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Preface
Welcome to theWorkshop on Space, Time andAmbient Intelligence (STAMI) at
the International Joint Conference on Artiĕcial Intelligence 2011 in Barcelona,
Spain. is workshop is a follow-up to the ĕrst edition of STAMI held at the
COSIT 2009 conference in France, and is one of the initiatives being conducted
within the overall STAMI framework. STAMI is focussed on the theoretical and
application-centred questions pertaining to reasoning about space, time, actions,
events, and change in the domain of intelligent and smart environments, and
ambient intelligence in general.

A wide-range of application domains within the ĕelds of ambient intelligence
and ubiquitous computing environments require the ability to represent and rea-
son about dynamic spatial and temporal phenomena. Real world ambient intel-
ligence systems that monitor and interact with an environment populated by
humans and other artefacts require a formal means for representing and reason-
ing with spatio-temporal, event and action based phenomena that are grounded
to real aspects of the environment being modelled. A fundamental requirement
within such application domains is the representation of dynamic knowledge
pertaining to the spatial aspects of the environment within which an agent, sys-
tem or robot is functional. At a very basic level, this translates to the need to
explicitly represent and reason about dynamic spatial conĕgurations or scenes
and desirably, integrated reasoning about space, actions and change. With these
modelling primitives, primarily the ability to perform predictive and explana-
tory analyzes on the basis of available sensory data is crucial toward serving a
useful intelligent function within such environments.

e emerging ĕelds of ambient intelligence and ubiquitous computingwill bene-
ĕt immensely from the vast body of representation and reasoning tools that have
been developed in Artiĕcial Intelligence in general, and the sub-ĕeld of Spatial
and Temporal Reasoning in speciĕc. ere have already been proposals to ex-
plicitly utilise qualitative spatial calculi pertaining to different spatial domains
for modelling the spatial aspect of an ambient environment (e.g., smart homes
and offices) and also to utilize a formal basis for representing and reasoning
about space, change and occurrences within such environments. rough this
workshop, and the STAMI initiative, we aim to bring together academic and in-
dustrial perspectives on the application of artiĕcial intelligence in general, and
reasoning about space, time and actions in particular, for the domain of smart
and intelligent environments.

Mehul Bhatt, Hans Guesgen, Juan Carlos Augusto
(STAMI 2011 Co-Chairs)
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Predicting User Movements in Heterogeneous Indoor Environments by Reservoir
Computing∗

Davide Bacciu and Claudio Gallicchio

Alessio Micheli and Stefano Chessa

Universita di Pisa

Pisa, Italy

{bacciu,gallicch,micheli,ste}@di.unipi.it

Paolo Barsocchi

ISTI-CNR

Pisa, Italy

paolo.barsocchi@isti.cnr.it

Abstract

Anticipating user localization by making accurate
predictions on its indoor movement patterns is a
fundamental challenge for achieving higher de-
grees of personalization and reactivity in smart-
home environments. We propose an approach to
real-time movement forecasting founding on the
efficient Reservoir Computing paradigm, predict-
ing user movements based on streams of Received
Signal Strengths collected by wireless motes dis-
tributed in the home environment. The ability of
the system to generalize its predictive performance
to unseen ambient configurations is experimentally
assessed in challenging conditions, comprising ex-
ternal test scenarios collected in home environ-
ments that are not included in the training set. Ex-
perimental results suggest that the system can ef-
fectively generalize acquired knowledge to novel
smart-home setups, thereby delivering an higher
level of personalization while decreasing costs for
installation and setup.

1 Introduction

Localization and tracking of mobile users in indoor envi-
ronments are important services in the construction of smart
spaces, and they are even considered enabling, baseline ser-
vices for Ambient Assisted Living (AAL) [AAL, 2009] ap-
plications. In fact, AAL aims at improving the quality of
life of elderly or disabled people, by assisting them in their
daily life, in order to preserve their autonomy and by mak-
ing them feeling included, protected and secure in the places
where they live or work (typically their home, their office,
the hospital and any other places where they may spend sig-
nificant part of their time). These objectives can be granted
only if the appropriate services are delivered to the users in
the right time and in the right pace.

In AAL applications, localization aims at the real time es-
timation of the user position, while tracking refers to the ac-
tivity of reconstructing the path of the user, with the purpose

∗This work is partially supported by the EU FP7 RUBICON
project (contract n. 269914).

of anticipating its future position and thus to prepare the sys-
tem to the timely delivery of the appropriate services. Local-
ization and tracking of objects can be achieved by means of
a large number of different technologies, however only few
of them are suitable for AAL applications, as they should
be non-invasive on the users, they must be suited to the de-
ployment in the user houses at a reasonable cost, and they
should be accepted by the users themselves. On the other
hand, accuracy in the position estimation is subject to less
requirements than it may occur in other applications (accu-
racies in the order of the centimeter or below are typically
not required). Considering all these constraints, a promising
technology for this services is based on Wireless sensor net-
works (WSN) [Baronti et al., 2007], due to their properties of
cost and time effective deployment. Within such WSN, it is
possible to estimate the location of a user by exploiting Re-
ceived Signal Strength (RSS) information, that is a measure
of the power of a received radio signal that can be obtained
from almost any wireless device.

The measurement of RSS values over time provides infor-
mation on the user trajectory under the form of a time se-
ries of sampled signal strength. The relationship between the
RSS and the location of the tracked object cannot be eas-
ily formulated into an analytical model, as it strongly de-
pends on the characteristics of the environment as well as on
the wireless devices involved. In this sense, computational
learning models have received much interest as they allow
to learn such relationship directly from the data. These ap-
proaches typically exploit probabilistic learning techniques
to learn a probabilistic estimate of user location given RSS
measurements at known location [Zàruba et al., 2007]. How-
ever, such models have considerable computational costs con-
nected both with the learning and the inference phase, which
might grow exponentially with the number of sensors in the
area. Further they do little to exploit the sequential nature
of the RSS streams, whereas they provide static pictures of
the actual state of the environment. There exist several ma-
chine learning approaches capable of explicitly dealing with
signals characterized by such time-dependent dynamics in-
cluding, for instance, probabilistic Hidden Markov Models
(HMM), Recurrent Neural Networks (RNN) and kernel meth-
ods for sequences. In this paper, we focus on a computation-
ally efficient neural paradigm for modeling of RNNs, that is
known as Reservoir Computing (RC). In particular, we con-
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sider Echo State Networks (ESNs) [Jaeger and Haas, 2004;
Jaeger, 2001], that are dynamical neural networks used for se-
quence processing. The contractive reservoir dynamics pro-
vides a fading memory of past inputs, allowing the network
to intrinsically discriminate among different input histories
[Jaeger, 2001] in a suffix-based fashion [Tiño et al., 2007;
Gallicchio and Micheli, 2011], even in absence of training.

The most striking feature of ESNs is its efficiency: training
is limited to the linear outputs whereas the reservoir is fixed;
additionally, the cost of input encoding scales linearly with
the length of the sequence for both training and test. In this
regard, the ESN approach compares favorably with compet-
itive state-of-the-art learning models for sequence domains,
including general RNNs, in which the dynamic recurrent part
is trained, e.g. [Kolen and Kremer, 2001], probabilistic Hid-
den Markov Models, that pay consistent additional inference
costs also at test time, and Kernel Methods for sequences,
whose cost scales at least quadratically with the input length,
e.g. [Gärtner, 2003]). ESNs have been successfully ap-
plied to several tasks in the area of sequence processing, of-
ten outperforming other state-of-the-art learning models (see
[Jaeger and Haas, 2004; Jaeger, 2001]). Recently, ESNs
have shown good potential in a range of tasks related to au-
tonomous systems modeling, e.g. as regards event detection
and localization in robot navigation [Antonelo et al., 2008;
2007] and multiple robot behavior modeling [Waegeman et
al., 2009]. However, such applications are mostly focused
on modeling robot behaviors and often use artificial data ob-
tained by simulators.

In this paper, we apply the ESN approach to a real-world
scenario for user indoor movements forecasting, using real
and noisy RSS input data, paving the way for potential appli-
cations in the field of AAL. The experimental assessment is
intended to show that the proposed technology has a strong
potential to be deployed in real-life situations, in particular as
regards the ability of generalizing the prediction performance
to unknown environments. In this sense, we expect that the
proposed solution will increase the level of service personal-
ization by making accurate prediction of the user spatial con-
text, while yielding to a reduction of the setup and installation
costs thanks to its generalization capability.

2 User Movement Prediction in Indoor

Environments

2.1 Localization by Received Signal Strength

The exploitation of wireless communication technologies for
user localization in indoor environments has recently received
much attention by the scientific community, due to the poten-
tial of service personalization involved in an accurate identi-
fication of the user spatial context. Cost efficiency is a criti-
cal aspect in order to determine the success of such localiza-
tion technologies. In this sense, the most promising localiza-
tion approaches are certainly those based on Received Signal
Strength (RSS) information, that is a measure of the power
of a received radio signal. RSS measurements can be readily
obtained from (potentially) any wireless communication de-
vice, being a standard feature in most radio equipments. In

a, not so far-ahead, scenario, we foresee an ubiquitous diffu-
sion of wireless sensors in the environment (e.g. monitoring
temperature, humidity, pollution, etc.), together with a wide
availability of radio devices on the user’s body (e.g. personal
electronics, sensors monitoring health status, etc.). There-
fore, irrespectively of the intended use of such sensors and
devices, we expect to be able to exploit their radio apparatus
to obtain noisy, yet potentially informative, RSS traces for
realtime user localization.

Indoor positioning systems based on RSS information are
getting increasing attention due to the widespread deploy-
ment of WLAN infrastructures, given that RSS measures are
available in every 802.11 interface. Mainly, we distinguish
between two alternative approaches to localize users leverag-
ing the RSS measurements, i.e. model-based and fingerprint-
ing positioning. Model-based positioning is popular approach
in literature that founds on expressing radio frequency signal
attenuation using specific path loss models [Barsocchi et al.,
2011]. Given an observed RSS measurement, these methods
triangulate the person based on distance calculations from
multiple access points. However, the relationship between
the user position and the RSS information is highly com-
plex and can hardly be modeled due to multipath, metal re-
flection, and interference noise. Thus, RSS propagation may
not be adequately captured by a fixed invariant model. Dif-
ferently from model-based approaches, fingerprinting tech-
niques, such as [Kushki et al., 2007], create a radio map of
the environment based on RSS measurements at known posi-
tions throughout an offline map-generation phase. Clearly,
the localization performance of fingerprinting-based model
relies heavily on the choice of the distance function that is
used to compute the similarity between the RSS measured in
the online phase, with the known RSS fingerprints. Further,
the offline-generated ground truth needs to be revised in case
of changes to the room/environment configuration which re-
sult in relevant discrepancies in the known fingerprints.

The user localization approaches discussed above focus on
finding accurate estimates of the current user position, but
lack the ability of anticipating his/her future location. Be-
ing capable of predicting the future user context is of funda-
mental value to enhance the reactivity and personalization of
smart services in indoor environments. In the following, we
describe a real-life office scenario targeted at adaptive user
movement prediction using RSS traces: a brief discussion of
the wireless technology involved is provided together with a
detailed description of the experimental indoor environment.

2.2 Movement Prediction Scenario

A measurement campaign has been performed on the first
floor of the the ISTI institute of CNR in the Pisa Research
Area, in Italy. The scenario is a typical office environments
comprising 6 rooms with different geometry, arranged into
pairs such that coupled rooms (referred as Room 1 and Room
2 in the following) have fronting doors divided by an hallway,
as depicted in Fig. 1. Rooms contain typical office furniture:
desks, chairs, cabinets, monitors that are asymmetrically ar-
ranged. From the point of view of wireless communications,
this is a harsh environment due the to multi-path reflections
caused by walls and the interference produced by electronic
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Mobile position Anchor position

Anchor position

Figure 1: Schematic view of the experimental setting: an-
chors’ position and prototypical user movements are shown.
Straight paths, labeled as 1 and 5, yield to a room change,
while curved movement (paths 2, 3, 4 and 6) preserve the
spatial context. The M markers denote the points where we
predict if the user is about to change its location. The actual
setting differs from the schematics by the presence of office
furniture (covering roughly 50% of the space) that is asym-
metrically arranged and influences the actual user trajectories
in the different rooms.

Dataset Number length [m] width [m]

1 4.5 12.6

2 4.5 13.2

3 4 12.6

Table 1: Physical layout of the 3 room couples.

devices. Experimental measurements have been performed
by a sensor network of 5 IRIS nodes1 embedding a Chip-
con AT86RF230 radio subsystem that implements the IEEE
802.15.4 standard. Four sensors, in the following anchors,
are located in fixed positions in the environment and one sen-
sor is placed on the user, hereafter called mobile.

The measurement campaign comprises experiments on
three different couple of rooms with a total surface spanning
from 50 m2 to about 60 m2. Table 1 details the environment
dimensions for the three couple of rooms, hereby referred as
dataset 1, dataset 2 and dataset 3. Experiments consisted in
measuring the RSS between anchors and mobile for a set of
repeated user movements. Figure 1 shows the anchors de-
ployed in the environment as well as a prototypical trajectory
for each type of user movement. The height of the anchors
has been set to 1.5m from the ground and the mobile was
worn on the chest. The measurements were carried out on
free paths to facilitate a constant speed of the user of about 1
m/s. Measures denote RSS samples (integer values ranging
from 0 to 100) collected by sending a beacon packet from the
anchors to the mobile at regular intervals, 8 times per second,
using the full transmission power of the IRIS.

Experimentation gathered information on 6 prototypical
paths that are shown in Fig. 1 with arrows numbered from

1Crossbow Technology Inc., http://www.xbow.com

Path Type Dataset 1 Dataset 2 Dataset 3

1 26 26 27

2 26 13 12

3 - 13 12

4 13 14 13

5 26 26 27

6 13 14 13

Tot. Changed 52 52 54

Tot. Unchanged 52 54 50

Lengths min-max 19-32 34-119 29-129

Table 2: Statistics of the collected user movements.

1 to 6: two movement types are considered for the predic-
tion task, that are straight and curved trajectories. The former
run from Room 1 to Room 2 or viceversa (paths 1 and 5 in
Fig. 1) and yield to a change in the spatial context of the
user, while curved movements (paths 2, 3, 4 and 6 in Fig. 1)
preserve the spatial context. Table 2 summarizes the statis-
tics of the collected movement types for each dataset: due to
physical constraints, dataset 1 does not have a curved move-
ment in Room 1 (path 3). The number of trajectories leading
to a room change, with respect to those that preserve the spa-
tial context, is indicated in Table 2 as ”Tot. Change” and ”Tot.
Unchanged”, respectively. Each path produces a trace of RSS
measurements that begins from the corresponding arrow and
that is marked when the user reaches a point (denoted with M
in Fig. 1) located at 0.6m from the door. Overall, the exper-
iment produced about 5000 RSS samples from each of the 4
anchors and for each dataset. The marker M is the same for
all the movements, therefore different paths cannot be distin-
guished based only on the RSS values collected at M.

The experimental scenario and the gathered RSS measures
can naturally be exploited to formalize a binary classification
task on time series for movements forecasting. The RSS val-
ues from the four anchors are organized into sequences of
varying length (see Table 2) corresponding to trajectory mea-
surements from the starting point until marker M. A target
classification label is associated to each input sequence to in-
dicate wether the user is about to change its location (room)
or not. In particular, target class +1 is associated to location
changing movements (i.e. paths 1 and 5 in Fig. 1), while la-
bel −1 is used to denote location preserving trajectories (i.e.
paths 2, 3, 4 and 6 in Fig. 1). The resulting dataset is made
publicly available for download2.

3 Reservoir Computing for Movement

Prediction

Reservoir Computing (RC) is a computational paradigm cov-
ering several models in the Recurrent Neural Network (RNN)
family, that are characterized by the presence of a large and
sparsely connected hidden reservoir layer of recurrent non-
linear units, that are read by means of some read-out mech-
anism, i.e. typically a linear combination of the reservoir

2
http://wnlab.isti.cnr.it/paolo/index.php/

dataset/6rooms

3



Wout

x (t )

Win
...

Input

W
^

...

Readout

u(t ) y (t )

Reservoir

Figure 2: The architecture of an ESN: Win, Ŵ and Wout

denote the input, the reservoir and the output weights, respec-
tively. Terms u(t) and y(t) identify the input at time t and
the corresponding predicted read-out; x(t) is the associated
reservoir state. Further details are given in the text.

outputs. With respect to traditional RNN training, where
all weights are adapted, RC performs learning mainly on
the output weights, leaving those in the reservoir untrained.
As other RNNs, RC models are well suited to modeling of
dynamical systems and, in particular, to temporal data pro-
cessing. As the movement prediction problem discussed in
this paper is, from a machine learning perspective, a time-
series prediction task, we are naturally interested in analyz-
ing and discussing the effectiveness of the RC paradigm on
such a scenario. In particular, we focus on the computation-
ally efficient ESNs [Jaeger, 2001; Jaeger and Haas, 2004;
Lukosevicius and Jaeger, 2009], that are one of the best
known RC models, that are characterized by an input layer of
NU units, an hidden reservoir layer of NR untrained recur-
rent non-linear units and a readout layer of NY feed-forward
linear units (see Fig. 2). Within a time-series prediction task,
the untrained reservoir acts as a fixed non-linear temporal ex-
pansion function, implementing an encoding process of the
input sequence into a state space where the trained linear
readout is applied.

Standard ESN reservoirs are built from simple additive
units with a sigmoid activation function which, however, has
been shown to weakly model the temporal evolution of slow
dynamical systems [Jaeger et al., 2007]. In particular, [Gal-
licchio et al., 2011] have shown that indoor user movements
can be best modeled by a leaky integrator type of RC net-
work (LI-ESNs) [Jaeger et al., 2007]. Given an input se-
quence s = [u(1), . . . ,u(n)] over the input space R

NU , at
each time step t = 1, . . . , n, the LI-ESN reservoir computes
the following state transition

x(t) = (1− a)x(t− 1) + af(Winu(t) + Ŵx(t− 1)), (1)

where x(t) ∈ R
NR denotes the reservoir state (i.e. the out-

put of the reservoir units) at time step t, Win ∈ R
NR×NU

is the input-to-reservoir weight matrix (possibly including a

bias term), Ŵ ∈ R
NR×NR is the (sparse) recurrent reser-

voir weight matrix and f is the component-wise applied ac-
tivation function of the reservoir units (we use f ≡ tanh).
The temporal recursion in (1) is based on a null initial state,
i.e. x(0) = 0 ∈ R

NR . The term a ∈ [0, 1] is a leak-
ing rate parameter, which is used to control the speed of
the reservoir dynamics, with small values of a resulting in

reservoirs that react slowly to the input [Jaeger et al., 2007;
Lukosevicius and Jaeger, 2009]. Compared to the standard
ESN model, LI-ESN applies an exponential moving average
to the state values produced by the reservoir units (i.e. x(t)),
resulting in a low-pass filter of the reservoir activations that
allows the network to better handle input signals that change
slowly with respect to the sampling frequency. LI-ESN state
dynamics are therefore more suitable for representing the his-
tory of input signals.

