification step of the algorithm

The aim of beautification is to use information, which is provided by object recognition,
in reproducing the recognized object into an exact and pre-defined shape. Different shapes
require appropriate beautification of different complexity levels. The process of beautification for

a few basic shapes such as squares, rectangles, circle, ellipse and etc. does not demand complex

30

calculations and amendments, while beautification of complex shapes takes a lot more actions

and lot more complex computations.

3.2.3.1 Beautification of Basic Shapes

The process of beautification for a few basic shapes does not demand complex
calculations and amendments. The term of basic shapes is used here to mean the basic two-
dimensional geometrical objects such as squares, rectangles, circle, ellipse and etc. The methods

for beautification of each of this method are discussed below in more detail.

[T T e

A E A
i ; h = hnew
E i W= WneW
| > "™
w Figure 17: Beautification of a rectangle Whew

The example shown in Figure 17 presents beautification of the object in the case, when
the object is recognized to be a rectangle. The beautification process of a rectangle is
straightforward and involves the measuring of the interest area. According to the size of the

height and width of interest area, the neat and ideal rectangle is produced.

A
ew = (h +w) /2

> "

Figure 18: Beautification of a square

»
»

I new

As it is shown in Figure 18, beautification of an object recognized as a square requires
more actions. Since the recognized object is a square, the intention is to draw a symmetrical
shape with four equal borders. In order to define such a shape, the height and the width of the
object’s interest area are measured. The average of the height and width is calculated to
determine the length of the border for the beautified square. When the length of the border is
calculated, the neat and ideal square is generated instead the sketched one.

31

A
4 . I new=(h+w)/2

Figure 19: Beautification of a circle

v

Similarly, the beautification process of a circle is done (Figure 19). As in the case with a
square, first the size of a border for a new interest area for object is defined. In addition, the
beautification process of a sketched circle requires the calculation of the center point for the new
interest area. If the size of the border is equal to an even number, then an additional point is
added by the beautification engine. This is done, because an additional point is required to fit
ideal circle shape into the interest area of the drawn object. Next, a radius of an ideal circle is

calculated and circle is generated in the new interest area.

h = hnew
W = Whew

! >

v

Figure 20: Beautification of an ellipse

Appropriately, when an object is recognized as ellipse (Figure 20), the beautification
process performs actions very similar as in the case with a rectangle and a square. The interest
area of an ideal shape is calculated similarly as in the case with a rectangle. Similarly to the case
of circle beautification, there has to be estimated center of the ellipse. If the width of interest area
is equal to an even number, then an additional point is added to the width. Appropriately, if the
height of interest area is equal to an even number, then an additional point is added to the height
of the interest area. These corrections of the interest area ensures that ellipse is symmetrical along
x and y axis. When the interest area is amended, two radius of ellipse are calculated and an ideal

ellipse is produced in the interest area.

3.2.3.2 Beautification of Complex Shapes

If object is recognized to be from the class of complex shapes, geometrical beautification
is performed based on method proposed by H. H. Hse and A. R. Newton (Hse & Newton, 2005).

32

In order to make meaningful beautification of complex shapes such as parallelograms,
trapezoids, hexagons and etc. more detailed structural information about the object is needed.
Such information is obtained with the help of object segmentation into straight lines (L) and
elliptical arcs (E). As the result of segmentation there is generated a segmentation template
consisting of the number of L’s and the number of E’s. For the better understanding of the
concept of this method, beautification of several shapes will be explained in more detail below.

For example, when the object is recognized as a parallelogram, the line segments are
ordered consecutively (Figure 21). Processing of the data is started with the segment (1) that
forms an acute angle (H1) with another segment.

jﬁ\

I_‘ a

Figure 21: Sketched parallelogram (a), beautified parallelogram (b) and graphical description of the
parameters (c) (taken from Hse & Newton, 2005, p. 4)

In the case of a trapezoid (Figure 22), there is computation of the dot products of the
opposing segments in order to determine two parallel sides. Afterwards, the top-short (1) and
bottom-long (3) sides of trapezoid are defined, all segments arranged in clockwise order stating

from the top one and rotation angle is computed.

é__ /—\ y

4Ty 3 H2

Figure 22: Sketched trapezoid (a), beautified trapezoid (b) and graphical description of the parameters (c)
(taken from Hse & Newton, 2005, p. 4)

Other complex shapes are also beautified applying this method, but extent of
beautification of all objects is limited by the available support of the designed application in

terms of how many shapes are definite in the application.

33

3.2.4 Adjustment

The adjustment step of this algorithm aims to place object on the screen in the position at
which the user has meant to draw it. The place of the object is located according to its spatial
relations with other previously drawn objects. This step considers all three above mentioned
types of spatial relations: directions, distances and topological relations. The list of spatial
relations between the current object and the five the most recently drawn other objects is
generated in order to decide which previously drawn object is in the most “closest” relations with
the current one. The most recently drawn objects are considered and the oldest ones are left out
assuming that mostly people are sketching objects in turn and structurally. It is assumed that it is
less likely that a user draws more closely related objects one after each other or within five
objects. When the “closest” object is determined, adjustments of the current object are made on
the basis of its relations with the closest one. Basically adjustment step can be divided into three
sub-steps:

e Generating list of relations with other objects: directions, distances and topological
relations.

e Determining the “closest” object to the current object

e Performing adjustments according the “closest” object

There are explained in more detail all sub-steps of the adjustment. The result of the first
sub-step is the list of previously drawn objects with the description of their spatial relations with
the current object. The description of spatial relations consists of direction, distance and
topological relations properties. Below the method of determining each type of spatial relations is
described more exactly. Furthermore there comes the explanation how the adjustment is done
according to the properties of spatial relations.

3.2.4.1 Determination of Directions

This algorithm is using cardinal directions as one of the properties used for the adjustment
step. Here we are using system of directions defined by eight quantitative symbols: south, north,
east, west, south-east, south-west, north-east and north-west. The method of directions

determination between two objects is depicted in Figure 23.

34

object A

' (Xa., Ya)

object B

X, Yo)

Figure 23: Determination of the direction between objects A and B

Figure 23 shows objects A and B, which have been drawn by a user. It is considered that
A object is drawn before B object, so A object is used as reference object and B object is a
target object. Now the task is to find out in what cardinal position is target object B according to
the reference object A. Firstly, there is set an imaginary circle, which center coordinates (x,,Y,)
are the same as the center coordinates of the reference object A. The length of the radius of the
imaginary circle is not relevant, but the bigger it is the more distinctive the determination of
direction is. Eight points are set on the imaginary circle in order to represent all eight cardinal
directions. South is depicted by S point, north is N point, E is east point and etc. When

cardinal points are set, the distances between those eight points and the center point (x,,y,) of

the target object B are calculated. A distance between the N point and center point of the target

object is represented by d, distance, a distance distances to the south-east point is denoted by
d,. line and etc. The shortest distance shows the target object’s B position according to the

reference object A. When the direction is defined, it is assigned to the relation between two

objects. Afterwards the algorithm starts the determination of the distance between these objects.

35

3.2.4.2 Determination of Distances

Besides directions this algorithm is also using distances in order to make adjustments of
the drawn object’s position in the sketch. The distances are defined using the qualitative
concepts: zero, near and far. In order to detect where one object is in comparison to the other
object we are using direction’s relations between two objects. The information about direction
relations between those objects is obtained from the previous step, which is described in the sub-
section above.

The determination of the distance between two objects requires several actions. First, it is
determined whether one of those objects covers the other one. The term “covers” is used here to

mean that one object’s interest area is covered by other objects interest area (Figure 24).

(Xmin_a: ymin_a) (Xmax_aa ymin_a)

object A

(Xmin_a, Ymax_a) (Xmax_a: ymax_a)

Figure 24: Object’s A interest area covers object’s B interest area

Figure 24 shows the case, where the interest area of object A covers the interest area of
object B and satisfy conditions:
Xmin_a < Xmin_b

X

max_a 2 Xmax_b

ymin_a < ymin_b

ymax_a 2 ymax_b

(15)

36

where (X) and (X) are coordinates of A object’s interest area’s upper left

min_a’ ymin_a max_a’ ymax_a

and bottom right corners, (X, o Yimin o) and (X) are coordinates of B object’s interest

max_b Ymax_b
area’s bottom right corners.

In such a case it is claimed, that object A is in zero distance from object B, otherwise
next actions of distance determination are performed.

When it is clear that object A is not covering object B, the algorithm checks whether the
intersection between these objects exists and what the size of it is. Actually the term
“intersection” is used here to indicate the intersection between one object’s interest area and other
object’s interest area (Figure 25).

(Xmin_ay ymin_a) (Xmax_aa ymin_a)
L4

(Xmin_by ymin_b) _:' (Xmax_by ymin_b)

_______ object A

LN

(Xmin_b, Ymax_b) ().(rr.1ax_;): ymax_b)

(Xmin_ay Ymax_a) (Xmax_a» Ymax_a)

Figure 25: Object’s A interest area intersects with object’s B interest area
Figure 25 shows the case, where the interest area of object A intersects with the interest
area of object B. The intersection region is distinguished by red stripes. The intersection is
detected, if at least two conditions out of four are satisfied:

Xoin 2 < X

min_

Xmax_a > X

ymin_a = ymin_b

ymax_a 2 ymax_b

min_b

max_b

(16)

where (X) and (x) are coordinates of A object’s interest area’s upper left

min_a’ ymin_a max_a’ ymax_a

and bottom right corners, (X, o Yiin ») and (X) are coordinates of B object’s interest

max_b? ymax_b

area’s bottom right corners.

37

When the intersection is detected, the next step is to find out the distances between the
intersecting borders of objects” A and B interest areas, which determine the distance between
object A and object B. If one of the distances between the intersecting borders is bigger than the
threshold defined by the thickness of the pen, it is considered that the distance between objects A
and B is zero. If this is not the case, then objects A and B are assumed to be near to each other.

If objects A and B are not covering and are not intersecting, then it is clear that they can
be near or far from each other but not in the zero distance. In order to determine whether two
objects are near or far from each other there have to be measured the distance between

appropriate borders of two objects (Figure 26)

(Xmin_ba ymin_b) (Xmax_by ymin_b) (Xmin_ay Ymin_a) (Xmax_a, ymin_a)
T —) T o — - *

object B object A

(Xmin_b: ymax_l;)_ N (Xmax_ba ymax_b) (Xmin_ay ymax_a) (Xmax_ay ymax_a)

Figure 26: The calculation of distance between object A and object B with direction defined as “west”

Figure 26 shows two objects A and B, which are in distance defined by d,; value. This

vale is used to determine whether objects A and B are near or far from each other. In order to

find out distance d,; direction’s relation between objects A and B is used. In this example,

object A is a reference object, object B is a target object. The direction’s relation is defined as
“west”, which means that object B is in west to object B . In this case distance between objects
A and B is calculated:

dAB = Xmin_a - Xmax_b (17)

where X iIs x axis coordinate of A object’s interest area’s left border, x IS X axis

min_a max_b

coordinate of B object’s interest area’s right border.

If direction between objects A and B is “east”, distance d,; is calculated appropriately:

X (18)

min_b ~ “‘max_a

d,g =X

where x is x axis coordinate of B object’s interest area’s left border, x , , is x axis

min_b
coordinate of A object’s interest area’s right border.
38

When object’s B position according to object’s A position is defined as “north”,

distance d g is:
dAB = ymin_a - ymax_b (19)
where vy, is y axis coordinate of A object’s interest area’s upper border, y . , IS y axis
coordinate of B object’s interest area’s bottom border.
In the case, when object B is in “south” to object A, distance d,; is obtained by:
dAB = ymin_b B ymax_a (20)
where y .., is y axis coordinate of B object’s interest area’s upper border, y, . ., is y axis

coordinate of A object’s interest area’s bottom border.
When direction’s relation between two objects is defined in terms of four basic directions
(“south”, “north”, “west”, “east”), it is assumed that in order to determine distance relation, it is

enough to calculate distance according to one appropriate axis (x or y).

(Xmin_b- ymin_b) (Xmax_b, ymin_b)

object B

________________ A

 dy

(Xmin_a, ymin_a) (Xmax_a: ymin_a)

4
.

object A

o NSee” °

(Xmin_aa ymax_a) (Xmax_an ymax_a)

Figure 27: The calculation of distance between objects A and B with direction defined as “north-west”

Figure 27 shows the case, where object B is “north-west” position to object A. In order

to find the distance d,; between these objects it is not enough to make calculations utilizing only

one axis measurements. As the direction property “north-west” indicates, there should be used

combination of calculations performed in the case of “north” and “west”. In the case depicted by

39

Figure 27, distance d,; is calculated using Euclidian distance estimation method and

calculations performed in the case of “north” and “west”:

dAB = \/(ymin_a - ymax_b)2 + (Xmin_a - Xmax_b)z (21)

) are coordinates of A object’s interest area’s upper left corner,

where (X

min_a? ymin_a

(Xmex_b+ Ymax_b) @r€ coordinates of B object’s interest area’s bottom right corner.

In the case, when object B is in “north-east” to object’s A, distance d,; is obtained by:

dAB = \/(ymin_a - ymax_b)2 + (Xmin_b - Xmax_a)2 (22)

where (X) are coordinates of A object’s interest area’s upper right corner,

max_a’ ymin_a
(Xmin b+ Ymax_b) @re coordinates of B object’s interest area’s bottom left corner.

When object’s B position according to object’s A position is defined as “south-west”,

distance d g is:

dAB = \/(ymin_b - ymax_a)2 + (Xmin_a - Xmax_b)2 (23)

where (X) are coordinates of A object’s interest area’s bottom left corner,

min_a’ ymax_a

(Xmax_b» Ymin_) @re coordinates of B object’s interest area’s upper right corner.