For a binary classification task over sequential data, the lin-
ear readout is applied only after the encoding process com-
puted by the reservoir is terminated, by using

y(s) = sgn(Woutx(n)), (2)

where sgn is a sign threshold function returning +1 for non-
negative arguments and −1 otherwise, y(s) ∈ {−1, +1}NY

is the output classification computed for the input sequence
s and Wout ∈ R

NY ×NR is the reservoir-to-output weight
matrix (possibly including a bias term).

The reservoir is initialized to satisfy the so called Echo
State Property (ESP) [Jaeger, 2001]. The ESP asserts that
the reservoir state of an ESN driven by a long input se-
quence only depends on the input sequence itself. Depen-
dencies on the initial states are progressively forgotten after
an initial transient (the reservoir provides an echo of the in-
put signal). A sufficient and a necessary condition for the
reservoir initialization are given in [Jaeger, 2001]. Usually,
only the necessary condition is used for reservoir initializa-
tion, whereas the sufficient condition is often too restrictive
[Jaeger, 2001]. The necessary condition for the ESP is that
the system governing the reservoir dynamics of (1) is locally
asymptotically stable around the zero state 0 ∈ R

NR . By

setting W̃ = (1 − a)I + aŴ, where a is the leaking rate
parameter, the necessary condition is satisfied whenever the
following constraint holds:

ρ(W̃) < 1 (3)

where ρ(W̃) is the spectral radius of W̃. Matrices Win and

Ŵ are therefore randomly initialized from a uniform distri-

bution, and Ŵ is successively scaled such that (3) holds. In
practice, values of ρ close to 1 are commonly used, leading to
reservoir dynamics close to the edge of chaos, often resulting
in the best performance in applications (e.g. [Jaeger, 2001]).

In sequence classification tasks, each training sequence is
presented to the reservoir for a number of Ntransient con-
secutive times, to account for the initial transient. The final
reservoir states corresponding to the training sequences are
collected in the columns of matrix X, while the vector ytarget

contains the corresponding target classifications (at the end
of each sequence). The linear readout is therefore trained to
solve the least squares linear regression problem

min ‖WoutX − ytarget‖
2

2
(4)

Usually, Moore-Penrose pseudo-inversion of matrix X or
ridge regression are used to train the readout [Lukosevicius
and Jaeger, 2009].
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4 Experimental Evaluation

We evaluate the effectiveness of the RC approach to user
movement prediction on the real-life scenario described in
Section 2.2. In particular, we assess the ability of the pro-
posed approach to generalize its prediction to unseen indoor
environments, which is a fundamental property for the de-
ployment as a movement prediction system in real-life appli-
cations. To this end, we define an experimental evaluation
setup where RC training is performed on RSS measurements
corresponding to only 4 out of 6 rooms of the scenario, while
the remaining 2 offices are used to test the generalization ca-
pability of the RC model.

In [Gallicchio et al., 2011], it has been analyzed the base-
line performance of different ESN models on user movement
prediction with a small 2-rooms dataset. Such an analysis
suggests that the LI-ESN model, described in Section 3, is
best suited to deal with slowly changing RSS time series.
Therefore, in the remainder of the section, we limit our analy-
sis to the assessment of a leaky-integrated model, with meta-
parameters chosen as in [Gallicchio et al., 2011]. In particu-
lar, we consider LI-ESNs comprising reservoirs of NR = 500
units and a 10% of randomly generated connectivity, spec-
tral radius ρ = 0.99, input weights in [−1, 1] and leaking
rate a = 0.1. Results refer to the average of 10 independent
and randomly guessed reservoirs. The readout (NY = 1) is
trained using pseudo-inversion and ridge regression with reg-
ularization parameter λ ∈ {10−i|i = 1, 3, 5, 7}.

Input data comprises time series of 4 dimensional RSS
measurements (NU = 4) corresponding to the 4 anchors in
Fig. 1, normalized in the range [−1, 1] independently for each
dataset in Table 1. Normalized RSS sequences are feed to the
LI-ESN network only until the marker signal M. To account
for the the initial reservoir transient, each input sequence is
presented consequently for 3 times to the networks.

We have defined 2 experimental settings (ES) that are in-
tended to assess the predictive performance of the LI-ESNs
when training/test data comes from both uniform (ES1) and
previously unseen ambient configurations (ES2), i.e. provid-
ing an external test set. To this aim, in ES1, we have merged
datasets 1 and 2 to form a single dataset of 210 sequences.
A training set of size 168 and a test set of size 42 have been
obtained for the ES1, with stratification on the path types.
The readout regularization parameter λ = 10−1 has been se-
lected in the ES1, on a (33%) validation set extracted from
the training samples. In ES2, we have used the LI-ESN with
the readout regularization selected in the ES1, and we have
trained it on the union of datasets 1 and 2 (i.e. 4 rooms), using
dataset 3 as an external test set (with measurements from 2
unknown environments). Table 3 reports the mean test accu-
racy for both the ESs. An excellent predictive performance is
achieved for ES1, which is coherent with the results reported
in [Gallicchio et al., 2011]. Such an outcome is noteworthy,
as the performance measurements in [Gallicchio et al., 2011]

have been obtained in a much simpler experimental setup,
comprising RSS measurements from a single pair of rooms
(that differ from those considered in this study). This seems
to indicate that the LI-ESN approach, on the one hand, scales
well as the number of training environments increases while,

ES 1 ES 2

95.95%(±3.54) 89.52%(±4.48)

Table 3: Mean test accuracy (and standard deviation) of LI-
ESNs for the two ESs.

LI-ESN Prediction

+1 -1

Actual
+1 44.04%(±5.17) 7.88%(±5.17)
-1 2.60%(±2.06) 45.48%(±2.06)

Table 4: Mean confusion matrix (expressed in % over the
number of samples) on the ES2 external test-set.

on the other hand, it is robust to changes to the training room
configurations. Note that RSS trajectories for different rooms
are, typically, consistently different and, as such, the addition
of novel rooms strongly exercises the short-term memory of
the reservoirs and their ability to encode complex dynamical
signals (see RSS examples in Fig. 3).

The result on the ES2 setting is more significative, as it
shows a notable generalization performance for the LI-ESN
model, that reaches a predictive accuracy close to 90% on
the external test comprising unseen ambient configurations.
Table 4 describes the confusion matrix of the external test-
set in ES2, averaged over the reservoir guesses and expressed
as percentages over the number of test samples. This allows
appreciating the equilibrium of the predictive performance,
that has comparable values for both classes. Note that total
accuracy is obtained as the sum over the diagonal, while error
is computed from the sum of the off-diagonal elements.

5 Conclusion

We have presented a RC approach to user movement predic-
tion in indoor environments, based on RSS traces collected
by low-cost WSN devices. We exploit the ability of LI-ESNs
in capturing the temporal dynamics of slowly changing noisy
RSS measurements to yield to very accurate predictions of the
user spatial context. The performance of the proposed model
has been tested on challenging real-world data comprising
RSS information collected in real office environments.

We have shown that, with respect to the work in [Gallicchio
et al., 2011], the LI-ESN approach is capable of generalizing
its predictive performance to training information related to
multiple setups. More importantly, it can effectively general-
ize movement forecasting to previously unseen environments,
as shown by the external test-set assessment. Such flexibility
is of paramount importance for the development of practical
smart-home solutions, as it allows to consistently reduce the
installation and setup costs. For instance, we envisage a sce-
nario in which an ESN-based localization system is trained
off-line (e.g. in laboratory/factory) on RSS measurements
captured on a (small) set of sample rooms. Then, the system
is deployed and put into operation into its target environment,
reducing the need of an expensive fine tuning phase.

In addition to accuracy and generalization, a successful
context-forecasting technology has also to possess sufficient
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Figure 3: Examples of RSS sequences in the 3 datasets: trajectories leading to a room change are denoted as continuous lines,
while dashed curves are examples from the negative class. Circles, stars and triangles denote sequences from dataset 1, 2 and
3, respectively. Due to space constraints, RSS streams are shown only for 3 out of 4 available anchors.

reactivity, so that predictions are delivered timely to the high-
level control components. In this sense, ESN is a good candi-
date to optimize the trade-off between accuracy, generaliza-
tion and computational requirements among machine learn-
ing models for sequential data. Such potential can be fur-
ther exploited by developing a distributed system that em-
beds the ESN learning modules directly into the nodes of the
wireless networks. By virtue of ESN’s limited computational
requirements, we envisage that such solution could be cost-
effectively realized on WSNs comprising simple computa-
tionally constrained devices (e.g. see the objectives of the
EU FP7 RUBICON project3).
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Abstract
The contribution suggests a new approach for mo-
bility prediction that avoids some of the drawbacks
of existing approaches, whose characteristics and
drawbacks are briefly reviewed. The new approach
allows to integrate temporal and social context. The
influence on improving prediction accuracy by in-
tegrating these contexts into the model is investi-
gated. We use a variant of a Variable Order Markov
Model incorporating spatial, temporal and social
contexts which allows for improvements in accura-
cies compared to current state of the art approaches
and alleviates critical drawbacks such as cold start
and zero frequency problems. Furthermore it is eas-
ier to train and retrain. A heuristic density based
clustering method is used to identify stay-points
and hot-spots in a user’s pattern of activity. We
evaluate the overall approach using two large Open-
Source data-sets of location traces.

1 Introduction
For various context-aware applications or for general insights
into human behavior, it is interesting to acquire and model
individual mobility patterns (see e.g. [Kim et al., 2006]),
allowing for various types of analysis and prediction tasks
[González et al., 2008]. Context-aware applications that can
profit from mobility analysis and mobility prediction range
from flexible, intelligent delivery of goods and provision of
services to privacy preserving assistance for children, the el-
derly or disabled persons. Analysis of driver’s mobility pat-
terns can furthermore be used for environment protecting fuel
management (see e.g. [Ericsson et al., 2006] for a related
approach). The advent of high-precision, personal location
technologies such as GPS, broadly available in mobile de-
vices such as smart-phones and navigation systems, allows
a large share of the population to easily log their locations.
Thus interest in human mobility models was further boosted
because large precise data-sets of real mobility patterns be-
come available [Phithakkitnukoon et al., 2010][Pentland and
Eagle, 2009][Pentland et al., 2009]. Mobility models may be
perceived as models of context, usable in context-aware ap-
plications such as the applications mentioned above. Spatial
context (e.g. location) is certainly a key element of individual

context [Tamminen et al., 2004] but context is not limited to
location [Schmidt et al., 1999]. Besides representations of se-
quences of spatial context (e.g. location-measurements), mo-
bility models may also need to incorporate representations of
temporal context (e.g. local time or data on whether a day is a
workday or a holiday) and resulting connections of temporal
and spatial context. Context-elements to be considered may
also encompass indications of social context (“who else is
around?”, “what are they doing?”), application contexts (e.g.
contents of a personal or group calendar), or representations
of activity semantics or short term interests etc. All of these
context elements may influence each other.

The investigation of mobility models for the prediction of
a user’s future locations based on sequences of location mea-
surements may thus be generalized to the investigation of
models which predict vectors of future contexts on the basis
of context histories. As our research question we specifically
investigate models based on sequences of representations of a
user’s spatial, temporal and social context and their interrela-
tions. It is our goal to show that the incorporation of temporal
and social context can substantially improve the accuracy of
prediction of the user’s next location.

An efficient prediction model will have to mine for pat-
terns of various combinations of spatial, temporal and social
context sequences: Purely spatial patterns, that is patterns in
sequences of past spatial contexts (locations), clearly influ-
ence the location prediction. In these cases the future location
of the user only depends on sequences of previous locations
(e.g. rules like “if in location A, the user will visit location B
afterwards” may be derived). Purely temporal patterns such
as “every evening the user goes home regardless of his previ-
ous and current locations” neglect spatial context altogether.
Spatio-temporal patterns express more specific connections
between temporal and spatial context, connecting temporal
periodicities with locations (“on a workday morning, a visit
of location C is always followed by a visit to location D and
on a weekend C is followed by E”). The model will have to
precisely specify and formalize concepts such as “visit”, “lo-
cation” etc.

Social contexts may also influence a location prediction
e.g. as in “if with my friends, a stay in the park is usually
followed by a visit in the pub, if with my children, it is usu-
ally followed by a visit to the candy shop”. Social contexts
may be derived from an analysis of co-locations. Long-term
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social network information, such as friendship relations in so-
cial networking platforms can also be regarded.

This contribution is structured as follows: First we will re-
view the key concepts from related work. After that, we in-
troduce our own methodology of incorporating and combing
several contextual elements with the help of an adaptedion of
a Variable Order Markov Model (VOMM) [Begleiter et al.,
2004], which is a variant of a context specific Bayesian net-
work. We then discuss an extensive quantitative evaluation
on two structurally different large datasets of location traces.
Finally we discuss elements of future work.

2 Related Work
Spatial and temporal context and their influence on hu-
man motion and activities were subject of several indepen-
dent studies using a variety of techniques (nth-order HMMs,
Kalman filters, Conditional Random Fields etc. (see e.g. [Bui
et al., 2001; Brockmann et al., 2006; Cheng et al., 2003;
Clarkson, 2003; González et al., 2008; Hightower et al.,
2005; Kang et al., 2005; Kim et al., 2006; Krumm and
Horvitz, 2006; Liao et al., 2007a; Liu et al., 2002])). We
will briefly discuss two important studies as examples.

Ashbrook and Starner [Ashbrook and Starner, 2003] de-
vised a model for individual user’s mobility in the context
of context-aware wearable computing. After investigating
suitable thresholds, they classified a measured location as a
“place” if the stay time of the user at that place was ≥ 10
min. They used adapted K-Means clustering with a cut-off
radius to group places to “locations”. Varying the cut-off ra-
dius, a hierarchy of locations and “sub-locations” can be gen-
erated. On sequences of such location-types, they trained a
second order Markov Model. Unfortunately no exact figures
of performance were reported. They also did not take tempo-
ral pattern types and other contexts into account which can be
helpful in cases were the user enters previously unseen loca-
tions. Clearly, a fixed order Markov-model will also induce a
certain level of inflexibility and for larger orders will require a
large amount of training data to populate the large transitions
matrix. Our own implementation of their approach revealed
an average accuracy of 0.797 on one of our datasets (see be-
low).

Eagle and Pentland [Pentland and Eagle, 2009] collected
a large dataset of context-sequences of MIT subjects (mostly
students) over a 9 month period. The location- information
was recorded using cell tower ids. Long term social context
was gathered in form of a sociomatrix of relations and back-
ground information via questionnaires. Via grouping the lo-
cation data into days (patterns) and hours of day (contributing
to pattern dimension) and a PCA-based analysis, the authors
showed that the daily behavior of students represented by the
sequence of locations they visited can be characterized by a
few eigenvectors (“Eigenbehaviors”). Representing the first
12 hours of a previously unseen day-behavior in the eigen-
basis, they could predict the remaining 12 hours with an av-
eraged overall accuracy of roughly 0.79. Furthermore, they
were able to analyze the behavior of social groupings of the
users with the same method, using average daily behaviors of
the group members as patterns. By comparing the character-

istic behaviors of a group to a given average behavior of a per-
son, they were able to predict aspects of the long-term social
context (group affiliation). However, the study only distin-
guished six very coarse location states (work, home, else, no
signal, off) and three groups of students. It remains to be seen,
whether the same levels of accuracy can be accomplished if
more fine grained contexts have to be modeled.

To our knowledge, none of the existing approaches allow
for the explicit flexible inclusion of other context elements
such as social context or deeper dependencies between con-
text elements, seamless integration of online-learning and
prediction while being conceptually simple and accurate on
fine grained locations.

In the next sub-sections we will further review notions and
related work in some of the key areas relevant for our ap-
proach and the subsequent discussion.

2.1 DBN Approaches for Prediction
In Dynamic Bayesian Networks (DBN) [Russell and Norvig,
2003], usually a Markov assumption restricts the order of
conditional dependencies in the the transition model (defin-
ing conditional probabilities on internal state variables Xt)
and the sensor model (defining conditional probabilities in-
volving internal state variables Xt and evidence variables
Et). In mobility models, state variables may correspond to
locations and evidence variables to location measurements.
If (notationally assuming first order Markov condition) the
sensor and transition models are assumed to be Gaussian
(P (Xt|Xt−1) ∼ N (AXt, B), P (Et|Xt) ∼ N (CXt, D)
with suitable matrices A,B,C,D these models are called
Gauss Markov Models and play an important role as pre-
dictive mobility models [Liang and Haas, ]. One may set
Xt = (St, Vt), interpreting St as actual locations and Vt

as speed and choose the model parameters A,B so, that
St and Vt are linearly dependent plus an added Gaussian
noise P (Xt|Xt−1) ∼ N (St−1 + ∆Vt−1, B) where ∆ is the
time difference between the discrete time steps t and t − 1.
These (linear) Kalman-Filter-models may also be used for
short term (seconds to a few minutes) mobility predictions
if the assumptions are justified [Liao et al., 2007b]. How-
ever, the assumption concerning Gaussian distributions and
fixed Markov order are usually not applicable to human mo-
tion on intermediate timescales of several minutes to hours,
since human trajectories show a high degree of spatial and
temporal regularity [González et al., 2008] which is not well
captured by the aforementioned random models. Other stud-
ies also confirmed the highly non-random nature of human
mobility [Song et al., 2010]. Hidden Markov Models drop
the Gaussian assumption and are restricted to a single, dis-
crete state variable xt and usually a fixed Markov order and
allow for more flexible distributions to be introduced for mo-
bility modeling [Krumm, 2003]. However, they usually re-
quire a large amount of training data and thus the inclusion of
further context elements can be very problematic. If we, for
example, aim at including temporal periodicities and social
elements, each new context aspect and its values multiplica-
tively contribute to the size of the state space. Furthermore,
the fixed order of a standard HMM also may not fit well with
the complex dependencies in human mobility patterns. If nev-
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ertheless applied to mobility modeling, since exact inference
in an unrolled DBN is difficult (see e.g. [Russell and Norvig,
2003]), methods of approximate inference have to be taken
into account such as Particle Filtering possibly augmented
with Rao-Blackwellization to control the number of samples
[Krumm, 2003] [Gustafsson et al., 2002].