If direction between objects A and B is “south-east”, distance d,, is calculated

appropriately:

dAB = \/(ymin_b - ymax_a)2 + (Xmin_b - Xmax_a)2 (24)

where (X) are coordinates of A object’s interest area’s bottom right corner,

max_a’ ymax_a
(Xmin b+ Ymin_) @re coordinates of B object’s interest area’s upper left corner.
It has to be mentioned that d,; is not the precise distance between objects A and B, it

just gives an abstract idea of the position between the two objects. This adjustment’s sub-step
does not require a precise measuring of distance, because the distance relation is defined by
qualitative concepts. In the case, when d,;, value is greater than the threshold defined by the

thickness of the pen, it is considered that two objects are located far from each other. Otherwise,

the distance relation between two objects is assumed to be near.

40

3.2.4.3 Determination of Topological Relations

In order to determine the topological relation between two objects there is used the
distance relation property assigned in the sub-section above. Topological relations, which are
interpreted as Figure 5 shows, are determined according distance relations in a way described
below.

If the distance between objects A and B is considered to be far, the topological relation
between them is determined as disjoint. When object B is located near to object A, it is
considered that objects meet each other. If objects A and B are in zero distance from each other,
there are several topological relations possible: contains (object A contains object B), inside
(object A inside object B), equal (object A equal to object B), covers (object A covers object
B), coveredBy (object A covered by object B), overlap (object A overlapped by object B). In
this case, there have to be performed some additional actions to determine, which relation of the
five six ones is the right one.

Although, in order to determine the topological relation of objects A and B, Equation 1
Is used, this algorithm is using a simplified its version:

(25)

A°nB° A°noB
R(A B) = N No
0ANB° O0ANOB

where A° NB° is the intersection of object’s A interior with object’s B interior, A’ "oB

represents the intersection of object’s A interior with object’s B boundary, dAnB° is the
intersection of object’s A boundary with object’s B interior and 0A "B notes the intersection of
object’s A boundary with object’s B boundary.

It is enough to know only these four intersections, because disjoint and meet relation in
the case, when distance is zero, is assumed to be not possible. After the application of Equation

25, the interpretation of six relations could be defined as it is shown in Figure 28:

41

-3 -
o <O

CONtainsg

- O
g =

equal

@,

-3 =D
g

covers

-5 O
& -

EDVEI‘E‘{!J:’:}’

-3 =
- -

overlap

Figure 28: The interpretation of 6 topological relations between two objects (after from Egenhofer & Khaled,

1992, p. 200)

When the current topological relation of two objects is determined, there has to be

generated a list of other alternative relations according conceptual neighborhoods. The list is

needed to perform corrections as fast as possible, if initial adjustment is incorrect. The structure

of conceptual neighborhoods is used the one defined by Figure 8. In order to make it more clear,

how the list of possible relations looks like and how those relations are interconnected, all eight

relations are numbered as it is shown in Figure 29.

o/

OlOl

o
©

\

P

O

|, N

©

©

Figure 29: Conceptual neighborhood of topological relations (after Bruns & Egenhofer, 1996, p. 33) , with

numbered relations

42

For each of eight forms of topological relations the list of conceptual neighborhood is
generated in a form of transition graph. This graph is needed to perform faster correction if the
initial interpretation of a topological relation between two objects is incorrect. Each node of a
graph carries the information about the type of relation and its likelihood, which is defined by the
properties of the objects.

If the relation between objects A and B is determined to be as disjoint, then the transition
graph would be generated according this structure:

£

=1 >l >[5] L]
N o

(o]—[7]

Figure 30: Transition graph for "'disjoint" topological relation

As it can be seen from the Figure 30, the transition graph is completely appropriate to the
conceptual neighborhood of topological relations presented in Figure 31. The transition between
relations initially is clear and easy. When the transition from the relation 3 is needed, then it is
checked which transition is more likely to be the correct one.

- o
—» | 2
N4
o]—
Figure 31: Transition graph for ""meets" topological relation
Transition from one relation to the other, if the initial relation is meets, is depicted in

Figure 33. In comparison with structure presented in Figure 30, this structure gets more complex
from the initial state.

43

Figure 32: Transition graph for "overlap™ topological relation
Figure 32 shows the transition between conceptual neighbors in the case when initial

relation is assumed to be overlap.

L =2]—=[]

A
[e]>[s]
\% [7]
—[]
A
o]

Figure 33: Transition graph for ""covers" topological relation

In the case of covers relation, transition structure is depicted as it is shown in Figure 33.

L =l |—[2|—>[1]

2

s |—>[al>ls]
N#

Figure 34: Transition graph for ""contains' topological relation

Figure 34 shows a case when initial relation between object is assumed to be contains.

L =2 =[]

A
B
L
N#

Figure 35: Transition graph for "inside" topological relation

44

When initial relation is assumed to be inside, transition graph is as it is shown in Figure
35. It can be seen that inside graph is analogical to transition graph of contains relation shown in
Figure 33.

Lo | =l |—[2 =[]

N

L = [e >l]
N#

Figure 36: Transition graph for "'coveredBy"" topological relation

Similarly, transition graph of initial relation coveredBy shown in Figure 36 is analogical

to the transition graph of relation covers depicted in Figure 34.

/
[s] — [«]=[s]>[2][]
[]

M

Figure 37: Transition graph for “'equal’ topological relation

Lastly, Figure 37 presents transition graph, when the initial topological relation is
assumed to be equal. From the examples given above, it can be claimed, that the more two
objects are topologically close to each other, the more complex transition is initially. After all

spatial relations are determined; the adjustment of the object can be performed.

3.2.4.4 Adjustment of Object

Adjustment of the recognized and beautified object in the sketch is done according to
spatial relations determined above. Basically, the main focus is set on topological relations and
other spatial relations are used as supporting information. The adjustments made in every case of
topological relation are elucidated.

If the drawn object is disjoint with the other object, no adjustments are made, because it is
assumed that a user wanted to draw two objects separately from each other. If the drawn object
meets the reference object, the beautified object is placed exactly near to the reference object in

such a way that interest areas of two objects reach each other. It is performed, because it is

45

supposed that user wanted to draw two objects, which are connected to each other. When target
object and reference object overlap, as in the case with disjoint relation no actions are made,
because it is hard to distinguish how much overlapping user intended to make, and the current
object is placed back into its initial position in the sketch. If target object contains the reference
object, the target object’s area is placed exactly so that appropriate borders of both objects’
interest areas would be connected in such a way that center points of those borders would be
placed one on the other. Similar adjustments are made in the case when the target object is
covered by the reference object. When two objects are presumed to be equal to each other, the
adjustments are made by placing target object in such away that its center point would match
reference object’s center point. When there is inside or contains relation between the target and
reference objects, the adjustments are made similarly to the ones made for the case of equal
relation.

When the adjustment of the beautified object is done, the interpretation of the drawn
object is proposed to a user. If a user denotes that the interpretation is wrong, the algorithm
assumes that drawn object’s relation to the target object is the next one from the topological
transition graph and performs appropriate adjustments. This action is performed until the user
admits the interpretation as the correct one or until the last interpretation offered by the system is

displayed.

46

Chapter 4

Implementation

4.1 Implementation of the Algorithm

This thesis aimed to design algorithm for a system used for dynamic scene analysis and
beautification of hand-drawn sketches. In order to prove that designed algorithm is serving the
purpose, it is partially implemented in Java. As this thesis is focused on the recognition,
beautification and adjustment processes, which are the essential parts of the algorithm, the
implementation is basically performed for the Application 2 (Figure 11).

The concept of the implementation is based on the assumption that algorithm gets the
screenshot of the SMARTBoard every time the event of an object being drawn is registered. The
task of the algorithm is to perform the recognition of the shape and beautification of the object,
whereas the adjustment part is left out as it doesn’t have much value in partial implementation.
Adjustment of the object’s position is effective if it is implemented fully with the concept of
conceptual neighborhoods. The implementation is partial and is done for only two basic shapes:
squares and circles. Basically program loads pictures simulating as if it got the information from
Application 1 (Figure 11) and partially applies the designed algorithm. If the system interprets an
object as not appropriate shape, there is given a possibility to indicate it to the system in order for
it to display other possible shape options.

The source code of the implementation is presented in the Appendix A.

4.1.1 Class Diagram of the Algorithm

In order to make the implementation more clear the class diagram of the program written
in Java is provided in Figure 38. There can be seen the structure of the program and all the class

used to perform the task, which is defined by the algorithm.

47

Main Moments

==constructor==+Maoments{

SRSy | |~centralmoment g int, o int 1A v int 1Ak int 1A REOD) double"0D
+|—Pad0b19_ﬁ0 “void ~MNaormalizedMament{ p : int g int, ©M : double"[[") : double
+FixError) - double ~HulMorments{ Choments : double"Q0") : double"]"

+ChangeObject : void

+Distance2Points(target : double"[", reference : double"[") : double
+ClHpout]n sint) vaid

+InputProcessingd) ; void

+Distancelist) : woid

+Beautification{ n; int) ; void

+Fecognition() : woid

+DSAABD : woid

+CompareTwod n:int) :woid

+ioBufferedlmaged imade : Image) : Bufferedimage
+hasAlphatimage : Image) : hoolean

+almage(buffieredimage : Bufferedimage) © Image
+Diravw() woid

+tmaing args : String"[") vaid

Beautification

==constructor==+Beautification)
+MakaSguaral A _w int, 1A_h o int, b_image_ohj : Bufferedimage, b_image_last: Bufferedimage, xMin - int, xbae int, yMin o int, yhax int) o waid
+hakeCirclel 1A w int, 1A_h :int, b_image_obj . Bufferedimaage, b_image_last: Bufferedimade, xMin ; int, xhax ;int, yhdin ;int, yhias int) ©woid

Figure 38: Class diagram of a program

As it is shown in Figure 38, in order to partially implement the algorithm and verify it
there are used three classes (Main, Recognition and Beautification) , which are here explained in
more details.

Main Class is program’s main class, responsible for implementing user interface, data
handling and managing all the processes of the algorithm. Moreover, this class is responsible for
the interaction with a user by reacting to the decisions of the user about the correctness of
system’s interpretation. One of the most important methods of this class is DSAAB(), which is
initiated in order to start the process of dynamic scene analyzes and beautification when the
image is loaded and user indicates that the object is “drawn”. There is no physical fact of
drawing, as program loads a new screenshot of a SMARTBoard with a new object by the click of
a user. In order to perform a task of scene analysis and beautification methods of Main class, such
as Recognition() and Beautification(), initiate methods of other two classes, which are explained
in more detail below. When the recognition and beautification process is finished Main class
methods displays the result back to the user for the evaluation of its correctness. If a user
indicates that algorithm’s interpretation of an object is incorrect, a method ChangeObiject() is
initiated in order to provide other options of interpretation to the user. When the recognition and
beautification of an object is completed, the user is offered to load another object, as a new and
additive object of the previous scene.

Main class consists of these methods:

48

LoadObject() - this method loads a screenshot imitating the persons action of drawing
an object.

o DSAAB() — this method handles data and other methods needed for the dynamic scene
analysis and beautification. It is initiating other Main class methods such as
InputProcessing(), Beautification(), Draw() and etc.

o Distance2Points() - makes a list of possible interpretations of the drawn object
according to the likelihood of its possibility.

o FixError() — a method, used to fix the probable Hu moments variance caused by the
difference of the sizes between the target object and the reference objects, according to
which the Hu moment vectors for the shapes are made.

e ChangeObject() — this method changes the current interpretation of user’s drawn
object’s shape to the other one which is in the list of possible travelers.

o Distance2Points() - counts the Euclidian distance between the object's Hu moments and
the reference object's Hu feature vector.

o ClipOut() - method which clips out the interest area of the currently drawn object.

o InputProcessing() — this method is meant to process initial data for the dynamic scene
analysis and beautification with the help of ClipOut() and CompareTwo().

o DistanceList() - makes a list of possible interpretations of the drawn object according to
the likelihood of it.

o Beautification() - this method uses Beautification class methods in order to perform
appropriate beautification actions towards a recognized object.

o Recognition() - uses the methods of Recognition class in order to recognize a recently
drawn object.

o CompareTwo() — method which points out the changes made in the last screen and finds

the object which is drawn recently.

toBuffered Image() - method returns a buffered image with the contents of an image.

tolmage() - this method converts the Buffered Image to an image.

hasAlpha() - method returns true if the specified image has transparent pixels.

Draw() - method is accountable for interpreted object on the screen
Moments Class — this class is intended for the calculation of statistical centralized,

normalized and Hu moments with the help of appropriate methods:

49

o CentralMoment() — calculates the central moments of the defined order for the object
contained as an image.
o NormalizedMoment() — calculates the normalized moment of definite order for the
object contained as an image.
o HuMoment() — calculates seven Hu moments for the image with the processed object.
Beautification Class — is designed for the beautification step of the algorithm in order to
perform object’s beautification in the form of a square or a circle using methods:
o MakeSquare() — this method draws a nice and neat square within the boundaries of the
processed object’s interest area.
o MakeCircle() - this method draws a nice and neat circle within the boundaries of the
processed object’s interest are.
The instructions and performance, implemented with the help of these three classes

partially perform the task defined by the algorithm, is discussed below.

4.1.2 Core-mechanics of the Implementation

4.1.2.1 Instructions for Running the Program

In order to run this algorithm presentation program, a computer is supposed to have Java
Virtual Machine (JVM), because the partial algorithm has been programmed in Java language.
Moreover, it is important to use Java of 1.4.2 version or higher. When there must be this
implementation executed, DSAB.jar file should be executed by clicking on it. It must be ensured
that DSAB.jar executable file is in the same directory with the pictures needed for the

demonstration of algorithm’s performance.

4.1.2.2 Scenario of Using the Program

After the loading of the program is done as it is explained above, a user is presented with

the initial program window (Figure 39).

50

mr:«.

BE X

| Draw ‘

Figure 39: Initial window of a program

As it is shown in Figure 39, the initial window is designed in a simple way and not over-
burdened with some additional stuff. The main components of this program are three buttons and
one panel. Each of the buttons has its own purpose. For example, button named Draw performs
loading the new drawn object on the sketch. The other button called Perform is used to initialize
the dynamic scene analysis. Finally, Change button clicked by a user performs the beautification
of the other object when user considers current interpretation to be incorrect.

By clicking on the only one enabled button Draw the object is drawn on the sketch panel
(Figure 40).