2.2 Discovering Significant Places
Most of significant place detection approaches assume that
a geographic location is only significant if the user spends
at least some time above a certain threshold there [Ye et al.,
2009]. Unfortunately in practice there’s no evidence for an
ideal temporal threshold tht that leads to the detection of all
the significant places [Liao et al., 2007a]. Furthermore, if
precise GPS data are available, those fine grained significant
locations need to be grouped together to meaningful hot-spots
[Kang et al., 2005] which requires a spatial threshold ths.
Kang et al. [Kang et al., 2005] find ths ≈ 40 m and tht ≈
300s useful and use a K-Means clustering variant for their
experiments. However, since K-Means has a tendency to find
spherically shaped clusters of same size, this approach might
not ideally reflect the true hot-spot structure.

2.3 Connections between Social and Spatial
Context

Pentland has shown [Pentland and Eagle, 2009][Pentland et
al., 2009] that the social and spatial contexts are closely re-
lated (e.g. via similar Eigenbehaviors w.r.t. location visits).
Furthermore, several studies discussing the topology of so-
cial networks emphasize that social relatedness has an influ-
ence on spatial relatedness and vice versa. Routing in social
networks often can be accomplished via distances [Liben-
Nowell et al., 2005], and motion analysis can reproduce so-
cial networks [González et al., 2006]. The more location his-
tory two users share, the more socially correlated these users
are [Zheng et al., 2001]. We conclude that the incorporation
of social context is likely to improve the accuracy of location
prediction.

2.4 Periodic Pattern Extraction
A key element of temporal context relevant for mobility pre-
diction are periodic patterns. As we will see, we use a heuris-
tic a priori approach to the problem of detecting periodic
patterns for simplicity reasons, which exploits the “naturally
occurring” periodicities in western society and humankind
in general which are induced by natural (year, month, day)
and cultural periods (week) assuming their universal valid-
ity. Statistically orientated mining for periodicities e.g. find
patterns like Eigenbehaviors [Pentland and Eagle, 2009] via
Principal Component Analysis, other approaches use a Con-
ditional Random Fields[Liao et al., 2007a]. [Agrawal and
Srikant, 2002] present an algorithm for mining patterns from
spatio-temporal sequences. They use a sub-string tree struc-
ture to store all possible sub-patterns and provide a counter
to each node of a tree, that indicates the frequency of this
pattern. After evaluating the tree structure they perform a
level-wise mining method to detect all frequent patterns. The
presented method works very efficiently and scales well in
time O(m logm) with m being the number of track-points.

[Roddick and Spiliopoulou, 1999] provides a comprehensive
overview of different algorithms for mining spatio-temporal
patterns.

3 Our Approach
As discussed in 1, our approach for medium-term location
prediction aims to allow for the incorporation of temporal and
social contexts and their connections with spatial context es-
pecially exploiting regular patterns over various time-scales
and should be able to easily deal with previously unseen lo-
cations. A key requirement is a better ability to deal with an
amount of training data that is small compared to the num-
ber of locations involved e.g. in view of cold start and zero
frequency problems that previous approaches exhibit.

For the detection of stay-points we first use a group-
filtering of the raw GPS traces with a temporal threshold of
10 minutes yielding locations where the user stayed for at
least 10 minutes. We consider clusters of these stay-points
as a hot-spot for a user, if the spatial distance between stay-
points is less than 10 m. Hot-spots furthermore contain at
least 5 stay-points. We use density based clustering (DB-
Scan [Zaiane and Lee, 2002]) instead of k-means clustering
because it alleviates some of its disadvantages (see section
2.2). The heuristic choice of the mentioned parameters is mo-
tivated from previous work and behavioral analysis of own
location traces over one year and is intended to inject inde-
pendent common sense knowledge into the approach. Statis-
tically deriving them from data-sets is difficult and may lead
to an inappropriate level of fuzziness in the definition of hot-
spots.

As has been mentioned before, using fixed order Markov
models for location prediction causes some problems. An
N th-order Markov model using |Σ| labeled states (with la-
bels in Σ) will have a |Σ|N ×Σ transition matrix. Neglecting
evidence, the model has to learn probabilities p(q|s) where
q ∈ Σ and s ∈ ΣN and later use them for predicting the next
state, given s. For location prediction Σ may correspond to
the set of locations and s may be perceived as the spatial con-
text. If we do not have a sufficiently large training-set, we will
often encounter zero-frequency problems when training the
model (sparsity problem). Furthermore, naively introducing
new contexts such as temporal context will multiplicatively
enlarge the state-set Σnew = Σloc × Σtemp and worsen the
sparsity problem considerably. Another aspect is that a fixed
order will not flexibly allow for regarding temporal regulari-
ties and periodicities on varying scales (e.g. monthly routine,
weekly routine, daily routine).

Using a Variable Order Markov Model (VOMM) can con-
tribute to solving these problems. A key application for
VOMMs is lossless compression but they can also be used for
prediction [Begleiter et al., 2004]. Besides being structurally
simpler than HMMs, VOMMs allow for learning and using
variable length contexts an efficient way. We use an adap-
tation of Prediction by Partial matching (PPM), which is an
instance of general VOMM that outperformed other instances
in the prediction task in a comparative study [Begleiter et al.,
2004]. VOMM approaches generally use a tree structure to
address the sparseness problem of the transition matrix. If

10



the maximal order of the VOMM is N , the tree has a max-
imal depth N + 1 and each path in it defines a subsequence
of symbols appearing in the training sequence. Each node of
the tree is labeled with a symbol q from the alphabet Σ and
has a counter c for bookkeeping the number of occurrences
of the context constructed through concatenating all the sym-
bols from the root to that node 1. Each VOMM variant differs
slightly in the way, for example, the zero-frequency prob-
lem is treated. If the current context is represented by s,

Figure 1: The prefix-tree (trie) constructed by PPM for a training
sequence ”abcdcacbdcbac”. Node marks: (q ∈ Σ, c)

the prediction algorithm works on that tree by simply pre-
dicting argmaxqp(q|s) and stepwise escaping to suffixes of
s if no entries are represented in the tree for s. One of the
main advantages is that training and prediction do not have
to be separated. PPM defines an escape mechanism as de-
fined in [Begleiter et al., 2004]. For all symbols that did not
appear after s yet, the escape mechanism assigns a probabil-
ity mass P (escape|s). The remaining mass 1−P (escape|s)
is distributed between the symbols appearing after context s.
Equation 1 determines the probability of any symbol q occur-
ring after context s recursively. If we define Σs to be the set
of symbols that have already appeared after context s (and
thus have been accounted for in the tree) we have

P (q|s) =
{
P̃ (q|s) if q ∈ Σs

P̃ (escape|s) P (q|suf(s)) else
(1)

where suf(s) denotes the longest suffix of s.
If s is empty, the probability of any symbol after an empty

context is P (q|ε) = 1
|Σ| . For symbol q and context s, let

C(sq) be the counter that counts the occurrences of sq. We
then define

P̃ (q|s) =
C(sq)

|Σs|+ Σq′∈ΣsC(sq′)
(2)

P̃ (escape|s) = 1−
∑
q∈Σs

P̃ (q|s) =
|Σs|

|Σs|+ Σq′∈Σs
C(sq′)

(3)
The escape mechanism is a technique to deal with the zero-
frequency problem, which implies the Laplace estimator-like
summand |Σs| in the denominator of eq. (2) and (3) (Com-
pare the Rule of Succession in general statistics (see e.g.
[Zabell, 1989])). Σs is the set of all symbols appearing af-
ter s.

Thus training of a PPM VOMM tree effectively corre-
sponds to instantiating or updating node counters in the tree.

If the order is bounded by n0 = 6 and a sequence sq =
ABC . . .G appears in the training data all the counters along
the path from G up to A and finally the root ε have to be
incremented.

3.1 Inclusion of Temporal Context
For location prediction, the symbols correspond to locations.
In order to include temporal periodicities as temporal con-
texts, we modify the tree and expand each spatial node with
a sub-tree built from the temporal annotations determined
from the timestamps of the occurrences of the context s
corresponding to that node. Let λ = (D1, D2, ..Di) be
the set of temporal features we want to use. In our eval-
uation we use three temporal features (λ = (ts, wo, dw))
where and ts is a partition of the day (e.g. Morning(mor),
Afternoon(afn), Evening(evn)), wo indicates whether it is
weekend (we) or working day (wd) and dw indicates the day
of week (mon, tue, . . .). For each symbol q appearing in
the training sequence, we determine its temporal annotation
(τ1, τ2, ..., τi)q with ∀j : τj ∈ Dj . A temporal annotation
example would be (mor,we, sun). According to the tempo-
ral annotation we assign each node in the tree (corresponding
to a symbol q and a context path s) a temporal-sub-tree. Each
node in the temporal sub-tree has a label from λ and a counter
indicating the occurrence of the sequence sq fitting the tem-
poral feature indicated by the label. Figure 2 depicts an ex-
emplary temporal sub-tree for a spatial node. In the tempo-
ral sub-tree the temporal features (τ1, τ2, ..., τi) are ordered
such that the temporal feature τx on tree level x is concep-
tually more specific than the temporal feature τx−1 on level
x − 1. Conceptual specifity can be implemented by an in-
clusion semantics which implies that temporal partitions on
level x are sub-divided into temporal partitions at level x+ 1
(e.g. a day is sub-divided into 24 hours). It is possible to
argue towards ts as the least specific temporal feature being
determined by given general biological and physical rhythms
of our existence and artificial features such as week of the
year being more specific. It is also possible to argue in favor
of the inverse hierarchy of specifity. The construction prin-
ciple of VOMM and the escape mechanism used will ensure
in both cases that the counters are correctly maintained and
used during training and prediction. In our case we opted for
the sequence of wo v dw v ds given by the simple temporal
inclusion semantics. As in the general case described above,
each node is associated with a counter that stores the visits
matching the particular temporal context. During the predic-
tion phase we can descend the temporal sub-tree matching the
current sub-tree and escape to more general temporal features
whenever there is not enough evidence available for the more
specific context. Besides those natural temporal patterns it is
also possible to include more data-specific temporal patterns
which sophisticated algorithms, mentioned in section 2.4, can
discover or adapt to the user’s cultural background (e.g. con-
cerning which days are considered “weekend”) When using
individually learned temporal features the inclusion of social
contexts described in the next section becomes more compli-
cated. Hence we decided to use these static temporal fea-
tures for all users. If, for example, a spatial sequence sq has
temporal context (mor,wd,mon), we have to increment all
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Figure 2: An example of a temporal context sub-tree

counters along this path in exactly the same way as in the
spatial case described above. Via this step-wise temporal ab-
straction multi-bookkeeping we are able to use the standard
PPM algorithm with its ability to consider various sequence
lengths without modification. If, for a context s, we have not
seen that particular (ts, wo, dw) temporal context we escape
to the more general (wo, dw), if we have not seen this we es-
cape to dw. If we have not seen this dw we escape to purely
spatial relations.

In effect we use standard PPM except for inserting the
temporal sub-tree after each node in the tree. In effect we
use Σ = Σloc ∪ Σtemp where Σloc are the location sym-
bols and Σtemp = ∪i

j=1Dj which in our case is Σtemp =
{mor, afn, evn,we,wd,mon, tue, . . . , sun}.

3.2 Inclusion of Social Context
We define socializable hotspots (SHs) as hotspots where at
least 2 users were co-located at a given time. For a specific
user we distinguish between those SHs where she participated
herself (class I SHs) and those SHs, were “friends” of her-
self participated (class II SHs). “Friends” can be won from
explicit declaration (as in Facebook) or by implicit mining
(e.g. class I SHs can be an implicit measure for social relat-
edness). Individual hotspots can be treated as a special form
of a SH, where the number of people visiting the place is
equal to one. This notion allows us to incorporate SHs ele-
gantly in the tree. In the tree containing spatial and tempo-
ral knowledge we annotate each node with counters for each
set of persons that have been seen in the corresponding con-
text. The presence of other users can be identified by So-
cial Situation detection [Groh et al., 2010] using device to
device communication. This type of communication is also
used to exchange spatio-temporal VOMM sub-trees between
friends during encounters to determine the class II SHs. The
exchange of the class II SHs allows to inject a vast amount
of additional knowledge gathered by other users into the in-
dividual tree, the use of which for prediction is suitably me-
diated by comparing it to the current social context. Class II
SHs furthermore demand that the hotspots of different users
can be compared to detect matching hotspots. This can be
achieved either by comparing the labels assigned by the user
to his hotspots or by clustering hotspot within a small radius
among all users. The elegance of this method lies in the sim-
ple incorporation of the additional social knowledge. Class
I SHs are detected by the user herself. Whenever a friend is
detected at the same place, the counters for the individual vis-
its in the current spatio-temporal context and the counter for

the set of present friends (including the user herself) are both
incremented. Recently communicated class II SHs have to be
matched against the paths in the exisiting spatio-temporal tree
of the user. If the the path already exists, we can simply add
another counter corresponding to the new class II social situ-
ation (set of friends) that have been learned from the friend’s
tree. If the path doesn’t exist it is inserted together with the
acquired counter values corresponding to SHs in the friend’s
tree. Hence inclusion of social context information only re-
quires some adjustments in the prediction tree instead of a
multiplicatively growing tree as observed in naı̈ve Markov
model implementations. We assume that for every point in
time the social situation [Groh et al., 2010] of a user is known.

If for a given spatio-temporal context of a user ui1 other
users ui2, . . . , uim are present and the tree for the given con-
text contains counters for some previous visits (either indi-
vidual hotspots, class I or class II SHs) the algorithm has to
weigh which previously observed behavior is the most rele-
vant for this situation. A weighted sum of all the counters
C(sq)soc

U ′ of a node q in the temporal sub-tree is computed
with a measure of overlap between U ′ and U as weight (we
use Jaccard coefficient for simplicity reasons):

Ĉsoc
U (sq) =

∑
U ′

C(sq)soc
U ′ ∗ Jacc(U ′, U) (4)

Because the set of persons involved in social situa-
tions/socializable hotspots does not allow an interpretation of
’more specific’ as in the temporal sub-tree or ’happened be-
fore’ as in the spatial tree we cannot employ a corresponding
sub-tree escape mechanism, instead the social context is re-
spected via introducing the Jaccard-coefficients. The usage
of the Jaccard coefficient provides various benefits. When-
ever the user is alone the paths learned from his individual
behavior has weight 1, while every other node has maximum
weight of 0.5 (class I SHs with the user and another person).

4 Evaluation
We considered two datasets for evaluation: Dataset 1 is a
dataset publicly available from Microsoft research (165 users
over 2 years, GPS coordinates) [Zheng et al., 2008][Zheng
et al., 2009]. Dataset 2 is the Reality Mining dataset [Pent-
land and Eagle, 2009] (97 persons over 9 months, cell-tower-
based locations) described in section 2. Dataset 2 contains a
social network between the actors and Bluetooth encounters
between them which allow to at least determine class I SHs.
Class II SHs are hard to determine because of user specific
location labels, which cannot be easily resolved. We only re-
garded the named cell-towers as hot-spots, because we did
not have the actual physical location of the cell-towers to per-
form our hot-spot identification preprocessing steps.

Using a 10-fold cross validation and maximum Markov or-
der of 2, we compute the accuracy of our predictions on both
datasets for each user with more than 5 locations. Weighted
average accuracy is determined by weighting each user’s pre-
diction accuracy with the relative number of predictions. This
is a pessimistic estimation, since for users with few locations,
prediction accuracies are, on average, higher. On dataset 1 we
achieve an average weighted accuracy of 0.6584 (± 0.194)
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Order o Fixed Order (= o) Variable Order (≤ o) Variable Order
+ temporal

2 0.797 (± 0.106) 0.798 (± 0.119) 0.819 (± 0.107)

3 0.795 (± 0.103) 0.797 (± 0.126) 0.821 (± 0.106)

4 0.782 (± 0.114) 0.784 (± 0.135) 0.819 (± 0.110)

5 0.769 (± 0.129) 0.775 (± 0.148) 0.814 (± 0.113)

Table 1: Weighted average accuracies: comparison between fixed
order Markov models (Order=o) and VOMM(Order≤ o): varying
Markov order. (10 fold cross validation → 90 % of data used for
training.)

Share
for training Fixed Order Variable Order Variable Order

+ temporal

50% 0.763 (± 0.152) 0.797 (± 0.131) 0.815 (± 0.107)

33.3% 0.759 (± 0.149) 0.793 (± 0.133) 0.816 (± 0.109)

25% 0.745 (± 0.155) 0.792 (± 0.133) 0.815 (± 0.108)

10% 0.714 (± 0.178) 0.786 (± 0.134) 0.814 (± 0.108)

Table 2: Weighted average accuracies: comparison between fixed
order Markov models and VOMM: varying training set size. ’Share
for training’ specifies the share of the dataset that was used for train-
ing. The remaining data was used for testing. Markov order was 3
(for fixed order MM) and ≤ 3 (for VOMM) respectively.

without considering social and temporal context. Includ-
ing temporal context, the accuracy is improved to 0.781 %
(±0.151). Total number of predictions made is 7088. These
numbers are computed pessimistically, because we leave out
users with less than 5 hotspots, because with few hot-spots
the accuracy is naturally very high. On dataset 2, purely spa-
tial weighted average accuracy for maximum Markov order 2
was 0.798 (±0.119) and weighted average accuracy includ-
ing temporal context was 0.819 (±0.107). Total number of
predictions made is 264529.

In order to more thoroughly compare our approach to
a fixed order Markov model as in [Ashbrook and Starner,
2003], we evaluated varying Markov order and the size of
the training set on dataset 2. The results are shown in tables
1 and 2. Table 1 first of all shows that including temporal
context substantially increases the prediction accuracy (see
column 3) compared to the case where only spatial informa-
tion is used (see column 2). Furthermore when comparing
the purely spatial VOMM approach (column 2) to a fixed or-
der Markov model (column 1) we note the following: table
1 shows that the VOMM approach is always slightly more
accurate because of the corrected zero frequency problem.
While our approach remains roughly stable when increasing
the Markov order, the accuracy for the fixed case decreases
with growing Markov order which can be attributed to the
limited size of the training data. The effects of small sizes of
the training data can be seen more clearly in table 2. Here, we
vary the size of the training data from 50 percent to 10 per-
cent. We see that the performance of the fixed order Markov
model substantially decreases (and σ increases) while the re-
sults of the VOMM remain stable. Fixed order Markov mod-
els require a huge amount of training data in order to deliver
good performance and thus suffer from cold start problems.
This is one of the key advantages of our approach.