51

=l <

ma-

Perform

Change

* New object drawn

Figure 40: Object loading on the sketch panel
As it is shown in Figure 40, the distorted object is displayed on the sketch screen. By
clicking the button Perform, it is simulated the event of algorithm getting the data in order to

perform dynamic scene analysis and beautification.

& O3

* Input processing completed.
* Recognition completed.
* Beautification completed.

Figure 41: Displaying result to a user

Figure 41 shows a view of systems interpreted object presented to the user after
completion of the input data processing, recognition and beautification. If you look at Figure 40,
it is seen with the naked eye that the object has been intended to be a square, and the system’s

interpretation is correct. Further, we can “draw” another object, by clicking on Draw button.

= BEX

Perform

Change

* New object drawn

Figure 42: Loading next object on the sketch panel
The newly drawn object displayed in Figure 42, seems to be a circle but a much distorted

one. By clicking Perform button, the scene analysis and beautification is initiated in order to

make the sketch more clear and neat.

53

MQ-
L
X

* Input processing completed.
* Recognition completed.
* Beautification completed.

Figure 43: Display of the incorrect interpretation

Figure 43 shows the result of the recognition of the newly drawn object in Figure 42. It
can be seen that the interpretation is incorrect. In this case, a button Change should be pressed

asking the system to show some other interpretation.

e ME

* Input processing completed.
* Recognition completed.
* Beautification completed.

Figure 44: Display of an alternative interpretation of the drawn object

54

Figure 44 shows the program window which displays the alternative interpretation of a
drawn object, when the user indicated to the program that its previous interpretation (Figure 43)
is not what the user intended to draw. The displaying of alternative interpretations of the
processed object depends on the amount of shapes in a database. In this case, as the database
consists of only two shapes, only one alternative interpretation is possible.

This partial implementation showed that the designed algorithm serves its purpose, as it
recognizes and beautifies the sketched objects with the possibility of alternative interpretations if

the system performed incorrect interpretation.

55

Conclusions

Although statistical methods are quite efficient in object recognition, the real efficiency
depends on the difficulty and the amount of shapes contained in a database of objects’ shapes.
The more complex shapes are stored in database and the more intelligent system is designed to be
the more complex statistical methods should be used in the process of object recognition. For the
basic geometric shapes it is enough to use Hu moments. One of the options for the recognition of
more complex shapes would be to use complex Zernike moments. In this case, there should be
considered the necessity of optimization of the Zernike moments calculation methods, as the
complexity of its calculations augment with the increase of the order of moments. It has been also
determined that it is enough to use statistical moments of order ranging from second to eighth,
because the increase of the order gives only the significant improvement in recognition of around
1% and the more higher-order moment is the more it is susceptible to noise. Another option for
the recognition of complex shapes could be usage of method where Hu moments’ features are
combined with Fourier transformation’s features calculated for the object’s skeleton. The
complex part of this method is the determination of the skeleton, which could be performed with
the help of Voronoi diagrams or other methods. Before choosing any of these methods, there
should be considered ratio of the method’s calculations complexity and the efficiency provided
by this method.

The beautification process is different for different complexity of the shapes.
Beautification of basic shapes requires only basic information about the size of the object and/or
the center point of the object, whereas the beautification of more complex shapes can require
segmentation of the object and only then the steps of beautification.

Adjustment of the object according to its spatial relations with surrounding objects is the
most efficient and recommended to apply only using the method where all three types of spatial

relations are used.

56

Appendix

Source Code of the Implementation Part

The source code of Main.java:

package dsab;

import java.awt.*;

import java.awt.event.*;
import java.awt.Graphics2D;
import javax.swing.*;

import java.io.*;

import javax.imageio.stream.lmagelnputStream;
import java.awt.image.*;
import java.awt.color.*;
import java.lang.Math;
import javax.imageio.*;

import java.awt.geom.*;

public class Main {
JFrame pagrindas = new JFrame();
JPanel p1 = new JPanel();
JPanel p2 = new JPanel();
JPanel p3 = new JPanel();
JPanel p4 = new JPanel();
JPanel p5 = new JPanel();
JPanel p6 = new JPanel();
JButton load = new JButton("Draw");
JButton perform = new JButton("Perform");
JButton change = new JButton("Change");
JLabel scr_label = new JLabel();
static Image image = null;
JPanel scr = new JPanel();
String[] pics_List;
public static int[][] differenceA, objA, IA;
static double[] HM_IA;
double[][] HM_shapes = new double[3][8];

57

double[][] CMoments = new double [5][5];
doublel] distance_list = new double[3];
String[] name_list = new String[3];
Moments m = new Moments();
Beautification b = new Beautification();
double error = 0.000015;
Bufferedlmage b_image_obj, b_image_last;
static int w, h, i, j, count = 0, width = 640, height = 480;
static int IA_w, IA_h, IA_wn, IA_hn;
static int xMin[] = new int[20];
static int yMin[] = new int[20];
static int xMax[] = new int[20];
static int yMax[] = new int[20];
static int counter = 0;
boolean right = false;
JLabel status1 = new JLabel(" ")
JLabel status2 = new JLabel(" ");
JLabel status3 = new JLabel(" ")
JLabel status4 = new JLabel(" ");

[** Creates a new instance of Main */

public Main() {
// Main panel
pagrindas.setLayout(new BorderLayout());
pagrindas.getContentPane().add(p2, BorderLayout. CENTER);
pagrindas.getContentPane().add(pl, BorderLayout. BEFORE_FIRST_LINE);
pagrindas.getContentPane().add(p4, BorderLayout. BEFORE_LINE_BEGINS);
pagrindas.getContentPane().add(p5, BorderLayout. AFTER_LINE_ENDS);
pagrindas.getContentPane().add(p3, BorderLayout. AFTER_LAST_LINE);
/I Center panel
p2.setLayout(new GridLayout(1, 1));
p2.add(scr);
scr.setSize(640, 480);
scr.add(scr_label);
// Button panel
p6.setLayout(new GridLayout(5, 1));
p5.add(p6);
p6.add(load);
p6.add(perform);
p6.add(change);

58

/[Status bar panel
p3.setLayout(new GridLayout(4, 1));
p3.add(statusl);
p3.add(status?2);
p3.add(status3);
p3.add(status4);
/[Setting the screen size
Dimension d = Toolkit.getDefaultToolkit().getScreenSize();
pagrindas.setBounds(0, 0, 700, 500);
pagrindas.setResizable(false);
pagrindas.setVisible(true);
image = new Imagelcon("screen.jpg").getimage();
scr_label.setlcon(new Imagelcon(image));
b_image_last = toBufferedimage(image);
perform.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)
{ DSAAB(); });
change.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)
{ ChangeObject(); } });
load.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)
{ LoadObject(); } });
/I Hu moments feature vectors for a square and circle shapes
HM_shapes[1][1] = 1.6259902276143283;
HM_shapes[1][2] = 0.00831938637943255;
HM_shapes[1][3] = 31.323960471113846;
HM_shapes[1][4] = 3.003469282995453;
HM_shapes[1][5] = -15.317351600218247;
HM_shapes[1][6] = -0.17739450541462043;
HM_shapes[1][7] = 15.940870668599066;
HM_shapes[2][1] = 1.6444676698320924;
HM_shapes[2][2] = 0.011664203402877578;
HM_shapes|[2][3] = 33.40893125317925;
HM_shapes[2][4] = 81.2581228164873;
HM_shapes[2][5] = 0.29732616824797675;
HM_shapes[2][6] = 20.254375262463274;
HM_shapes[2][7] = 1.601712657504255;

File dir = new File("Sample/");

59

}

pics_List = new String[1];
if (dir.isDirectory() X{
pics_List = dir.list();
}
perform.setEnabled(false);
change.setEnabled(false);

/* loads a screenshot of "SMARTBoard" provided by Applicationl

public void LoadObject(){

}

if (right == true){

b_image_last = b_image_obj;
}
statusl.setText(" * New object drawn");
status2.setText("");
status3.setText("");
status4.setText("");
image = new Imagelcon("Sample/" + pics_List[counter]).getimage();
scr_label.setlcon(new Imagelcon(image));
scr_label.repaint();
load.setEnabled(false);
change.setEnabled(true);
count = 0;
right = false;

perform.setEnabled(true);

[* FixError() fixes the probable Hu moments variance caused

* by the differenece of the sizes between the target object

* and the reference objects, according to which the Hu moment

* vectors for the shapes are made.

*/

public double FixError()}{
double fix = O;
double d = 0;

if (IA_w + IA_h)/2 > 163)
d = (-1)*((A_w + IA_h)/2)/163;

else
d = ((IA_w + 1A_h)/2)/163;
if (d==1)

60

d=0;
fix =d * error;
return fix;
}
/* ChangeObiject() changes the interpreted object to the other shape which
* is the next by the likelihood.
*
public void ChangeObject(){
count++;
b_image_obj=b_image_last;
Beautification(1 + count);
Draw();
change.setEnabled(false);
}
[* Distance2Points(...) counts the Euclidian distance between the object's
* Hu moments and the reference object's Hu feature vector
*
public double Distance2Points(double[] target, double[] reference){
double distance = 0;
double a = 2;
double d = 0;
d = FixError();
target[1] = target[1] + d;
distance = Math.sqgrt(Math.pow((target[1] - reference[1]),a) + Math.pow((target[2] - reference[2]),a)+
Math.pow(target[3] - reference[3],a) + Math.pow((target[4] - reference[4]),a) +
Math.pow((target[5] - reference[5]),a) + Math.pow((target[6] - reference[6]),a) +
Math.pow((target[7] - reference[7]),a));
return distance;
}
/* ClipOut(...) clips out the interest area of the currently drawn
* object.
*/
public void ClipOut(int n){
xMin[n] = new Integer(10000);
xMax[n] = new Integer(0);
yMin[n] = new Integer(10000);
yMax[n] = new Integer(0);
for (inti=1; i <= width; i++){
for (intj = 1; j <= height; j++) {

61

if (differenceA[i][j] == 1){
if (i < xMin[n])
xMin[n] = i;
if (i > xMax[n])
xMax[n] = i;
if (j < yMin[n])
yMin[n] = j;
if j > yMax(n])
yMax[n] = j;

}
IA_h = yMax[n] - yMin[n] + 1;
IA_w = xMax[n] - xMin[n] + 1;
IA = new int[lA_w + 1][IA_h + 1];
for(inti=1;i<=I1A_w;i++){
for(intj=1;j<=1A_h; j++) {
IA[i][j] = differenceA[xMin[n] - 1 + i[[yMin[n] - 1 + |];

}

Graphics2D g2d = b_image_obj.createGraphics();

g2d.setColor(Color.red);

for (int i = xMin[n]; i <= xMax[n]; i++){
g2d.drawRect(i - 1, yMin[n] - 1, 1, 1);
g2d.drawRect(i - 1, yMax[n] - 1, 1, 1);

}

[* Processes initial data for the dynamic scene analysis and beautification.
*/
public void InputProcessing()}{
b_image_obj = toBufferedimage(image);
CompareTwo(counter);
ClipOut(counter);
}
/* DistanceList() makes a list of possible interpretations of the drawn object
* according to the likelihood of it
*
public void DistanceList(){
double a = Distance2Points(HM_IA, HM_shapes|[1]);

62

double b = Distance2Points(HM_IA, HM_shapes[2]);

if @<b){
distance_list[1] = a;
name_list[1] = "square";
distance_list[2] = b;
name_list[2] = "circle";

}

else {
distance_list[1] = b;
name_list[1] = "circle";
distance_list[2] = a;

name_list[2] = "square";

}

/* Beautification() he method which uses Beautification class methods in
* order to perform appropriate beautification actions towards a recognized
* object
*/
public void Beautification(int n){

if (name_list[n].equals("square"))

{

b.MakeSquare(IA_w, IA_h, b_image_obj, b_image_last, xMin[counter], xMax[counter],
yMin[counter], yMax[counter]);
}
else
b.MakeCircle(IA_w, IA_h, b_image_obj, b_image_last, xMin[counter], xMax[counter],
yMin[counter], yMax[counter]);

}
/* Recognition() uses the metods of Recognition class in order to
* recognize a recently drawn object
*/
public void Recognition(){

CMoments = m.CentralMoment(3, 3, IA_w, IA_h, IA);

HM_IA = m.HuMoments(CMoments);
}
/* The method which encompases all the parts of algorithm
*
public void DSAAB(){

counter++;

63

perform.setEnabled(false);
statusl.setText(" * Input processing...");
statusl.repaint();
InputProcessing();
statusl.setText(" * Input processing completed.");
statusl.repaint();
status2.setText(" * Recognition...");
status2.repaint();
Recognition();
DistanceList();
status2.setText(" * Recognition completed.");
status2.repaint();
status3.setText(" * Beautification...");
status3.repaint();
Beautification(1 + count);
status3.setText(" * Beautification completed.");
status3.repaint();
Draw();
load.setEnabled(true);
}
/* CompareTwo() method points out the changes made in the last screen and
* finds the object which is drawn recently.
*/
public void CompareTwo(int n){
inti, j;
differenceA = new int[width + 1][height + 1];
for (i = 1; i <= width; i++){
for (j = 1; j <= height; j++) {
if ((b_image_obj.getRGB(i - 1, j- 1) ==-16777216) ||(b_image_obj.getRGB(i - 1, j- 1) == -
16711423) || (b_image_obj.getRGB(i - 1, j - 1) <-1100000)) & (b_image_last.getRGB(i - 1, j - 1) ==-1))
{
differenceAl[i][j] = 1;
}

else

{
differenceAl[i][j] = O;

64

}

}

/* This method returns a buffered image with the contents of an image

*/

public static Bufferedimage toBufferedimage(Image image) {

if (image instanceof Bufferedimage) {

}

return (Bufferedimage)image;

image = new Imagelcon(image).getimage();

boolean hasAlpha = hasAlpha(image);

Bufferedimage bimage = null;

GraphicsEnvironment ge = GraphicsEnvironment.getLocalGraphicsEnvironment();
try {