Figure 3 shows the relation between accuracy and the the
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Figure 3: The relation between accuracy and number of locations.
Shown: (1) Fixed order Markov model (spatial only, order 3), (2)
VOMM (spatial only, max. Markov order: 3), (3) VOMM (spatial
+ temporal, max. Markov order: 3). All on dataset 2, training data
size: 10 %. Also shown: linear regression lines for each. Pearson-
correlations: PC(1) = −0.49, PC(2) = −0.51, PC(3) = −0.38
and Spearman’s R(1) = −0.43, R(2) = −0.53, R(3) = −0.46
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Figure 4: The relation between accuracy and q =history
size/number of locations. Shown: same elements as in figure 3.
Pearson-correlations: PC(1) = 0.48, PC(2) = 0.27, PC(3) =
0.18 and Spearman’s R(1) = 0.58, R(2) = 0.25, R(3) = 0.20

number of different locations for each user with more than
5 locations. Shown are (1) Fixed order Markov model (spa-
tial only, order 3), (2) VOMM (spatial only, max. Markov
order: 3) and (3) VOMM (spatial + temporal, max. Markov
order: 3). All figures are computed on dataset 2, training data
size was 10 % (90 % were used for testing (10 fold cross
validation)). The linear regression lines for each show a gen-
eral tendency that more locations correspond to a decreased
prediction accuracy as expected. Fixed order Markov Model
performs worst while VOMM spatial and VOMM spatial +
temporal are less sensitive of the number of locations, which
is on of the key advantages of our approach.

Figure 4 shows the relation between accuracy and the quo-
tient of history size and the number of different locations.
Here we can also see a tendency that a larger history and
smaller number of locations increases accuracy. Again, our
approach outperforms fixed order Markov.

Figure 5 shows the relation between accuracy and the his-
tory size. This comparison shows the smallest correlation,
which can be attributed to the fact that the model requires only
comparatively few training examples to provide a reasonable
accuracy. We see that fixed order Markov suffers from cold-
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Figure 5: The relation between accuracy and history size. Shown:
same elements as in figure 3. Pearson-correlations: PC(1) =
0.28, PC(2) = 0.07, PC(3) = 0.05 and Spearman’s R(1) =
0.29, R(2) = −0.03, R(3) = −0.02.

start problems. Including more training data (larger history
size) does not improve VOMM spatial + temporal very much
on our datasets because users with a larger history size will
have more different locations and also exhibit a higher behav-
ioral mobility entropy.

Thus we investigated reasons for inadequate predictions in
our approach by computing the behavioral mobility entropy
H =

∑
q∈Σ p(q) log2 p(q) of each user and correlating it with

the per-user prediction accuracy via Pearson-correlation PC
and Spearman’s R. The results are shown in figure 6. On
Dataset 1 we have PC = −0.62 and R = −0.50 and on
dataset 2 we havePC = −0.69 andR = −0.70. The correla-
tion coefficients indicate a negative linear correlation between
entropy and accuracy: the prediction accuracy decreases with
increasing entropy. Thus, as expected, users living a more
’regular’ life are easier to predict.
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Figure 6: The relation between entropy and accuracy (dataset 2).
Also shown: linear regression line

4.1 Including social context
As for social context inclusion, dataset 1 (although fairly
large) unfortunately did not provide enough co-locations
(contributing to class I SHs) for a statistically meaningful
estimation of its benefit. An analogous problem exists with
dataset 2 where not enough Bluetooth encounters involving
named cell-towers to make a statistically significant estima-
tion. However, for dataset 2 we were able to identify 2384 so-
cial situations where more at least two users were co-located.
For these cases we were able to compare the performance

of our approach without regarding the social context with the
performance of our approach including the social context (we
used Markov order 3 plus including temporal context). The
study yielded an increase of 0.0069 when using the social
context. Although this figure is not statistically significant
because of the lack of social situations in our data we see that
the inclusion of social contexts is tendentially beneficial.

5 Conclusion
We presented a novel approach to location prediction based
on PPM VOMM. We were able to demonstrate that the inclu-
sion of temporal context improves prediction accuracy con-
siderably. The overall performance of the approach can be
regarded as satisfactory. The inclusion of social context was
able to improve prediction in several cases, but due to few
usable training sequences containing social context the im-
provement may not be regarded as significant yet. Future
work will focus on developing and evaluating finer grained
versions of the social context inclusion and further investigat-
ing the suitability of the inclusion of other types of context
information such as calendar contents etc. Furthermore we
will investigate the effect of using more sophisticated per-
user temporal periodicity detection methods (e.g. yielding
other partitions of the time of the day as temporal patterns).
In view of possible applications mentioned in section 1, the
limits of our approach with respect to predicting further into
the future (before reaching the inevitable limits of an equiv-
alent of mixing time in DBNs ([Russell and Norvig, 2003])
will have to be investigated more thoroughly. As a last point
it might also be interesting to investigate applicability of an
adapted version of our approach to a smaller spatio-temporal
scale e.g. for predicting indoor location changes.
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Abstract
In this paper, an approach to locate a person using
non visual sensors in a smart home is presented.
The information extracted from these sensors gives
uncertain evidence about the location of a person.
To improve robustness of location, audio informa-
tion (used for voice command) is fused with classi-
cal domotic sensor data using a two-level dynamic
network and using an adapted spreading activation
method that considers the temporal dimension to
deal with evidence that expire. The automatic lo-
cation was tested within two different smart homes
using data from experiments involving 25 partici-
pants. The preliminary results show that an accu-
racy of 90% can be reached using several uncertain
sources.

1 Introduction
The objective of this work is the continuous location
of an inhabitant in their home using sources that are
non-visual (i.e., without camera) and indirect (the person
does not wear a sensor). It is part of the Sweet-Home
(http://sweet-home.imag.fr/) project which aims to
design an intelligent controller for home automation through
a voice interface for improved comfort and security. In this
vision, users can utter vocal orders from anywhere in their
house, thanks to microphones set into the ceiling. It is thus
particularly suited to assist people with disabilities and the
growing number of elderly people in living autonomously as
long as possible in their own home. Within the smart home
domain, this concept is known as Aging-In-Place [Marek and
Rantz, 2000] and consists in allowing seniors to keep control
of their environment and activities, to increase their auton-
omy, well-being and their feeling of dignity.

Among the main data processing tasks a smart home must
implement, detecting the correct location of the person plays
a crucial role to make appropriate decisions in many applica-
tions (e.g., home automation orders, heating and light control,
dialogue systems, robot assistants) and particularly for health
∗This work is part of the Sweet-Home project founded by

the French National Research Agency (Agence Nationale de la
Recherche / ANR-09—VERS-011)

and security oriented ones (e.g., distress call, fall, activity
monitoring). For instance, in the Sweet-Home context, if the
person says “turn on the light”, the location of the person and
the lamp which is referred to must be deduced. However, in
the context of a vocal command application, noise, reverber-
ation and distant speech can alter the recognition quality and
lead to incorrect inferences [Vacher et al., 2011]. To improve
the robustness of the automatic location, we propose to com-
bine audio source with other sources of information.

Automatic location becomes particularly challenging when
privacy issues prevent the systematic use of video cameras
and worn sensors. In the Sweet-Home project, only clas-
sical home automation and audio sensors are taken into ac-
count. These sensors —Presence Infra-red Detector (PID),
door contacts, and microphones— only inform indirectly and
transiently about the location of a person. Automatic loca-
tion is thus a challenging task that must deal with indirect,
uncertain and transient multiple sources of information.

In this paper, we present a new method developed for au-
tomatic dweller location from non-visual sensors. After a
brief state of the art of location techniques in Section 2, the
approach we adopted to locate a person is presented in Sec-
tion 3. It is based on a fusion of information obtained from
various sensors (events) through a dynamic network that takes
into account the previous activations and the uncertainty of
the events. The adaptation of the method to two smart homes
is described in Section 4 and the results of the experiments
are summarised in Section 5. The paper ends with a brief
discussion of the results and gives a future work outlook.

2 Location of an Inhabitant: Common
Techniques in Smart Homes

Techniques for locating people in a pervasive environment
can be divided into two categories: those that use sensors ex-
plicitly dedicated to this task and worn by people such as a
GPS bracelet, and those that use sensors that only inform im-
plicitly about the presence of a person in a confined space
such as infrared presence sensors or video cameras.

The wearable sensors are often used in situations where the
person has a social activity (museum visit) or for professional,
health or safety reasons (e.g., patients with Alzheimer’s dis-
ease running away). Despite their very good location perfor-
mance, they are not adapted to an informal and comfortable

17



in-home use. Indeed, these sensors can be awkward and an-
noying and, except for passive sensors (e.g., RFID), they re-
quire the systematic checking of the batteries. Moreover, if
the goal is to improve the daily living comfort, the constraint
of a wearable sensor may be a strong intrusion into the in-
timate life. That is why this paper focuses on techniques us-
ing environmental sensors (video, sound, motion sensor, door
contacts, etc..).

Video analysis is a very interesting modality for home au-
tomation which is used in many projects [Marek and Rantz,
2000; Moncrieff et al., 2007]. However, video processing
requires high computational resources and can be unreliable
and lacking in robustness. Moreover, installing video cam-
eras in a home may be perceived as too much intrusion into
intimate life, depending on the kind of video processing that
is installed (e.g., plain vs. silhouette based video processing
or hiding [Moncrieff et al., 2007]).

Another usual source of localization can be derived from
household appliances and surveillance equipment. For in-
stance, infrared sensors designed for automatic lighting were
used to evaluate the position and the activity of the person
[Le Bellego et al., 2006; Wren and Tapia, 2006]. The use
of some devices can also be detected using new techniques
that identify the signatures of an electrical appliance on the
household electric power supply [Berenguer et al., 2008].

Another interesting modality in home automation is the
analysis of the audio channel, which, in addition to providing
a voice command, can bring various audio information such
as broken glass, slamming doors, etc. [Vacher et al., 2010].
By its omnidirectional or directional nature, the microphone
is a promising sensor for locating events with a high sensi-
tivity or high specificity. There is an emerging trend to use
such modality in pervasive environment [Bian et al., 2005;
Moncrieff et al., 2007; Vacher et al., 2010]. Audio sources re-
quire far less bandwidth than video information and can eas-
ily be used to detect some activities (e.g., conversations, tele-
phone ringing). However, if the video is sensitive to changes
in brightness, the audio channel is sensitive to environmen-
tal noise. The audio channel, while a relevant and affordable
modality is therefore a noisy source and sometimes highly
ambiguous.

Throughout this state of the art, it appears that no source
taken alone makes a robust and resource-efficient location
possible. It is therefore important to establish a location
method that would benefit from the redundancies and com-
plementarities of the selected sources. There is a large lit-
erature in the domain of activity recognition on such meth-
ods mainly using probabilistic graph-based methods such as
Bayesian networks [Dalal et al., 2005; Wren and Tapia, 2006]
or Markov models [Wren and Tapia, 2006; Chua et al., 2009].
However, given the large number of sensors, building HMM
models taking all the transition states into account for really
time processing would be extremely costly. More flexible
graph-based approaches based on sensor network that include
a hierarchy of processing levels (Bayesian and HMM classi-
fiers) were proposed [Wren and Tapia, 2006]. However, if
temporal order is often taken into account, the temporal in-
formation about duration or absolute date is rarely considered
in these models .

Recently, Niessen et al. [Niessen et al., 2008] proposed to
apply dynamic networks to the recognition of sound events.
In their two-level network, the input level is composed of
sound events, the first level represents the assumptions re-
lated to an event (e.g., ball bounce or hand clap), and the sec-
ond level is the context of the event (e.g., basketball game,
concert, play). Each event activates assumptions according to
the input event and the contexts to which these assumptions
are linked. These assumptions then activate the contexts, re-
enforcing them or not. Thus, there is a bidirectional rela-
tionship between contexts and assumptions. For instance, if
several previously recognized sounds are linked to a concert
context, the next sound will be more likely related to a con-
cert context. The method imposes no pattern but the notion
of time is explicitly taken into account by a time constant that
reduces the importance of an event according with its age.
Given the flexibility provided by this approach, we chose to
adapt it to the location of a person in a flat using multisource
information.

3 Location of an Inhabitant by Dynamic
Networks and Spreading Activation

The method developed for locating a person from multiple
sources is based on the modelling of the links between ob-
servations and location assumptions by a two-level dynamic
network. After a brief introduction to dynamic networks and
spreading activation, the method adapted to work with multi-
ple temporal sources is described.

Dynamic Networks and Spreading Activation

The spreading activation model, is employed in AI as a pro-
cessing framework for semantic or associative networks and
is particularly popular in the information retrieval commu-
nity [Crestani, 1997]. Briefly, the considered network N is
a graph where nodes represent concepts and where arcs, usu-
ally weighted and directed, represent relationships between
concepts. The activation process starts by putting some ‘acti-
vation weight’ at an input node that spreads to the neighbour-
ing nodes according to the strength of their relationships and
then spreads to the other neighbours and so on until a termi-
nation criteria is satisfied. The activation weight of a node is
a function of the weighted sum of the inputs from the directly
connected nodes. For detailed introduction to spreading acti-
vation, the reader is referred to [Crestani, 1997]. Within this
model, dynamic network have also bee proposed to represent
knowledge that evolves with time [Niessen et al., 2008]. A
network is dynamic in the sense that it changes according to
inputs that can modify the structure and/or the strength of the
relationships between nodes. The spreading activation in a
dynamic network provides a flexible and intuitive framework
to represent associations between concepts which is partic-
ularly interesting to fuse evidence that decay. However, to
the best of our knowledge, few approaches have focused on
the case of temporal sources whose activation decreases with
time [Niessen et al., 2008]. In the following, we present the
temporal multisource approach to locate a person in an flat.
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Temporal Dynamic Networks for Multisource Fusion
The dynamic network that we designed is organized in two
levels: the first level corresponds to location hypotheses gen-
erated from an event; and the second level represents the oc-
cupation context for each room whose weight of activation
indicates the most likely location given the previous events.
Location hypotheses correspond to area where the person can
be at a specific time while occupation contexts correspond to
rooms in which the person is over time. Our approach uses
the following definitions:

Definition 1 (Observation) An observation on is a data
structure generated when a sensor reacts to the event en at
time tn ∈ R+ with n ∈ N. Each observation is related to a
sensor o.sensor and has a sensor type o.type.

Definition 2 (Simultaneous observations) Two observa-
tions oi

n and oj
k are simultaneous if tk ∈ [tn − d, tn + d],

with d ∈ R+ a predefined delay.

Definition 3 (Observation activation) The activation Ao
n ∈

[0, 1] of an observation on represents the intensity of the ev-
idence being integrated into the network. It can be derived
from the weight or probability of the classifier/detector gen-
erating the observation. In our case, Ao

n is based on its ambi-
guity such that for a set of simultaneous observations of same
type On,

∑
o∈On

Ao
n = 1.

Definition 4 (Location hypothesis) hi
n ∈ L, where L =

{Loc1, . . . , LocR} is the hypothesis that the inhabitant is at
location i at time tn. These hypotheses are created only from
the observations at time tn.

Definition 5 (Occupation context) ci ∈ R where R =
{Room1, . . . , RoomS} is the occupation context of the ith
room.

Definition 6 (Relationship weight) w ∈ [0, 1] is the impor-
tance of the relationship between two nodes in the network.
wo,hi is the weight between an observation and the ith hy-
pothesis whereas whi,cj is the weight between the ith hypoth-
esis and the jth context.

Definition 7 (Decay function) The decay function
f(tn, tn−1) = e−

∆t
τ , with ∆t = tn − tn−1 represents

the decrease of the context through time. It makes it possible
to keep a short-term memory about contexts.

The dynamic network evolution is summarised by the fol-
lowing algorithm:

1. for every new observation ok
n, a new node is created;

2. thereupon hypothesis nodes hi
n are created and connected to

ok
n with weights wok,hi ;

3. hypothesis nodes hi
n are connected to occupation context

nodes cj with weights whi,cj ;

4. activation spreads from ok
n to hi

n and the activation of each hi
n

is calculated;

5. activation spreads from hi
n to cj and the activation of each cj

is recalculated;

6. the node cj with the highest activation becomes the present
location;

time
en−2 en−1 en

tn−2 tn−1 tn

c1 c2 c3 c4

h1
n−2 h2

n−2 h3
n−2 h2

n−1 h4
n−1 h1

n h3
n h4

n

on−2 o1
n−1 o2

n−1 on

Context of occupation

Hypothesis of location

Observations

Events.1 .3 .6 1 .2 .8 w
o,h1 w

o,h3 w
o,h4

Figure 1: Example of Dynamic Network

7. all the nodes hi
n and ok

n are deleted from the network.

An example of dynamic network is shown in Figure 1. At
time tn−2, the event en−2 is detected by a sensor which gen-
erates the observation on−2 from which 3 hypotheses are de-
rived : h1

n−2 with a relationship weight of 0.1 towards the
context c1, h2

n−2, with weight 0.3 towards c2 and h3
n−2 with

0.6 towards c3. If no previous events occurred, then c3 would
be the most probable location. At time tn−1, two simultane-
ous observations caused by event en−1 are integrated within
the network. Every node created previously (i.e., at tn−2) is
discarded, except the contexts which are always kept. Active
contexts are weighted by f(tn−1, tn−2) and the activation of
the hypothesis h2

n−1 is added to c2 and h4
n−1 is added to c4.

The method is applied subsequently at time tn.

Spreading Activation
The activation of a node is typically defined [Crestani, 1997]
by the formula ni(t) =

∑
i6=j wi,j × Aj(t) where wi,j is

the weight, j corresponds to a neighbour of i and Aj(t) is
the activation of its neighbours at time t. A node that has
been activated by a neighbour node cannot spread its activa-
tion back to it. In our case, activations are always triggered
by an observation o with a bottom-up spreading. Once the
accumulated activation from neighbours n(t) is obtained, the
output activation of the node is calculated. It differs accord-
ing to the node level. For location hypotheses, the activation
Ahi

n ∈ [0, 1] is computed using Formula 1:

Ahi

n = ni(tn) =
∑

o∈Otn

wo,hi A
o
n (1)

Regarding the occupation contexts, the output activation re-
sults from the previous activation weighted by the decay func-
tion and the accumulated activation of hypotheses. Equation
2 describes the activation of an occupation context Aci as a
consequence of an external activation at time tn.

Aci(tn) = M ×Ahi

n + e−
∆t
τ Aci(tn −∆t)× [1−Ahi

n ] (2)

where Aci(tn −∆t) is the previous activation, M = 1 is the
maximal activation and e−

∆t
τ is the decay function. There-

fore, if no event appears during 5 · τ seconds, the contexts
activation can be considered zero. The introduction of M
constrains the activation value between 0 and 1.
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Computation of the node level Relationship
Given that the network is composed of two layers, two
types of relationship exist: Observation-Hypothesis and
Hypothesis-Context. The links between the different layers
depend strongly on the application and the environment con-
sidered.

The Hypothesis-Context relationship is in our case of type
one-to-one because a hypothesis of location is only related to
a unique room. It is an experimental choice since some hy-
potheses about rooms loosely separated could activate several
occupation contexts. Thus whi,cj = 1 ∀i = j, 0 otherwise.

The Observation-Hypothesis relationship is unidirec-
tional and of type one-to-many. Weights and hypotheses vary
depending on the observations and prior knowledge about this
relationship. In order to include this prior knowledge in the
network, the relationship weight is defined by formula 3 in the
form of probabilities where the relationship weight between
the current (possibly set of simultaneous) observation(s) On

and hypothesis hi is defined by the probability of observing
the inhabitant at location i given the current observation(s)
and the context C.

wo,hi(tn) = P (loc = i | On, C) (3)

4 Adaptation of the Method to Pervasive
Environments

Two pervasive environments were considered in our study:
the DOMUS smart home and the Health Smart Home(HIS) of
the Faculty of Medicine of Grenoble. Every experiment in
these smart homes considered only one inhabitant at a time.
In section 4.1 details of both corpora are given, then sections
4.2 and 4.3 explain how relationships between layers are com-
puted for each smart home and which a priori information is
taken into account to derive the inhabitant’s location.

4.1 Pervasive Environments and Data Used
The HIS corpus was acquired during experiments [Fleury
et al., 2010] aiming at assessing the automatic recognition of
Activities of Daily Living (ADL) of a person at home in order
to automatically detect loss of autonomy. Figure 2a describes
the 6-room Health Smart Home of the Faculty of Medicine of
Grenoble at the TIMC-IMAG laboratory [Le Bellego et al.,
2006]. The data considered in this study consisted of about
14 hours of 15 people recordings using the following sensors:
• 7 microphones (Mic) set in the ceiling;
• 3 contact sensors on the furniture doors (DC) (cupboards

in the kitchen, fridge and dresser in the bedroom);
• 6 Presence Infrared Detectors (PID) set on the walls at

about 2 metres in height.
The Sweet-Home corpus was acquired in realistic condi-

tions, using the DOMUS smart home. This smart home was
designed and set up by the Multicom team of the Laboratory
of Informatics of Grenoble. Figure 2b shows the details of
the flat. The data considered in this study consisted of about
12 hours of 10 people recordings performing daily activities
using the following sensors:
• 7 microphones (Mic) set in the ceiling;
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Figure 2: Layout of the smart homes used and position of the
sensors.

• 3 contact sensors on the furniture doors (DC) (cupboards
in the kitchen, fridge and bathroom cabinet);

• 4 contact sensors on the 4 indoor doors (IDC);

• 4 contact sensors on the 6 windows (open/close);

• 2 Presence Infrared Detectors (PID) set on the ceiling.

4.2 Weight computation for the HIS
wo,hi(tn), was computed differently for each kind of sensors.
For observation o with o.type ∈ {DC,PID} a single hy-
pothesis node is created with a weight wo,h = 1. Indeed, spa-
tial informations about PID an DC are unambiguous and
certain. For example, opening the fridge can only occurs if
the inhabitant is in the fridge area. For both PID an DC, the
activation of observations is Ao

n = 1.
The microphones cannot be treated in the same manner.

Microphones can detect theoretically all the acoustic waves
produced in the home making this information highly am-
biguous. However, it is possible to estimate from the position
of the Mic the areas they can most likely sense and thus the
location they are most related to. To take this into account,
formula 3 was approximated with wo,hi(tn) = P (loc =
i|Mic = j) that is the probability that the inhabitant is in the
ith room given an observation on generated by the jth micro-
phone. To acquire this a priori knowledge, two approaches
were tested: a naı̈ve approach and a statistical one. Suc-
cinctly, for the naive approach, the circle outside which the
loss of energy is greater than 75% is considered for eachMic.
The weight is calculated as the surface of the intersection be-
tween the circle and the rooms with a penalty of 2 when the
circle goes beyond a wall. The statistical approach acquired
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P (Loc|Mic) estimated by the naı̈ve approach
Mic 1 2 3 4 5 6 7
bedroom .14 .07 .70 .85
lounge .86 .93 .27 .14 .01 .13 .03
kitchen .03 .02 .10 .87 .50
bathroom .06 .18
wc .06 .18
corridor .77 .10

P (Loc|Mic) estimated from corpus
Mic 1 2 3 4 5 6 7
bedroom .28 .29 .42 .43 .25 .18 .20
lounge .59 .56 .47 .41 .07 .07 .09
kitchen .05 .08 .06 .09 .45 .63 .37
bathroom .06 .05 .04 .04 .09 .04 .10
wc .01 .01 .01 .01 .12 .05 .21
corridor .02 .01 .02 .03 .03 .02

Table 1: Estimation of P (Loc|Mic) for HIS smart home

the probabilities from the annotated corpus. Table 1 shows
the weights obtained for both approaches. Apart from this
static information, dynamic information, such as the signal
energy, was taken into account in case of simultaneous ob-
servations on the Mic. The Mic activation, it was computed
using the signal-to-noise ratio (SNR) estimated in real-time.
Given that Ao

n summarises the observation ambiguity, it was
computed asAo

n = o.snr/
∑

obs∈On
obs.snr whereOn is the

set of simultaneous observation at time n.
The fusion of prior and dynamic information provides a

better disambiguation. For example, for the HIS flat if two
simultaneous observations are detected by the microphones
in the kitchen and bathroom with a similar SNR of 12dB, the
formula 1, and the prior information from the naive estima-
tion give as activationAhkitchen = .87×Ao6

+.5×Ao7
= .69

which is higher than the bathroom activation Ahbath = .09
even when the SNR is similar.

4.3 Weight computation for Sweet-Home
wo,hi(tn) was computed in the same way as for the HIS for
DC and PID. However, conversely to contact sensors on
furniture and windows which are always linked to a unique
hypothesis, contact sensors on the indoor doors (IDC) can
be ambiguous regarding the location. The problem is to de-
cide which of the two rooms around the door should have
the highest weight. In that case, formula 3 was approxi-
mated with the conditional probability wo,hi = P (loc =
i | o.sensor, o.state, C), where o.state ∈ {Open/Close}
and C is the inhabitant’s location at time tn−1. This a pri-
ori knowledge was statistically acquired from an annotated
corpus different from the one used in the test.

Results of the conditional probabilities estimation indicate
that in 97% of cases when a door is open from a room then a
transition to the contiguous room is produced, whereas when
the door is closed the transition is less certain (66% of cases).

5 Experimentation
For each participant’s record, the events from DC, PID and
Mic were used to activate a dynamic network to estimate the
location of the inhabitant. Location performance was eval-
uated every second by comparing the context of the highest
weight to the ground truth. If they matched, then it was a true
positive (TP ), otherwise it was a confusion. The accuracy

Sensor PID DC Mic+ PID+ PID+ PID+
and prior information DC DC Mic Mic+DC
SH no prior info. 62.9 59.9 63.7 71.6 64.5 73.2
SH prior info. 62.8 73.3 77.4 81.7 64.6 84.0
HIS no prior info. 88.9 26.5 32.8 89.4 87.7 88.2
HIS prior naive info. 88.9 26.5 34.1 89.4 89.0 89.5
HIS prior stat. info. 88.9 26.5 34.8 89.4 89.7 90.1

Table 2: Accuracy with several combinations of sources

was given by Acc = nb(TP )/nb(test) where nb(test) cor-
responds to the duration of the record in seconds and nb(TP )
the number of seconds in which a TP was obtained.

For Sweet-Home a first experiment was done without us-
ing the prior probabilistic knowledge about room doors con-
tact sensors, afterwards the method was executed using these
probabilities to evaluate how significant their contribution is.
Likewise, three independent experiments were carried out
with the HIS corpus: without a priori (P (loc|Mic) = 1 when
the microphone was in the room, 0 otherwise), with the naı̈ve
approach and with the statistical approach. Table 2 shows the
results of both corpora using several combinations of sensor.

In the case of Sweet-Home, it is clear that the fusion of
information improved the accuracy since it rises as more sen-
sors information is combined. Even when the precision of
infrared sensors was good, the overall results of the method
using only these sensors was low (63%) as only two of them
were set in the 4-room flat. This led to a poor sensitivity. In
the second row, the accuracy using the information of door
contact on room doors is reported. It can be noticed that the
learned probabilities had a significant impact on the perfor-
mance. Here, the column DC includes also the results with
IDC. In every case, a priori information about IDC had a
positive impact on the performances, confirming that prior
knowledge can be used to improve the performance.

From HIS experiement, it can be noticed that, in some
cases, fusion of information did not improve the accuracy.
The door contact information slightly improved the accuracy
compared to that obtained only with the infrared sensors. On
the other hand, adding the sound information decreased the
performance (88.2 % versus 89.4 %). One reason for this
may the high level of confusion between sound and speech of
the AUDITHIS system which reached 25% of classification
errors. Nevertheless, once again an increase of performance
was achieved by means of the prior knowledge introduction:
results are better or similar in every combination of sensors
when using the probabilities. There is a slight advantage of
statistical approach over the naı̈ve one but the naı̈ve approach
does not require any dataset to be acquired and thus simplifies
the set up in new pervasive environements.

6 Discussion and Perspectives
The results showed that the information fusion by spreading
activation is of interest even when the sources have very good
accuracy. It is the case for infrared sensors (but with imper-
fect sensitivity) and for door contact sensors. The use of less
certain localisation sources, such as speech recognition, can
then improve performance in many cases. Another important
finding is that a priori knowledge about sensors is a possi-
ble leverage to gain a higher accuracy as it was done with the
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contact sensors of the room doors for the Sweet-Home cor-
pus and the microphones for the HIS corpus. In those cases,
the introduced knowledge was expressed in terms of condi-
tional probabilities and its exploitation was demonstrated to
be useful. Furthermore, the approach is general enough to
include different kinds of ambiguous sensor as input to the
dynamic network. Given the source, the probability of the
inhabitant being in a room given some feature of the sensor
data can be estimated and this prior knowledge can be applied
to enhance localisation. This is the case, for instance, of the
water meter. Even if this information cannot be directly used
for localisation, it is feasible to estimate the probability about
the inhabitant’s location given the change of flow rate in or-
der to use this probability when generating hypotheses in the
dynamic network.

Several ways to improve this method can be followed. So
far, besides direct information given by sensors, we have
applied some knowledge based on specific sensors features.
However, it would be advantageous to use other characteris-
tics of the environment. One way could be to use the topology
of the flat as in [Wren and Tapia, 2006]. For instance, an oc-
cupant can not move from the bedroom to the front door with-
out going through the lounge, etc. Further extensions of our
method include Markovian techniques to estimating the prob-
ability of the present inhabitant’s location given their prece-
dent location. We believe that it could be a relevant contribu-
tion when fusioned with the sources of information already
described in this work. The next step is to apply this method
to classify the sounds of everyday life using the location con-
text to disambiguate the sound classification, and to test the
general suitability of the approach by confronting the system
to actual users (elderly and frail people).
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Abstract

The success of many ambient intelligence applica-
tions depends on accurate prediction of human ac-
tivities. Since posture and movement characteris-
tics are unique for each individual person, the adap-
tation of activity recognition is essential. This pa-
per presents a method for on-line adaptation of ac-
tivity recognition using semi-supervised learning.
The method uses a generic classifier trained on five
people to recognize general characteristics of all ac-
tivities and a user-specific classifier briefly trained
on the user using a reduced number of activities.
The final decision on which classification to use
for a given instance is done by a meta-classifier
trained to decide which of the classifiers is more
suitable for the classification. An instance classi-
fied with a sufficient confidence is added into the
training set of the generic classifier. Experimental
results show that the activity recognition accuracy
increases by up to 11 percentage points with the
proposed method. In comparison with Self-training
proposed method performs better for up to five per-
centage points.

1 Introduction
Ambient intelligence (AmI) applications aim to provide rel-
evant response to the human presence and have been widely
researched and used in a variety of fields such as healthcare,
eldercare, ambient assisted living, security, etc. Applications
focused on user monitoring can benefit from efficient recog-
nition of the activity in many ways. When the recognition
is reliable the system can accurately detect deviations in the
user’s behavior, provide proper assistance and support in ev-
eryday life as well as adjust the environment and application
to the user’s habits, etc.

The most commonly used approach in activity recognition
is supervised machine learning[Lesteret al., 2006]. Appli-
cations based on this approach are usually deployed with a
generic classifier trained on the data collected in the labora-
tory environment and not on the behavior of the new end-user.
In most cases once the system is trained and deployed it does
not change anymore. The accuracy of activity recognition
is thus affected by the difference in physical characteristics

between the end-user and the people used in training. Con-
sequently, the accuracy on real-life end-users with different
characteristics may be substantially lower than in laboratory
tests. Some approaches improve the activity recognition by
using spatio-temporal information[Wu et al., 2010].

The method we propose is trying to overcome the gap be-
tween end-users and the people used in training. This is
achieved by employing two additional classifiers along with
the generic classifier trained on general characteristics of the
activities. The user-specific classifier is briefly trained during
the initialization procedure on user specifics and the meta-
classifier is trained to designate which of the activity recog-
nition classifiers will label an instance. If the classification
confidence value surpasses a specified threshold, the instance
is added into the training set of the generic classifier. This
method was deployed and validated in the project Confidence
[2011], which uses a real-time localization system based on
Ultra-wideband (UWB) technology with four wearable tags.
The experimental results show that the activity recognition
accuracy increases for up to 11 percentage points with the
proposed method and in comparison with Self-training it per-
forms better for up to 5 percentage points.

The paper is structured as follows. The related work on
semi-supervised learning and adaptation of activity recogni-
tion is reviewed in Section 2. Section 3 introduces our ex-
perimental domain; Section 4 presents the proposed semi-
supervised method and specifics of the learning procedures.
In Section 5 we present the experimental results including
method validation and comparison. Finally, Section 6 con-
cludes the paper.

2 Related Work
Semi-supervised learning is a technique in machine learning
that can use both labeled and unlabeled data. It is gaining
popularity because the technology makes it increasingly easy
to generate large datasets, whereas labeling still requires hu-
man effort, which is very expensive. The approach where
the human annotator is required when the classifier is less
confident in labeling is called Active learning[Settles, 2009].
Since in our case the human interaction is undesirable the Ac-
tive learning approach is inappropriate, therefore we will fo-
cus on other semi-supervised learning techniques.

There are two categories of semi-supervised learning[Zhu,
2005]: single-classifier that use only one classifier and multi-
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classifier that use multiple classifiers, which can be split into
multi-view and single-view approach. Key characteristic of
a multi-view method is to utilize more feature independent
classifiers on one classification problem. Single-view meth-
ods use classifiers with the same feature vector but differen-
tiate considering the algorithm used for learning. We will
review the techniques that relate to our proposed method.

The most common method that uses a single classifier is
called Self-training. After an unlabeled instance is classi-
fied, the classifier returns a confidence in its own prediction,
namely the class probability. If the class probability thresh-
old is reached the instance is added to its training set and the
classifier is retrained. The Self-training method has been suc-
cessfully used on several domains such as handwriting word
recognition[Frinken and Bunke, 2009], natural language pro-
cessing[Guzḿan-Cabreraet al., 2008], protein-coding gene
recognition[Guo and Zhang, 2006], etc.

Self-training was also applied to activity recognition by
Bicocchi et al.[2008]. The initial activity recognition classi-
fier was trained on the acceleration data and afterwards used
to label the data from a video camera. The classified instances
from the camera were added into the feature vector of the ini-
tial classifier and used for further activity recognition. This
method can be used only if the initial classifier achieves high
accuracy, since errors in confident predictions can decrease
the classifier’s accuracy.

Co-training [Blum and Mitchell, 1998] is a multi-view
method with two independent classifiers. To achieve indepen-
dence, the attributes are split into two feature subspaces, one
for each classifier. The classifier that surpasses a confidence
threshold for a given instance can classify the instance. The
instance is afterwards added to the training set of the classifier
that did not surpass the confidence threshold.

Democratic Co-learning[Zhou and Goldman, 2004] is a
single-view technique with multiple classifiers. All the clas-
sifiers have the same set of attributes and are trained on the
same labeled data with different algorithms. When an unla-
beled instance enters the system, all the classifiers return their
class prediction. The final prediction is based on the weighed
majority vote amongn learners. If the voting results returned
95% confidence or more the instance is added into the train-
ing set of all classifiers.

The modified multi-view Co-training algorithm called En-
Co-training[Guanet al., 2007] was used in the domain of
activity recognition. The method uses information from 40
sensors, 20 sensors on each leg to identify the posture. The
multi-view approach was changed into single-view by using
all data for training three classifiers with the same feature vec-
tor and different learning algorithm which is similar to previ-
ously mentioned democratic Co-learning. The final decision
on the classification is done by majority voting among three
classifiers and the classified instance is added into the train-
ing set for all classifiers. This method improves the activity
recognition; however the number of sensors is to high for un-
obtrusive system.

The method we propose is a single-view approach with two
classifiers. Both are trained with the same algorithm but on
different data. We use a third classifier to make the final pre-
diction.

3 Confidence: A Brief Overview

The Confidence is an intelligent system for remote eldercare.
The main objective is to detect deviations in short-term and
long-term behavior of the end-user. There are currently three
prototypes of the system in the verification phase in multiple
European countries.

Figure 1: Simplified structure of the Confidence system. The
method described in thispaper is implemented as one of the
reconstruction modules.

The simplified structure of the system is shown in Figure
1. The inputs to the system are the coordinates of four tags
worn by the user. The coordinates are provided by the UWB
real-time localization system Ubisense[Ubisense, 2010]. The
user has a tag attached to the chest, waist and both ankles. The
stated accuracy is approximately 15 cm but in practice larger
deviations were observed.

The received data is sent to the pre-processing, where all
four position coordinates are assembled into the current state
in time denoted as snapshot. Each snapshot is processed by
three filters. First, a median filter is applied, which elimi-
nates large short-term changes in tag locations due to noise.
Second, a filter that enforces anatomic constraints is used.
This filter corrects errors such as an apparent lengthening of
a limb. Third, the Kalman filter is applied, which smoothes
sharp changes in both locations and speed.

The attributes for the recognition classifier are calculated
from the filtered values. The attributes are the distances be-
tween the tags, velocity of the sensors and raw coordinates.
For detailed explanation of the attributes the reader is referred
to [Luštrek and Kalǔza, 2009] where the authors used up to
twelve tags to find appropriate attributes. The majority of the
attributes computed by this module are for activity recogni-
tion by machine learning. The goal of activity recognition
is to accurately identify the following eight human postures:
lying, standing, sitting, falling, sitting on the ground, on all
fours, going down and standing up.