}

int transparency = Transparency.OPAQUE;
if (hasAlpha)
{
transparency = Transparency.BITMASK;
}
GraphicsDevice gs = ge.getDefaultScreenDevice();
GraphicsConfiguration gc = gs.getDefaultConfiguration();

bimage = gc.createCompatiblelmage(image.getWidth(null), image.getHeight(null), transparency);

catch (HeadlessException e) {}

if (bimage == null) {

}

/I Create a buffered image using the default color model
int type = Bufferedimage. TYPE_INT_RGB;
if (hasAlpha) {

type = Bufferedimage. TYPE_INT_ARGB,;

}
bimage = new Bufferedimage(image.getWidth(null), image.getHeight(null), type);

Graphics g = bimage.createGraphics();

g.drawlmage(image, 0, 0, null);

g.dispose();

return bimage;

[* This method returns true if the specified image has transparent pixels
*

public static boolean hasAlpha(lmage image) {

if (image instanceof Bufferedimage) {

65

Bufferedimage bimage = (Bufferedimage)image;
return bimage.getColorModel().hasAlpha();
}
/I Use a pixel grabber to retrieve the image's color model,
/I grabbing a single pixel is usually sufficient
PixelGrabber pg = new PixelGrabber(image, 0, 0, 1, 1, false);
try {
pg.grabPixels();
}
catch (InterruptedException e) {}
ColorModel cm = pg.getColorModel();
return cm.hasAlpha();
}
[* This method converts the Buffered Image to an image
*/
public static Image tolmage(Bufferedimage bufferedimage) {
return Toolkit.getDefaultToolkit().createlmage(bufferedimage.getSource());
}
/* Draw() method displayes interpreted object on the screen
*
public void Draw(){
image = tolmage(b_image_obj);
scr_label.setlcon(new Imagelcon(image));
scr_label.repaint();
File f = new File ("animage.jpg");
try
{ ImagelO.write (b_image_obj, "jpeg", f);}
catch(IOException e){}
}
public static void main(String[] args) {

final Main a = new Main();

The source code of Moments.java:

package dsab;

import java.lang.Math;

66

public class Moments {
[** Creates a new instance of Moments */
public Moments() {
}
/* This method estimates the Central Moments
*
static double[][] CentralMoment(int p, int g, int IA_w, int IA_h, int[][] IAX{
double[][] R = new double[p + 2][q + 2];
double sum;
double sx, sy, sx|, syl, m00 =0, m01 =0, m10 =0;
for(inti=1;i<=I1A_w;i++){
for (intj=1;j<=1A_h; j++}{
mO00 += IA[i][j];
m10 += IA[i][j]%;
mO1 += IAi][i1%;

}
sx = m10/mO00;

sy = m01/mQo;
for (intip = 0; ip <= p; ip++){
for (intig = 0; ig <= q; iq++){
sum = 0;
for (inti=1;i<=1A_h; i++){
for (intj=1;j<=1A_w; j++){
sxl = Math.pow((j - sx), ip);
syl = Math.pow((i - sy), iq);
sum = sum + sxI*sylI*IA[j][il;

}
R[ig + 1][ip + 1] = sum;

}

return R;

}

/* This method estimates the normalized moment M_pq

*

static double NormalizedMoment(int p, int g, double[][] CM){
double alpha=(p +q + 2)/2.0;
double momval = CM[p + 1][q + 1];

67

double norm = 1;
for (inti=1;i<=alpha;i++)

norm = norm * CM[1][1];

if (norm == 0)
momval = 0;
else

momval = momval/norm;
return momval;
}
/I estimates the Hu moments for a given area of pixel
static double[] HuMoments(double[][] CMoments){
double[] HM_IA = new double[8];
int xMin = Integer. MAX_VALUE;
int xMax = Integer.MIN_VALUE;
int yMin = Integer.MAX_VALUE;
int yMax = Integer.MIN_VALUE;
double dx;
double dy;
double n01 = NormalizedMoment(0, 1, CMoments);
double n02 = NormalizedMoment(0, 2, CMoments);
double n03 = NormalizedMoment(0, 3, CMoments);
double n10 = NormalizedMoment(1, 0, CMoments);
double n11 = NormalizedMoment(1, 1, CMoments);
double n12 = NormalizedMoment(1, 2, CMoments);
double n20 = NormalizedMoment(2, 0, CMoments);
double n21 = NormalizedMoment(2, 1, CMoments);
double n30 = NormalizedMoment(3, 0, CMoments);
HM_IA[1] = n20 + n02;
HM_IA[2] = ((n20 - n02) * (n20 - n02)) + (4 * n11 * n11);
HM_IA[3] = ((n30 - (3 * n12)) * (n30 - (3 * n12))) + ((n03 - (3 * n21)) * (n03 - (3 * n21)));
HM_IA[4] = ((n30 + n12) * (n30 + n12)) + ((n03 + n21) * (n03 + n21));
HM_IA[5] = ((n30 - (3 * n12)) * (n30 + n12) * (((n30 + n12) * (n30 + n12)) - (3 * (n21 + n0O3) *
(n21 + n03)))) + ((n03 - (3 * n21)) * (N03 + n21) * ((n03 + n21) * (n03 + n21)) -
(3* (n12 + n30) * (n12 + n30))));
HM_IA[6] = ((n20 - n02) * ((n30 + n12) * (n30 + n12)) - ((n03 + n21) * (N03 + n21)))) + (4 * n11 * (n30
+nl2) * (n03 + n21));
HM_IA[7] = (((3 * n21) - n03) * (n30 + n12) * ((n30 + n12) * (n30 + n12)) - (3 * (n21 + n03) * (n21 +
n03))))

68

- (((3 * n12) - n30) * (N03 + n21) * (((NO3 + n21) * (N03 + n21)) - (3 * (N12 + n30) * (N12 +

n30))));
return HM_IA;

The source code of Beautification.java:

package dsab;

import java.awt.*;
import java.awt.event.*;
import java.awt.Graphics2D;
import javax.swing.*;
import java.io.*;

import java.awt.image.*;
import java.awt.color.*;
import java.lang.Math;
import javax.imageio.*;
import java.awt.geom.*;

public class Beautification {

/** Creates a new instance of Beautification */
public Beautification() {

}

/* Beautification of the object representing a square
*/

public void MakeSquare(int IA_w, int IA_h, Bufferedimage b_image_obj, Bufferedimage b_image_last,

int xMin, int xMax, int yMin, int yMax)
{
Main.IA_wn = (IA_w + IA_h)/2;
Main.lA_hn = Main.lA_wn;
Graphics2D g2d = b_image_obj.createGraphics();
g2d.setColor(Color.white);
for (inti=0;i<=1A_w; i++){
for (intj=0;j<=1A_h; j++}{

if (b_image_last.getRGB(xMin +i-2, yMin +j-2)==-1)

g2d.drawRect(xMin +i -2, yMin +j -2, 1, 1);}

}

/I Draw on the image
g2d.setColor(Color.black);
for(inti=0;i<7;i++{

g2d.drawRect(xMin + i, yMin + i, (xXMax - xMin + 1 - 2*)), (yMax - yMin + 1 - 2%)));