The recognized activities serve as one of the inputs for the
interpretation and detection modules focused on determining
possible short-term or long-term behavior deviations[Luštrek
et al., 2009], that may indicate a health problem. Additional
inputs are the characteristics of the user’s movement, such as
the speed of movement and various gait properties, and the
user’s location in the room with respect to the furniture (bed,
chair). When a short-term deviation is detected, an alarm is
raised and the output module issues a call for immediate help.
When a long-term deviation is detected, a warning is sent de-
scribing the deviation, which may help a medical professional
to determine whether it is a sign of an emerging disease.

Misclassification of the activity can result in a false positive
alarm and in the worst case even in a false negative alarm,
which can directly jeopardize the end-user’s wellbeing. This
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shows that it is essential to accurately classify the activities in
order to avoid such hazardous situations.

The main reason for misclassification of the activity, if we
discard the noise, is the difference in the physical character-
istics among users. The generic classifier employed in the
system is trained on data of isolated set of people and does
not contain the specific characteristics of the end-user. To
overcome this problem we apply the method presented in the
next section, which enables the system to learn the specifics
of the user with semi-supervised learning.

4 The Adaptation Method
The Confidence system as well as other AmI systems that
continuously monitor a user produce a large amount of unla-
beled data for a particular end-user. These data are usually
discarded, but they can be used to adapt the activity recogni-
tion classifier to the particular user.

We propose a method that adapts a system equipped with a
generic classifier for activity recognition to a particular end-
user.

The method consists of two steps:

• Initialization step

• On-line learning step

The initialization step is executed only once when the system
is introduced to the end-user for the first time. During this
process short labeled recordings of a subset of activities are
made and used for training the user-specific classifier. The
on-line learning operates in a non-supervised fashion, where
both the user-specific and the generic classifiers are utilized
for activity recognition. Activities classified with a sufficient
confidence are used as additional training data for the generic
classifier, which over time becomes adapted to the end-user.
User-specific classifier is never retrained.

4.1 Initialization Step
The initialization step is performed only once at the beginning
to introduce a new user to the system.

During this step the user is briefly recorded while perform-
ing basic activities that are defined in the recognition reper-
toire, namely standing, lying and sitting, since they are easy
to perform. The transition activities such as falling, going
down, standing up, sitting on the ground and on all fours are
non-basic activities, since they are either uncomfortable to
perform or very hard to label. The user is asked to perform
each basic activity for a certain amount of time, in our case
60 seconds. During the recording procedure the captured data
is labeled and used for the initial training of the new user-
specific classifier.

The initialization step also involves modification of the
generic classifier. The attributes related to the user’s height
are scaled by multiplying the value with the quotient of the
user’s height and the average height of the people used for
generic classifier training. After the normalization the generic
classifier is retrained.

The initialization step results in a new user-specific clas-
sifier and a modified generic classifier, both involved in the
next step.

4.2 On-line Learning
The on-line learning step starts after the initialization and is
performed until the stopping criterion is met, that is when the
generic classifier is chosen to label most of the new istances.

The flow chart of the algorithm is presented in Figure 2.
An unclassified instance is separately classified by two clas-
sifiers, the generic classifier and the user-specific classifier.
Each of them returns the class distribution for the current
instance. The meta-classifier decides which of the activity
recognition classifiers is more likely to predict the class cor-
rectly. If the probability for the class returned by the chosen
classifier surpasses a threshold, the instance is added to the
training set of the generic classifier. In our case the threshold
is 100%. After a period of time the generic classifier con-
taining additional instances is retrained and thus adapted to
the characteristics of the user. In our case we retrained the
classifier every five minutes.

Figure 2: A work-flow of the on-line adaptation method.

To achievea degree of balance between the classes and to
add weight to the non-basic class instances added to the train-
ing set of the adapted generic classifier, the basic class in-
stances are added only once, whereas the non-basic instances
are added in triplicate. Adding only one or two instances re-
sulted in slower learning. The reason for adding instances
into the generic classifier and not the user-specific classifier
is that the latter one is not equipped to handle all known ac-
tivities, only those on which it was trained during the initial-
ization step.

4.3 The Classifiers
The Generic classifier was build from the data we con-
tributed to UCI Machine Learning Repository, under the title
Localization Data for Person Activity, which was also used by
Kaluža et al.[2010]. This dataset contains recordings of five
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ML Algorithm Attribute combination and accuracy %
Snapshot + Set 1 Set 1 Set 3 Set 1 + Set 3 Set 1 + Set 2

SVM 86.6 92.9 88.9 87.8 88.3
C4.5 96.8 95.4 96.1 96.6 95.9
Random Forest 90.9 95.9 96.6 96.9 97.4
Naive Bayes 61.0 75.7 70.1 68.8 82.3
AdaBoost 88.6 84.8 84.6 84.6 79.0
Bagging 96.9 94.7 95.8 96.2 95.8

Table 1: Attribute and machine learning algorithm combinations tested with theMeta-classifier.

people performing a scenario composed of eight activities:
lying, standing, sitting, going down, standing up, sitting on
the ground, on all fours and falling. The output of the generic
classifier is the probability distribution over the classes corre-
sponding to the eight activities given by Equation 1.

PrG = [PrG(C1), . . . , P rG(C8)] (1)

For validation of this classifier we used leave-one-person-
out approach, where a classifier is built using the data of four
persons and tested on the data of the fifth person. The classi-
fier was trained using the Random Forest algorithm[Breiman,
2001] with attributes as described in Section 3. For the im-
provement of this classifier, we used the height of the end-
user to scale the values of the height-related attributes. The
scaled attributes are only the distances between the tags re-
garding the z-coordinate, since other attributes do not reflect
the height. The measured accuracy was 86%.

TheUser-specific classifieris trained on the data recorded
during the initialization procedure. Each posture is recorded
for 60 seconds and given the sampling rate of 10 Hz we get
approximately 1200 instances for the classifier training. This
classifier was trained with the Random Forest algorithm. The
feature vector is the same as in the generic classifier. The
user-specific classifier is not able to recognize all activities.
In our case it is trained to recognize basic activities: lying,
standing and sitting; it has no knowledge about other activi-
ties. The output is the probability distribution over the eight
classes given by Equation 2, where the unknown classes have
zero probability, i.e. sitting on the ground, falling, on all
fours, going down and standing up.

PrU = [PrU (C1), . . . , P rU (C8)] (2)

TheMeta-classifier is used to determine the final activity
of the current instance. It is trained before the system is de-
ployed and is not adapted to the end-user. We compared the
accuracy using several possible attribute sets for the meta-
classifier. The results of the sets with best results are shown
in the Table 1, where snapshot presents a current state of four
tags.

The attributes in set 1 are represented by Equations from 3
to 8.

CG = argmaxi=1...8(PrG(Ci)) (3)

CU = argmaxi=1...8(PrU (Ci)) (4)

PGCG
= PrG(CG) (5)

PUCU
= PrU (CU ) (6)

BCLASS =

{

1, if Ci ∈ {standing, sitting, lying}
0, otherwise (7)

EqualC =

{

1, if CG = CU

0, otherwise (8)

TheCG andCU represent the classification of the Generic
and User-specific classifier, which are the classes with the
highest probabilities in the class distribution. These probabil-
ities are represented byPGCG

andPUCU
. The binary attribute

BCLASS tells whether the classification returned by the clas-
sifier selected by meta-classifier is a basic activity. The at-
tribute represented byEqualC tells whether the generic and
user-specific classifier returned the same class.

Set 2 contains only the two attributes represented by Equa-
tions 9 and 10: the probability for the class selected by the
user-specific classifier as computed by the generic classifier
PGCU

and the probability for the class selected by the generic
classifier as computed by the user-specific classifierPUCG

.

PGCU
= PrG(CU ) (9)

PUCG
= PrU (CG) (10)

The attributes in set 3 are the z-coordinates of all tags, the
distance between the chest and ankles and the distance be-
tween the chest and waist. Experiments showed that the dis-
tances in set 3 are not person-independent. Since the meta-
classifier is not adapted to the end-user, these attributes had
to be omitted.

The training of the meta-classifier was done on 60 minutes
of labeled data of a person not used for further experiments.
The data was collected from the recordings of a person per-
forming a sequence of activities defined by the scenario. Each
instance from the recording was passed over to the generic
and user-specific classifier for classification. The class of the
meta-classifier was defined according to the true class of the
input instance and the relation to the prediction of the activ-
ity classifiers. We have tested all sensible combinations of
the sets and the results five with the best results are shown
in Table 1. The results show that the highest accuracy was
achieved using attributes from the sets 1 and 2 and the Ran-
dom Forest algorithm.
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Activity Class Person 1 Person 2 Person 3 Person 4
Start End Start End Start End Start End

Lying 81.6 87.8 96.8 98.4 75.2 75.7 94.3 98.0
Standing 95.5 98.5 92.8 98.6 96.2 98.8 89.3 99.4
Sitting 35.9 80.1 88.7 99.1 52.2 76.5 75.0 97.7
Going down 52.0 52.9 42.7 54.6 51.8 55.4 16.7 12.8
Standing up 56.7 57.5 57.8 58.4 42.6 43.0 44.3 50.5
Sitting on the ground 28.8 63.4 22.0 40.2 83.3 86.6 46.5 36.1
On all fours 100 77.8 20.0 24.0 82.6 84.8 38.5 42.3
Falling 3.6 18.7 42.0 46.0 14.3 24.3 1.0 2.1
Overall 73.0 84.1 76.8 83.4 76.4 82.0 77.1 83.1

Table 2: The results of the on-line semi-supervised learning on four people. Theresults show the accuracies for each class and
the overall accuracy (%) before the normalization and after the adaptation.

Person
1 2 3 4

Difference in height (cm) -18 -16 -5 +12
Starting accuracy (%) 73.0 76.8 76.4 77.1
Accuracy after normalization (%) 79.9 77.1 79.0 77.2
Accuracy after on-line adaptation (%)84.1 83.4 82.0 83.1

Table 3: The difference in height per person according to the average height ofthe generic classifier, accuracy of the generic
classifier before the adaptation process, increase in accuracy after normalization and the accuracy of the generic classifier after
on-line adaptaion.

5 Experimental results
The method was integrated as one of the reconstruction mod-
ules in the Confidence system and was run on four different
people with different physical characteristics. For the test set,
every person performed the same sequence of activities de-
fined in a scenario. The scenario captured typical daily ac-
tivities during entire day, as well as some falls. A part of
the scenario that represents the morning is for example ly-
ing in the bed, waking up, walking to the bathroom, sitting
in the bathroom and falling in the bathroom. Each continu-
ous sequence of the scenario lasted approximately 20 minutes
and was repeated by the same person five times. Four of the
recordings of each person were used for on-line learning and
the final one to test the accuracy of the adapted classifier.

The experimental procedure was as follows: the system
was initialized for the specific user (1 minute each basic ac-
tivity), the user-specific classifier was trained and the generic
classifier was normalized to the user’s height. We learned in
preliminary experiments that the scaling of all attributes for
all instances can lead to higher noise for the activities taking
place close to the ground. The misclassification happens be-
cause the lying activity is often classified as other activities
where the z-coordinates of the chest and the waist are rela-
tively close, for example on all fours. To avoid these types
of misclassification we omitted the normalization of the ly-
ing instances. Attributes that are representing the distances
between tags were selected for the normalization.

After the initialization process the on-line learning was
started. The algorithm was run on four 20-minute record-
ings for each tested person and the accuracy of the adapted

generic classifier was calculated every five minutes. The ac-
curacy evaluation was done on the fifth recording of the per-
son that was not used in the on-line learning procedure. The
analysis of the progress of the adaptation process has shown
that in the beginning all the instances added to the training
set belonged to a basic class. During the fourth recording the
majority of instances belonged to a non-basic class. In the be-
ginning of the on-line learning the superior knowledge of the
user-specific classifier was exploited to teach the generic clas-
sifier about the basic classes’ specifics for the current user.
As a consequence, later in the process generic classifier was
more confident in the classification of the non-basic activities.

The results of the adapted generic classifier after the last
processed recording are shown in Table 2. The table presents
the accuracies of each class and the overall accuracy of the
generic classifier before normalization and after the stopping
criteria of the on-line learning was reached. The stopping
criterion was reached in case the generic classifier classified
all instances in the last 10 minutes.

The improvement of the generic classifier accuracy after
normalization can be seen in Table 3. The table presents the
difference in height regarding the average height of the peo-
ple used in generic classifier, accuracy of the generic clas-
sifier before the process of adaptation started, accuracy of
the generic classifier after normalization and accuracy of the
adapted generic classifier. In the case of Persons 2 and 4 we
see that normalization does not improve the generic classifier
much and with the proposed method we can gain more than
5 percentage points of accuracy as seen in Table 2.

The proposed method was compared with the well known
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Method Gain in accuracy per person (pp)
1 2 3 4

Self-training +8.63 +1.14 +2.08 +3.29
Proposed method +11.10 +6.60 +5.60 +6.00
Difference +2.47 +5.46 +3.52 +2.70

Table 4: The comparison between Self-training and our pro-
posed method.

method for semi-supervisedlearning called Self-training.
The results are presented in Table 4. We can observer that
Self-training did increase the accuracy of the generic clas-
sifier, however our proposed method outperformed the Self-
training by at least 2.47 percentage points and in best case by
up to 5.46 percentage points.

6 Conclusion
This paper describes a method for on-line semi-supervised
learning. The method uses generic, specific and meta-
classifier. It was validated on the adaptation of the activity
recognition. We showed that because of the difference in
physical characteristics among the people, this method can
be used to select informative instances in real-time and re-
train the generic classifier to adapt it to a specific user. If we
omit the gain in accuracy by simple height normalization, we
can still show an increase in accuracy of 5 percentage points.
The method was compared with Self-training method and the
results showed that our proposed method outperformed it by
3.5% on average.

In thefuture the method should be compared with other
known methods for semi-supervised learning and additionally
verified on more people. To improve the method we will in-
troduce a measure to balance the classes, since some of them
have considerably more instances than others. For long-term
use of the method it would be necessary to introduce aging
of data. Finally, since this method has proven successful on
our activity recognition domain, it should be tested on other
domains as well.
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Abstract
Gesture recognition is an important communication
modality for a variety of human-robot applications,
including mobile robotics and ambient intelligence
domains. Most gesture recognition systems focus
on estimating the position of the arm with respect
to the torso of a tracked human. As an alterna-
tive, we present a novel approach to gesture recog-
nition that focuses on reliable detection of time-
dependent, cyclic “beats” given by a human user.
While the expressiveness of “beat-based” gestures
is limited, beat-based gesture recognition has sev-
eral benefits, including reliable 2D gesture detec-
tion at far ranges, gesture detection anywhere in the
image frame, detection when the human is mostly
hidden or obscured, and secure detection via ran-
domly rotated beat patterns that are known only by
the user and the perception system. In addition to
discussing this complimentary approach to gesture
recognition, we also overview a preliminary imple-
mentation of beat-based gestures, and demonstrate
some initial successes.

1 Introduction
Gestures form the basis of most non-verbal human com-
munication. Thus, reliable gesture recognition is an im-
portant communication modality for a variety of human-
robot applications [Kojo et al., 2006; Jenkins et al., 2007;
Waldherr et al., 2000], including mobile robotics and ambient
intelligence domains. Gesture recognition can be used alone,
or in conjunction with speech [Nicolescu and Mataric, 2003;
Rybski et al., 2007], to communicate spatial information, de-
liver commands, or update an intelligent observer on the sta-
tus of the human. Pose-based gesture recognition techniques
that estimate the position and orientation of the arms with
respect to the torso have recently received a great deal of at-
tention, especially depth-based efforts like Microsoft’s Kinect
and other infrared systems [Knoop et al., 2006a].

Much of the research in both 2D and 3D gesture recogni-
tion [Dalal et al., 2006; Knoop et al., 2006b; Sminchisescu

∗This work was funded by U.S. Army Phase I STTR Contract
W56HZV-10-C-0443.

and Telea, 2002] (including our own previous work [Loper
et al., 2009]) has utilized a familiar perception precessing se-
quence: 1) segment the human from the background, 2) es-
timate the pose of the limbs and torso, 3) classify the con-
figuration as a particular gesture (or no gesture). For 2D
perception systems, the full object segmentation, including
the recognition of individual body parts for the purposes of
pose estimation, is the dominant computational cost. One of
the reasons for the emerging popularity of depth-based sys-
tems is easier object segmentation, easier 3D pose estima-
tion, and well-defined scale. However, even for 3D percep-
tion systems, where these computational costs are lessened,
there may still be high cost in reliably recognizing an evolv-
ing series of poses as a gesture.

Regardless of the sensors used, there are both practical and
engineering disadvantages to any pose-based gesture recog-
nition system. First, creating a sensor suite that can reliably
track, estimate, and classify human limbs and torso in a va-
riety of environments is a large challenge. 3D sensors that
work well indoors do not often work well outdoors, and 3D
sensors that work well in all illumination conditions are of-
ten prohibitively expensive. Additionally, any 2D or 3D sen-
sor will have difficulty maintaining reliable pose estimation
of the human’s limbs over large distances. In fact, there are
many situations where gestures may be needed but where the
human’s torso or arms may not even be fully observable.

In these situations, where practical or resource consider-
ations make pose-estimation techniques less appropriate, it
is ideal to have an alternative system that is less reliant on
the need for accurate object recognition and modeling. We
present just such an alternative approach that is based purely
on motion observed by a 2D camera—specifically on the de-
tection of cyclic motions. Our “beat-based” system can re-
liably detect well-timed waving of the arm in a horizontal
or vertical direction without the need for object recognition
of any kind. As an example, our initial implementation rec-
ognizes when an operator waves their hand back-and-forth
roughly once a second—in other words, a cyclic motion to a
1Hz “beat”. While the expressiveness of “beat-based” ges-
tures is limited compared to pose-estimation system, beat-
based gesture recognition has several benefits. Beat-based
gestures can be detected in a 2D image stream at near or far
distances. Detection can occur anywhere in the image frame,
which allows the human to be hidden, or allows attention to
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Figure 1: A motion-based gesture system allows for signals to be
provided even if the user is hiding.

be focused on a particular location of the image. Also, by
allowing the perception system to randomly change the re-
quired beat frequency, only a user with knowledge of the cur-
rent beat will be able to signal the robot or sensor-equipped
environment. These characteristics make beat-based recog-
nition a natural complement to more traditional recognition
systems that try to determine the exact posture and motion of
a well-perceived human.

2 Motivation and Approach
While close-proximity, unobscured gesture recognition is
possible in a large number of scenarios, many situations re-
quire a user to send (at least simple) signals to the robot in
more obfuscated environments and at greater distances. For
example, an operator may lead a robot to a particular loca-
tion and ask it to begin patrolling. Later, the operator may
wish to interrupt the patrol and ask the robot to “heel”. Ide-
ally, the operator should be able to do this at the limits of the
visual range of the robot. Another relevant example is that
of a medic or bomb disposal soldier needing to signal an au-
tonomous robot without exposing their body to an unsafe line
of sight (see Figure 1). Similarly, an emergency worker may
want to signal a robot that is partially occluded by debris,
smoke, or fire.

Our attempts at beginning to address this problem have
been guided by the observation that, in terms of difficulty
for monocular perception: pose-estimation � recognition �
feature detection. “Difficulty” here refers both to the com-
putational and data/sensor resources required. For example,
pose-estimation usually requires not only a fast system to
perform real-time spatial modeling but also relatively high-
resolution data. For a practical example, consider that even
analog consumer cameras have long been built with the abil-
ity to be triggered by motion, as motion detection is simple.
While most modern digital consumer cameras can perform
rudimentary facial recognition to locate possible humans in-
side a photo, most consumer camera capabilities (as of this
writing) do not yet have the computational ability to reliably
track the orientation of bodies, arms, etc. As such, it would
be ideal for camera systems to focus on regions and trigger
upon detecting specific human-made motion signals. Such a
system would always have greater range than pose detection
(or even face detection) and would require fewer resources.

Inspired by similar work commonly done with time-based
signals [Carlotto, 2007], this paper represents an exploration
into the viability of the approach to gesture recognition. In
adapting the idea of purely motion based recognition to the
2D spatial domain, we have come to focus on the detection
of repetitive motion at specific frequencies. Thus, we call the
resulting gestures “beat-based” gestures. By focusing on mo-
tion alone, there is no need for higher level recognition (e.g.,
of arms and hands), and motions involving relatively few pix-
els can be detected, which support ranges further than most
3D sensors can handle and at the effective range of most 2D
sensors. Our initial experiences indicate that these advantages
may well be realizable in a low-cost, easy-to-build sensor sys-
tem, and that the topic warrants further study.

3 Implementation
Our beat-based gesture approach has been implemented in
two distinct ways. In the first iteration, the software was
completely correlation based, where changes in pixels were
correlated to know cycle times. In order to provide for more
flexibility and to require less precise gestures, the more recent
implementation is based on motion analysis similar to optical
flow.

3.1 Initial Implementation
The first iteration of our system was correlation based. A pre-
defined oscillating signal, a beat, was given to a sensing pro-
gram and to the operator (in the form of a flashing light). Mo-
tion, perceived as texture (i.e. pixel intensity) changes within
the video stream was correlated with this signal. If the cor-
relation reached a certain threshold, the pixels involved were
considered to represent an executed gesture. To perform a
gesture, the operator simply timed his or her movements to
the flashing light.

In practice, this system was capable of a greater range of
gestures than the simple binary set implied by the correlation
threshold because depending on the type of movement, for
example pendulation with the hand facing up versus down,
different shaped patterns of pixels would reach the correla-
tion threshold before others. These patterns could be distin-
guished from each other and this allowed for a simple two
gesture take-off and land control of an AR Drone (see Fig-
ure 2).

In practical testing (e.g., in outdoor environments) the sys-
tem required the operator to perform only five or six cycles of
a gesture before detection. However, the high amount of user
feedback needed was impractical and the need for strong syn-
chronization in the system made implementation and param-
eter changes difficult. To address these problems the system
was extended to allow for the detection of oscillations simply
approaching (rather than being very accurately synced) with a
target frequency at any phase. This required a more complex
motion perception system.

3.2 Motion Perception
One of the traditional tools for motion analysis is optical
flow [Lucas and Kanade, 1981]. Optical flow is often cal-
culated by searching for a collection of per-pixel motion vec-
tors that best explains the evolution of a series of images with
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Figure 2: The initial implementation, here used to launch and land
a drone, was based on a correlation threshold between a supplied
signal (a “beat”) and perceived motion.

respect to a number of constraints. Such constraints usually
include: 1) that the changes in the pixel intensity values of
an image sequence are due purely to motion, 2) that move-
ments that change the relationship of a pixel to its neigh-
bors (in terms of intensity values) are less likely than those
that do not, 3) that a pixel is more likely to be involved in
a motion similar to one its neighbors are involved in. In the
nomenclature of the literature, these constraints are known as
the optical flow constraint, the gradient constancy assump-
tion, and the smoothness constraint. Typically, assumptions
and constraints of optical flow are treated as costs and the
set of best motion vectors is discovered by solving a min-
imization/optimization problem. Solving such an optimiza-
tion problem can be quite computationally intense and is of-
ten not possible in real-time without specialized hardware or
programming techniques.

Our motivation for having a motion-focused system is that
motion is a salient and local feature. Many of the constraints
of optical flow, when taken together, are equivalent to a non-
local analysis of image structure. For example, many fast ap-
proximations of “true” optical flow are implemented in terms
of tracking higher-level features such as corners. To make our
motion analysis as local as possible and to avoid the compu-
tational complexity of optical flow, we implemented our own
simpler alternative based on a single assumption/constraint:
All detected texture changes are due to the motion of persis-
tent objects. In the implementation, this assumption is ap-
plied by keeping a record of the time since each pixel expe-
rienced a texture (i.e. pixel intensity) change greater than a
set threshold. When the assumption above holds, gradients
within the resulting value field capture the direction of the
motion of objects (see Figure 3). The current system classi-
fies such motion as mainly left-right or up-down, but future
systems could use more nuanced information.

On top of this motion perception facility, we implemented
a visual oscillation detector that could be tuned to a particu-

lar frequency. We adapted a state machine approach similar
to the one often used in visual synchronization. Initial results
have been encouraging, with low overhead for accurate detec-
tion. In this state machine approach every pixel is assigned a
counter and a timer. For horizontal detection, when a left-
ward motion is detected the timer is reset. When a rightward
motion is detected the current value of the timer is examined.
If the timer’s value is close (by a pre-determined tolerance)
to the amount that would be expected given the oscillation
frequency being sought out, the counter is incremented. Pix-
els whose counter exceeds a threshold are considered to be
involved in oscillations at the target frequency. The system
detects a gesture when a target number of pixels are actively
involved in such oscillations.1 Because we classify motion as
horizontal or vertical based on the motion gradients, oscilla-
tions based on horizontal motion can be detected as distinct
from oscillations made by vertical motion.

It is important to note that the beat-based gesture detection
is based the frequency of alternating left-right or up-down
motions and not simply on the frequency of motion. The sys-
tem is thus only sensitive to properly oscillating motions and
not other forms of cyclic motion. The system would not, for
example, respond to a blinking light, even if it was blinking at
the target frequency, nor would it respond to a rotating object
whose period of rotation was the target frequency.

To test this algorithm’s reliability in far-range, outdoor sit-
uations, we tuned the system to trigger a detection after see-
ing three consecutive back-and-forth oscillations at 1 Hz. 1Hz
was chosen to eliminate the need for operator training or an
externally provided beat: 1 Hz corresponds roughly to count-
ing out loud. The oscillations could occur at any location in
the 640×480 images of the motionless camera. Even with
this low-resolution camera, we were able to achieve a work-
ing distance of ∼25.6 meters (∼84 ft) with highly reliable de-
tection of 1 Hz arm gestures and with no false positives (even
with palm trees blowing and vehicles driving in the distance).
We did notice a reduction in recognition quality whenever the
background has a similar intensity to the human’s arm. Wear-
ing dark sleeves against a light background (or light sleeves
against a dark background) can overcome this issue in the ini-
tial implementation. Figure 4 shows images from this testing,
where the camera used for beat-based gestures is mounted on
a mobile robot base.

3.3 Increasing Expressiveness
Although the system could demonstrate highly reliable oscil-
lation detection at far ranges using a still camera, our beat-
based recognition suffered from occasional false positives
when mounted on mobile platforms operating in highly dy-
namic environments. These false positives were overcome in
two ways. First, whenever the camera itself is moving (known
by monitoring any pan-tilt devices or the robot base), the
gesture software ignores the incoming camera frames. This

1One advantage to this entire approach is that all operations are
performed on a per-pixel basis except for the final counting of oscil-
lating pixels and the calculation of the local motion gradients; how-
ever, even in these cases a very limited number of neighboring pixels
are involved.
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(a) (b)

(c) (d)

Figure 3: (a, b) Motion causes temporal changes in pixel values. (c) A “trail” image is created recording which pixels were active changing
over time (brighter indicates more recently changed pixels). (d) Determining the gradient of a pixel in the trail image can be used to determine
its direction of motion. Here, the high degree of red corresponds to a rightward gradient and indicates the person must be moving rightward.
(There is a low number of green (“leftward”) pixels in the image.)
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(a)

(b) (c)

Figure 4: (a) Even with 640x480 resolution images, the beat-based gestures work well at far distances. (b) An example image from the
camera at the maximum distance where gestures work reliably. Notice the small number of pixels that fall onto the user’s right arm. (c) When
the background intensity (grayscale) is similar to the user’s arm intensity (left arm in image), the arm motion cannot be separated from the
background, resulting in a failure. Future efforts will focus on overcoming these threshold problems.

reduces false positives caused by ∼1 Hz oscillations due to
panning or tilting of the camera back and forth. This reduces
many false positives, but also means that the robot must be
perfectly still when beat-based gestures are given. This is ac-
complished by having an adequate “dead-zone” for any actu-
ation (pan-tilt, zoom, or mobile base control) during tracking
behaviors.

To further reduce any false positives and to extend the ex-
pressiveness of the system, we decided to augment the system
with human tracking information. Given the rough location
of the tracked human, the 2D camera image is divided into re-
gions of interest that correspond to areas to the left and right
of the operator’s torso (see Figure 5(a) and http://www.
youtube.com/watch?v=83Six7g8lMM). Regions of
interest reduce false positive detections caused by a number
of factors—most often the human’s own body rocking back

and forth during conversation or other natural activities. By
estimating the distance/scale of the person, the regions of in-
terest grow and shrink as the leader moves closer and nearer
to the camera. This has the added benefit of allowing the beat-
based software to be more sensitive when the leader is further
away, resulting in improved performance at far distances.

In addition to reducing false positives and increasing op-
erating range, knowing the leader location also allows us
to distinguish beat gestures made with the left or right arm
(Figure 5), giving us 4 signals (left/vertical, left/horizontal,
right/vertical, right/horizontal). Videos showing left/right
arm beat-based gesture recognition working both indoors and
outdoors and turning on and off different tracking and fol-
lowing behaviors can be seen at http://www.youtube.
com/watch?v=55F928QVXOI.

As it was available on the mobile platform, the hu-
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(a) (b)

(c) (d)

Figure 5: Utilizing human tracking information, right and left arm oscillations can be distinguished; thus, in addition to left-right and up-down
beats, the system can determine whether the beats came from the left or right arm of the torso. This results in 4 different gestures that the
current system can recognize. (a) Given 3D torso tracking, depth-scaled activation regions to the left and the right of the torso can be used to
further refine “beat-based” gestures. (b) An oscillation of the right arm is performed. (c) The final frame of the trace is used to classify the
location of the oscillation with respect to the tracked individual. (d) Here, we show the system correctly identifying the activation region that
contained the gesture.
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man tracking used for augmentation of the system was
depth-based. Specifically, a custom 3D template match-
ing approach was used. As such, the low level of track-
ing accuracy required to distinguish left from right arm
beat gestures makes it very likely that an alternative, less
resource-intensive, approach such as facial recognition, tradi-
tional people-following [Schulz, 2006; Gockley et al., 2007],
texture-based tracking, or even sound or radio-based localiza-
tion could have been used to achieve similar results.

4 Future Work
As mentioned, we have noticed that the intensity thresholds
used for real-time motion detection might not always distin-
guish the human’s arm from backgrounds of similar inten-
sity. In the future, will focus on refining the algorithms to
increase the reliability of far-range gesture recognition and to
recognize more complex motions. First, we will use more
principled approaches to segmenting the moving portions of
the image stream from the static background. Rather than us-
ing static thresholds, we can use thresholds that quickly adapt
to particular environment and lighting conditions. Kaew-
TraKulPong and Bowden [2001] present a method that we
have used in the past to quickly and reliably pick out motions
from image sequences while ignoring sensor noise (see Fig-
ure 6). Similarly, we plan to create alternative methods for
motion perception, such as adding an additional smoothness
constraint, which should eliminate sensitivity to spurious or
unintended movement. This would allow beat-based gesture
detection to compensate for camera movement, from pan/tilt
actuation or from the base rotation/translation.

Next, we will investigate a larger variety of beat-based mo-
tions. Our initial implementation cannot distinguish between
oscillations at the target frequency (typically 1 Hz in testing)
and higher frequency harmonics. This means that providing
a beat gesture at a higher multiple of the desired frequency
(e.g., at 2 or 3 Hz) is equivalent to providing the gesture at
the desired frequency; however, it may be beneficial to allow
beat gestures at 2 Hz or 3 Hz to mean different things. Cate-
gorizing the exact frequency of beat-based gestures would al-
low for the same basic motions performed at different speeds
to be assigned different semantics.

Additionally, we would like to continue to utilize the sim-
plifying assumption that all detected texture changes are due
to the motion of persistent objects. In the past this was only
true when the camera was motionless. In the future, we
should be able to leverage our tight perception/control loop
in order to remove motion between frames caused by pan-
tilt or mobile base actuation. This way, beat-based gestures
can be detected even on continuously moving platforms, like
unmanned aerial vehicles.

Finally, we would like to further explore some of the impli-
cations of our initial correlation-based approach. Potentially,
when based on a shared signal, beat-based gestures could pro-
vide highly secure visual communication between a leader
and the robot. Suppose instead of always looking for a 1 Hz
cyclic gesture, the robot only acknowledges motions that syn-
chronize with a randomly determined beat, and suppose this
beat changes periodically, much like the login information of

Figure 6: Using the method proposed by KadewTraKuPong and
Bowden [2001], small repetitive motions (like leaves or water) are
ignored by constantly adapting a mixture of Gaussians to recent
frames. Large motions across many pixels are quickly determined
via adaptive background subtraction.

a secure key-fob. If the operator has access to this informa-
tion (e.g., via a headset tuned to an encrypted signal or sim-
ply through a synchronized clock), then only the operator can
command the robot, as only the leader will know the current
beat required to control the robot. Such a scenario could be
used to acquire a robot’s attention, to change between opera-
tors, and to keep a threat from taking control of the robot. It
would also allow for multiple operator/robot pairs to operate
at once in a shared space.

In the context of our larger work, which focuses on gesture-
controlled human-following systems, we hope to utilize beat-
based gestures to develop a hybrid-approach to far-range 2D
visual tracking. The approach will utilize well accepted ap-
proaches to motion-based tracking [Dang et al., 2002] and
cutting-edge work in attention-based recognition [Mishra et
al., 2009]. Attention-based techniques attempt to address the
“chicken and egg” problem of background separation—that
it is easy to separate a recognized object from a background
or to recognize an object properly separated from the back-
ground, but that either is difficult to perform alone with a
natural image. Attention-based techniques solve this problem
by performing segmentation based on an assumed object cen-
ter. In previous work, these object centers were supplied by
an operator or some other system (such as stereo disparity);
however, due to its ability to perceive motions without object
recognition, the current motion perception system presents a
unique opportunity to obtain these centers directly.
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5 Conclusion
We have presented our initial explorations of low-cost, 2D,
motion-based gesture recognition through the implementa-
tion of a beat-based gesture system. While this paper de-
scribed a preliminary investigation of the practicality of the
technique, we believe our experience illustrates that the ap-
proach is practical and warrants further, more controlled,
study. We see great promise for the use of such approaches
in hybrid systems integrating a large number of interaction
modalities [Stiefelhagen et al., 2004; Rogalla et al., 2002;
Haasch et al., 2004; Kennedy et al., 2007] or in applications
where pose-based systems are either infeasible, impractical,
or overly expensive.

We hope to focus our future work on empirical investi-
gations of our current system’s performance in a variety of
scenarios—examining the effects of different lighting, back-
ground terrains, clutter, environment sizes, distances, dynam-
ics, and human sizes and speeds. Additionally, we want to
address some of the main practical flaws in the approach
that our initial investigation has revealed. For example, we
would like to implement various low-cost motion compensa-
tion techniques that would allow for the system to be used by
a robot in motion, and we would like to examine the use of
alternative sensing techniques (such as thermal imaging) to
eliminate the need for the operator to be distinguished from
the background by color alone.
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Abstract 

Energy saving and comfort in modern buildings is 
supported by complex automation system. The key 
issue for achieving adequate energy efficiency is to 
determine how the environmental impacts can af-
fect the automation system. The system ought to 
implement the control of devices over dynamic 
feedback in accordance with dynamical changes in 
the environment. Without capturing spatial infor-
mation it is hard to apply any physical impact to a 
spatially selected area. 
This paper presents the concept of an interactive 
situation-aware model for building automation sys-
tems - the Virtual Model of the Building (VMB).  
VBM is a generic agent-based model developed for 
intelligent building automation system design, 
monitoring and simulation. Spatial information 
captured by VMB reflects selectively impact aris-
ing from the environment. VMB consists of active 
objects (of construction elements e.g. walls, floors, 
windows, etc.) and automation agents embedded in 
the in-door environment (e.g. controllers, sensors, 
actuators, software etc.).  
Pilot application of VMB is considered in the con-
text of a pilot software/hardware tool for the design 
and monitoring of building automation systems 
based on BACnet protocol.  
Keywords. Environment, generic models, simula-
tion, software agents, virtual model of the building, 
automation, ambient intelligence 

1 Introduction 

Modern buildings can be considered as systems of systems 
including heating, ventilation, automation and conditioning, 
security and many other systems to offer user comfort and 
applying a wide spectrum of control mechanisms [Dounis 
and Caraiscos, 2009], [Perumal et al., 2010]. However,  
often all the subsystems have been considered as independ-
ent subsystems of the same building. The spatial context 
(e.g BIM approach) i.e some model of the in-door environ-
ment where the subsystems for automation are embedded in, 

is typically not considered. The aim of present work is to 
point at the need to consider the building automation for a 
certain building as a whole, embedded to physically con-
strained spatial environment as well as influenced by com-
mon physical effects and user factors. It is easy to notice 
that from the user point of view there exists a lot of partly 
overlapping functionalities that can be shared between the 
(sub)systems to offer more complex and flexible control 
scenarios. The solution is in finding tools and methods to 
represent similar types of devices, situations and activities in 
the same way. 