}
g2d.setColor(Color.black);
for (inti = xMin - 2; i <= xMax; i++) {
for (int j = yMin - 2; j <= yMax; j++) {
if (b_image_last.getRGB(i, j) == -16777216)
b_image_obj.setRGB(i, j, -16777216);
}

}
g2d.dispose();

69

/* Beautification of the object representing a circle

*/

public void MakeCircle(int IA_w, int IA_h, Bufferedlmage b_image_obj, Bufferedimage b_image_last,

int xMin, int xMax, int yMin, int yMax)

{

Main.lIA_wn = (IA_w + IA_h)/2;
Main.IA_hn = Main.IA_wn;
Graphics2D g2d = b_image_obj.createGraphics();
g2d.setColor(Color.white);
for (inti=0;i<=I1A_w; i++){
for (intj=0;j <= 1A_h; j++){
if (b_image_last.getRGB(xMin +i-2, yMin +j-2)==-1)

g2d.drawRect(xMin +i-2, yMin +j -2, 1, 1);}
}

}
g2d.setColor(Color.black);
if (Main.lIA_wn%?2 == 0)

Main.IA_wn++;
g2d.setColor(Color.black);
g2d.fill(new Ellipse2D.Float(xMin - 1, yMin - 1, Main.IA_wn, Main.lA_wn));
g2d.setColor(Color.white);
g2d.fill(new Ellipse2D.Float(xMin + 6, yMin + 6, Main.lIA_wn - 14, Main.IA_wn - 14));
g2d.setColor(Color.black);
for (inti=xMin - 2; i <= xMax + 2; i++) {

for (intj=yMin - 2; j <= yMax + 2; j++) {

if (b_image_last.getRGB(i, j) == -16777216)
b_image_obj.setRGB(i, j, -16777216);
}

}
g2d.dispose();

70

Bibliography

Allen J. (1983). Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26 (11), p. 832-843, 1983.

Bruns H. T., Egenhofer M. (1996). Similarity of Spatial Scenes. Seventh International
Symposium on Spatial Data Handling (SDH '96), p. 4A.31-42, 1996

Cheng P., Lowe R., Scaife M. (2001). Cognitive Science Approaches to Understanding
Diagrammatic Representations. Thinking with Diagrams, Kluwer Academic Publishers,
Dordrecht, 2001

Cheng P., Herbert S. (1993). Scientific Discovery and Creative Reasoning with Diagrams.
The Creative Cognition Approach, Cambridge, MA, 1993

Cohn A.G, Bennett B., Gooday J., Gotts N.M. (1997). Representing and Reasoning With
Qualitative Spatial Relations about Regions. Temporal and spatial reasoning, 1997

Cohn A. G., Hazarika S. M. (2001). Qualitative Spatial Representation and Reasoning:
An Overview. Fundamenta Informaticae 43, 2001, p. 2 -32.

David M., Egenhofer M. (1994). Modeling Spatial Relations Between Lines and Regions:
Combining Formal Mathematical Methods and Human Subjects Testing. Cartography and
Geographical Information Systems 21, p. 195 - 212, 1994

Dylla F., Moratz R. (2005). Exploiting Qualitative Spatial Neighborhoods in the Situation
Calculus. Spatial Cognition IV Reasoning, Action, Interaction Vol. 3343, pp. 304 — 322, 2005

Egenhofer M., Khaled K. A. (1992). Reasoning about Gradual Changes of Topological
Relationships. Theory and Methods of Spatio-Temporal Reasoning in Geographic Space, volume
639 of Lecture Notes in Computer Science, p. 196 — 219, 1992.

Egenhofer M., Herring J. (1990). Categorizing Binary Topological Relations Between
Regions, Lines, and Points in Geographic Databases. Technical Report, Department of
Surveying Engineering, University of Maine, 1990

Frank A. (1996). Qualitative Spatial Reasoning: Cardinal Directions as an Example.
International Journal of Geographical Information Science, 1996

Freksa C. (1991a). Conceptual Neighborhood and its Role in Temporal and Spatial
Reasoning. Workshop on Decision Support Systems and Qualitative Reasoning, p. 181-187,
Amsterdam, North-Holland, 1991.

71

Freksa C. (1991b). Qualitative Spatial Reasoning. Cognitive and Linguistic Aspects of
Geographic Space, p. 361-372.

Furnas G. W. (1992). Reasoning with Diagrams Only. AAAI Symposium on Reasoning
with Diagrammatic Representations, 1992

Goyal R., Egenhofer M. (2001). Similarity of Cardinal Directions. Seventh International
Symposium on Spatial and Temporal Databases, Lecture Notes in Computer Science Vol. 2121,
p. 36-55, 2001

Gurr C. A. (1994). Diagrams and Human Reasoning, 1994

Gurr C. A. (1999). Effective Diagrammatic Communication: Syntatic, Semantic and
Pragmatic Issues. Journal of Visual Languages and Computing Vol. 10, p. 317-342, 1999

Hong J., Egenhofer M., Frank A. (1995). On the Robustness of Qualitative Distance- and
Direction-Reasoning. Twelfth International Symposium on Computer- Assisted Cartography,
1995

Hse H. H., Newton A. R. (2004). Sketched Symbol Recognition using Zernike Moments.
International Conference on Pattern Recognition , 2004

Hse H. H., Newton A. R. (2005). Recognition and Beautification of Multi-Stroke Symbols
in Digital Ink. Computers & Graphics, 2005

Hu M. (1962). Visual Pattern Recognition by Moment Invariants. IEEE Transactions on
Information Theory, 8:179--187, 1962

Nabil M., Shepherd J., Ngu A. (1996). 2D Projection Interval Relationships: A Symbolic
Representation of Spatial Relationships. Symposium on Large Spatial Databases, 1996

Papadias D., Mamuolis N., Delis V. (2001). Approximate Spatio-Temporal Retrieval.
ACM Transactions on Information Systems Vol. 19 (1), p. 53-96, 2001

Poppe R., Poel M. (2006). Comparison of Silhouette Shape Descriptors for Example-
based Human Pose Recovery. 2006

Rauh R., Hagen C., Schlieder C., Strube G., Knauff M. (2000). Searching for alternatives
in spatial reasoning: Local transformations and beyond. Proceedings of the Twenty Second
Annual Conference of the Cognitive Science Society, p. 871-876, 2000.

Scaife M., Rogers Y. (1996). External Cognition: How Do Graphical Representations
Work? International Journal of Human-Computer Studies, p. 185 — 213, 1996

Schlieder C. (1996). Qualitative Shape Representation. Proceedings of GISDATA
Specialist Meeting on Geographical Objects with Undetermined Boundaries, 1996

72

Schutler J. (2002). Statistical Moments.
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/, 03 05 2006

Sharma J., Flewelling D., Egenhofer M. (1994). A Qualitative Spatial Reasoner. Sixth
International Symposium on Spatial Data Handling, Edinburgh, Scotland, p. 665 - 681, 1994

Taubman G. (2005). MusicHand: A Handwritten Music Recognition System. Thesis.
Brown University, 2005

Theodoridis Y., Papadias D., Stefanakis E. (1996). Supporting Direction Relations in
Spatial Database Systems. Proceedings of the 7th International Symposium on Spatial Data
Handling (SDH’96), 1996

73