The key issue for achieving adequate energy efficiency is 
to determine how the environmental impacts can affect the 
automation system. The system ought to implement the 
control of devices over dynamic feedback in accordance 
with dynamical changes in the environment. Without cap-
turing spatial information it is hard to apply any physical 
impact to a spatially selected area.  

The key for that can be found in using generic models 
providing spatial context awareness. In the following we try 
to point out that an intelligent building with its automated 
systems can be considered as a “complete organism”, where 
the behavior of components involved is modeled by generic 
agents The approach considered integrates by means of 
agent-based models both the building with its construction 
elements and automation systems including all subsystems 
and their components as one sophisticated system into a 
dynamic model of their environment. 

Looking for models and methods for modeling the build-
ings one can find a lot of solutions where the model-
ing/simulation is based on a minimized physical model of a 
real building or a certain part of it. In contrary, the generic 
models and the model components representing the equiva-
lents of certain real devices can be set up (initialized) by the 
modeler case by case, depending on the situation and needs.  

Generic models and generic software agents offer a pos-
sibility to model and integrate completely different devices 
into one virtual environment and simulate the interactions 
between the system components. In general, it is indifferent 
if the software agent in the large system of agents represents 
an equivalent of an electronic device or a human operator 
with well-determined and restricted degrees of freedom for 

 Models of Indoor Environments – a Generic Interactive Model  

for Design and Simulation of Building Automation  

(on Example of BNT-project) 

Kalev Rannat
a,
, Merik Meriste 

a,b
,
 
Jüri Helekivi

b 
and

 
Tõnis Kelder

b
 

a
 Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia 

b
 University of Tartu, Ülikooli 18, 50090, Tartu, Estonia 

Kalev.Rannat@dcc.ttu.ee 

 

40



decision-making. The same concept used by the authors for 
modeling and simulation of the building automation can be 
applied for the territory surveillance and security systems 
modeling. The tests based on the prototype solution are 
realized and shortly illustrated in the following subtopics).   

2 The role of the spatial information 

Without spatial information it is hard (if not impossible) to 
apply any physical impact to a geometrically selected area 
either for indoor or field conditions. For energy efficiency 
modeling in the building it is a key issue to determine how 
the environmental impacts can affect the automation system, 
what is the temperature (humidity, CO2, etc) distribution 
and how to organize dynamic feedback for optimal control. 

There can be almost 3 different aspects in the role of spa-
tial information: (1) – spatial information for design, con-
struction and maintenance (2) - spatial information for 
automation design purposes (3) - spatial information for 
monitoring the systems and buildings.  

2.1 Building Information Model (BIM)  

The contemporary building design has met a need for a 
common method or environment where the building can be 
examined for any situation and the needed modifications 
added with minimum human effort. The designing software 
(e.g. ArchiCAD, AutoCAD, Cadsoft, etc.) has several op-
tions to vary with materials, types of constructions and to 
change certain parts from already finished project. Every 
change in the building construction will lead to changes in 
subsystems like ventilation for example. The more sophisti-
cated is the project the more difficult it is to verify that the 
change in one part does not lead to technical conflicts in 
another part. This verification is already built into the design 
software. Management of the building (including the de-
sign) has initiated a need to have a continuous record/history 
on all possible changes in the building. The information on 
all building construction elements, materials, etc (incl. the 
changes history) is kept in databases accessible to every 
authorized counterpart related to a certain building at pre-
sent and in the future. From this the BIM-concept (Building 
Information Modeling) has born. BIM is an intelligent 3D 
model-based process that helps design teams more effi-
ciently incorporate geospatial data into planning, design, 
construction, operations and asset management. A Building 
Information Model is a digital representation of the physical 
and the functional characteristics of a facility. As such it 
serves as a shared knowledge resource for information about 
a facility, forming a reliable basis for decisions during its 
life cycle from inception onward. Creating a BIM is differ-
ent from making a drawing in 2-D or 3-D CAD. To create a 
BIM, a modeler uses intelligent objects to build the model 
[Conover et al., 2009]. Those who integrate BIM and geo-
spatial data show increased productivity and efficiency 
[Speden, 2011]. However, in any definitions of BIM 
[Cerovsek, 2011] we don’t notice building automation as a 
part of it. There is no evidence on using spatial information 
needed for estimating impact of the physical environment, 
for providing spatial context for devices behavior.  

2.2 Spatial information for automation 

The authors have enhanced similar to BIM concept - Virtual 
Building Model (VBM) to the building automation design, 
monitoring and maintenance. The work presented is initially 
realized in 2D approach (each floor separately).  

There exist several tools on the market for design of elec-
tric installations, monitoring of automation for industrial 
plants, buildings, but there is no known tool for design and 
concept proofing of building automation as an integrated 
system of systems in a specified building/environment. The 
reasons can be different, mostly it is expected that the BIM-
concept has been too novel and complicated for automation 
design and the automation into the building is usually de-
signed and installed the last. It is not always straightforward 
to notice that the optimal solution for automation comes 
from sharing/utilizing the common resources and the regula-
tion needs are tightly related to the same environmental 
constraints.  

Spatial information gives a possibility to apply selective 
impact to a certain part of the building/automation and to 
register the effects on control process, either localized or on 
the whole. The automation system interacts with the envi-
ronment to where it is installed. The information from geo-
spatial databases can be effectively linked with spatial in-
formation of system elements in VBM. With this concept 
the building with everything included is not an isolated part 
of environment but just one finite subarea. If the environ-
mental conditions change, the automation realises the con-
trol over dynamic feedback, to keep the processes and local 
parameters in desired limits. The designer can verify his/her 
technical concepts and the service engineer can find optimal 
parameters for control. 

3 The ways to offer user comfort, environ-

mental/situation awareness in process  

control, dynamic feedback 

A lot of examples can be given where the same building 
may have rooms for several different needs. The user, op-
erator or owner may also have a need to make some tempo-
rary changes in room’s microclimate because of varying 
needs. The fast-growing and modern building market in 
Asia has initiated a lot of investigations related to the “intel-
ligence of the buildings” [Wong et al., 2008a] and the need 
for validation of the related analytical models [Wong et al., 
2008b]. Many of similar needs have been pointed out also in 
MASBO [Booy et al., 2008], but mostly considered from 
the viewpoint of human rationality, not from the system’s 
functionality.   

Most common changes for the building come from exter-
nal temperature (seasonal variability).  It can also be fore-
seen, that some unwanted external effects (smoke for exam-
ple) will not penetrate to the building. For the automation it 
means, that the common control algorithm must be tempo-
rarily changed – this is the effect of dynamic feedback, 
where the system behavior is controlled by varying envi-
ronmental conditions or user needs.  

41



It is known that not all people feel themselves comfort-
able in mostly unified 21 degrees temperature [Karjalainen,   
2007a]. Research has been made on possibilities to offer 
user-defined conditions in buildings with numerous offices 
[Karjalainen 2007b].  

What is common in small buildings (private houses, 
where the user can fine-tune mostly everything) is somehow 
not realised for large offices. Because  of  individual  differ-
ences  in  experiencing  thermal  environments,  no thermal  
environment  can  satisfy  everybody.  But in addition to 
thermal comfort also productivity and certain health reasons 
may support the needs for individual thermal control.  

Similar needs for automated control can be noticed for 
applications not related to the buildings. Let’s have a look at 
environmental monitoring for example – seasonal and diur-
nal changes have an effect on sensor systems and it must be 
compensated/recalibrated to guarantee the system’s reliabil-
ity. The monitoring system must stay reliable even in case 
of malfunction of certain sensing nodes in it (meteorological 
network for example).  

In field conditions (environmental monitoring, territorial 
surveillance) we need to know how the terrain, meteorologi-
cal conditions, different objects on the scene will affect the 
sensors, which group of the sensors can be most affected 
and by what. To make correct interpretation on results of 
any measurements we need to know where a certain sensor 
is situated, the relative distances from other compo-
nents/objects, sources of radiation or intruders.  Space in-
formation offers a possibility to determine to which part of 
automation system the environmental changes have the most 
effects. The modeling environment must offer a possibility 
to simulate different scenarios for different subareas, using 
sliding borders for certain effects in space, etc.  Of course, 
the effectiveness of the modeling and analysis relies on the 
system analyser who must make a choice where to measure 
and what (e.g. it means that the operator must be able to 
situate a suitable agent at a right place).  

4 VMB (Model of the Building) 

Model of the spatial information of a building is imple-
mented by  BuldingModel software working in tight coop-
eration with BuildingAgents providing data exchange with 
physical devices or  their simulation. BuildingModel imple-
ment a visual 2D interface for creating and monitoring ob-
jects involved in a spatially smart model of a building 
equipped with automatization devices. The realization (out-
look) of the VMB is illustrated (Figure 1) as a screen snap-
shot from the prototype software. The initial information 
comes from the documentation (floor plan) of a real build-
ing.  

Some definitions 
Model of a particular building forms a Project, all informa-
tion of a particular Project is kept in a specific database. 
Project i.e the spatial model of a building has one or more 
floors. Each floor has its base map(s) – coordinated raster 
maps generated typically on the basis of the building project 
documentation (CAD drawings). Each floor consists of 
information about BuildingElements (e.g. its construction 

elements - doors, windows, walls etc) as well as information 
about devices of automation systems placed on that floor. 
These devices as well as building elements a placed on the 
base map also coordinated – information about their loca-
tions and spatial relations are available for modeling and 
simulation on the basis of the model of the building. 

Types of devices and their properties 
Devices of the same type are specified in the model by De-
viceType agents. The type of a device specifies (common ) 
attributes of devices belonging to that type. Attributes of a 
device are:  (a) attributes that describe common (similar and 
fixed by value) to all devices of a type properties and, (b) 
generic attributes (e.g. parameters) of a particular device 
with values in some domain. Each type of devices is related 
to a category of devices where all these devices are belong-
ing to. Devices of the same category have visually the same 
icon.   

Any device of a type is represented in the model by its 
agent – an instance of the agent of appropriate type. The 
behavior of agents (i.e. access to physical devices or their 
behavior at a simulation are described similarly. To an in-
stance of a device in the model is related to a separate ser-
vice provided by the appropriate agent, which actually can 
also be treated as a separate instance of an agent. 

For example, temperature sensors of various kinds could 
form each a separate device type, but all of them belong to 
the category of temperature sensors. These sensors are rep-
resented in the model by the same icon, but the connection 
to particular physical devices could be implemented by 
different agents exhibiting different behavior. Typical prop-
erty of temperature sensors is the temperature measured, this 
property does not depend on the behavior of other sensors 
and could change in time and space, e.g. it is a parameter of 
that device. Temperature sensors will be placed on the base 
raster map of a floor in the building model according to their 
de facto location in that floor. To each of these sensors cor-

 
 
Figure 1. Screen snapshot of VMB. 
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responds a service of the according agent, the description of 
that service will specify parameters to access a particular 
sensor.  

Elements of the building 
In similar manner as device types etc are specified, could 
also be specified types of elements of the building and the 
elements themselves (e.g. doors, windows, walls etc). In our 
current implementation these objects of the model are 
treated as passive object of the building model – such an 
object is not related to some (simulation) agent, exhibiting 
some behavior. Naturally, one can change values of parame-
ters of such an object. Also, these values could be set also 
by agents of devices embedded in the model of the building. 

Relations of objects 
There must also be specified Relations between devices 
and/or building elements. By relations one can specify, 
which devices are connected to each other and/or which 
objects have influence to each other. For example, a window 
could influence a movement sensor without being explicitly 
connected to it. 

Relations created between objects will serve for specify-
ing connections of agent services (as representatives of 
instances of devices). 

To objects involved into a building model could be at-
tached user-defined software fragments – scripts. These 
scripts will be started automatically at model composition 
time, their serve for imitation and/or checking specific prop-
erties or behaviors of devices. Scripts appear to be useful 
also in monitoring/simulating devices. 

Transfers 
In connection with any relation of devices there could be 
also specified one or more transfers. By a transfer is defined 
the sender device, the receiver device and the parameter 
(value) to be transferred. Agents related to devices will send 
to each other information according to transfers specified in 
the building model.  Transfers cannot be specified for build-
ing elements because they don’t have agents. 

Agents and the model of the building 
Agents are software components implementing specific 
behaviors of devices at the monitoring/simulation time of 
the model constructed. Typically, an agent includes a code 
for interaction with a particular physical device (for exam-
ple for reading data from a sensor) or, algorithms for emu-
lating the behavior of a device. To the devices of the same 
type correspond agents with similar behavior. An agent 
could be instantiated (and is thereafter applicable) in differ-
ent models for devices belonging to the appropriate device 
type. 

Agents have similar structure, what simplifies creation of 
new agents as well as guarantees similar structural and se-
mantic properties of them. 

 

5 BACnet Tester (BNT) 

A huge amount of different agent based modeling platforms 
[Nikolai et al.] and agent-based simulation tools [Agent-

Based Models] can be found. BNT is developed using C# 
and .NET, not using any of the “ready-to-use” solutions 
mentioned above. The development platform for BNT is 
chosen due to long term activities in agent-based modeling 
related to interactive maps [Meriste et al., 2004, 2005]. 

In frames of a project “BACnet Tester” (BNT) is realized 
a set of hard- and software tools for building automation 
modeling, including HVAC and security systems. Addition-
ally an option to use smart mobile sensor network based on 
mote’s technology is offered.  

The basis of BNT is a Virtual Model of the Building 
(VMB). The VMB consists of all construction elements 
(walls, floors, windows, etc.) of the building and the auto-
mation components (controllers, sensors, actuators, etc.) in 
it. VMB elements are supported (tagged) with space coordi-
nates in a local reference frame. Simply - all elements of a 
virtual model of the building and automation systems are 
supported with space information. 

BNT offers two main scenarios for its users:   
 
For Design: 
1. Graphical plan of the building � 2. Virtual model of 

the building � 3. Add automation, define connections 
� 4. Start simulations � 5. Optimize the configuration 
� 6. Finalize the project 

 
For Debugging and Monitoring: 
1. Graphical plan (figures) of the building � Virtual 

model of the building � Add automation, define con-
nections �   

2. Define „points of interest“ for the measurements or 
software aided monitoring, connect the hardware (if 
needed) � Compare the „model“ contra „reality“ � 
make changes if needed � 

3. Optimize the configuration � Finalize 
 
In practice, the number of test scenarios is not limited - each 
user can easily develop its own, using the BNT software 
facilities. BNT is targeted but not limited to HVAC, it can 
be applied to security and lighting systems as well.   
 
BNT consists of certain application software and laboratory 
tools (Figure 2). An essential part of the software is made 
for composing the VMB (including facilities for converting 
the graphical building plan to the virtual building model 
together with automation systems) and running simulations 
on it. BNT is not an apparatus (or device), but can be ported 
as a complex of special software-supported instruments to 
perform analysis at different sites (buildings). For a different 
building a new VMB must be generated as a first step.  

The software provides monitoring of the system parame-
ters in both VMB and reality, handling the databases, mak-
ing analysis and outputting the reports. 

One part of the software is communicating with the BNT 
hardware (laboratory equipment like network analysers, etc., 
+ all the automation systems installed to the building). Dur-
ing test/simulation processes, the real object (building + 
automation) works together with the VMB as a whole. The 
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result comes from comparing „real measurements“ � 
„what was planned“. The optimal solution can be reached as 
stepwise iteration by changing the control parameters and/or 
modifying the installation.  

BNT software is realised on agent-based programming 
paradigm [Ferber, 1998] and generic models of automation 
system elements. BNT is easily expandable and can be used 
for different communication standards (BACnet is not 
obligatory, for BNT the BACnet was chosen as a well 
documented and expandable standard [Bushby, 1997] for 
HVAC and in our case for the security system as well). The 
BNT can be easily expanded to adapt new hardware compo-
nents on the market and the user can fast develop a wide 
spectrum of different conceptual tests (limited to one’s own 
fantasy).  

The instrumental part of BNT is realised in form of a 
small test laboratory, equipped with the instruments for 
network traffic analysis, outdoor conditions monitoring, 
BACnet compatible controllers for both HVAC and security 
systems, Crossbow motes based wireless sensor’s network 
and naturally the server for running the BNT software. As a 
future vision, the instrumental part should fit into a suitcase 
and gives the operator a possibility to work at the site of 
interest. 

5.1 Application of the BNT  

BNT is designed for both long-term trends analysis and 
monitoring of certain parameters at a point of interest. The 
first test-bed for BNT has been the building of Institute of 
Technology, Tartu.    

For buildings: 

a) large buildings 

b) private houses (small buildings) 

BNT offers a possibility for remote monitoring (getting 
raw information from the remote object) and running simu-

lation on BNT, consisting of virtual model of certain part of 
the remote building and automation in it.  

The plan of the remote building can be used as an interac-
tive map of the building. It is possible to localize an area of 
interest, to choose the sensors and actuators on it and to 
activate data monitoring at the points of interests. The con-
troller(s) at the localized area will be replaced with a soft-
ware agent or agents, acting exactly as the real controller(s) 
would do. Based on data from “hot points” the trend curves 
can be compiled. 

By analysing long-term trends of certain parameters it is 
possible to evaluate the „energy efficiency“ of the remote 
system. It is also possible to detect some „unusual behav-
iour“ in the remote system (system’s generation for exam-
ple) and to offer a solution how to avoid it. For example, 
cooling down and warming up a certain room in the remote 
building will give specific information on thermodynamic 
behaviour of the area of interest. This valuable information 
is used for making suggestions, how the real controller 
should be programmed for a certain room. During installa-
tion the controller is programmed with default settings 
based on expert estimation what cannot be optimal – opti-
mization can be done only based on analysis of real situa-
tions. Shortly – the expert can give analysis based sugges-
tion for the programmer how a certain controller must be 
programmed to obtain the optimal energy efficiency and 
comfort.  

However, the correct analysis of the remote system and 
energy efficiency of the building is possible only if we have 
good enough knowledge about the environmental conditions 
and their impact on the building. At today’s level of devel-
opment the BNT needs to get the environmental information 
and thermodynamic effects for the building from aside 
(from different model or experts). Knowledge about ther-
modynamic processes in a certain building gives BNT a 
possibility to simulate „close to real” situation and to give 
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suggestions (based on simulations), how the situation can be 
changed/optimized.  

For private houses the task can be easier (no need to split 
the building into different zones/rooms to estimate its total 
energy efficiency).   

Some additional applications: 

a) Simulation of automation system itself (optimizing 

the system). 

b) Simulation of automation system together with a 

„human factor“ (by adding an agent to organize some 

disturbances or making local adjustments in the of-

fice to improve his/her personal comfort). 

c) Simulation of environmental monitoring or territorial 

surveillance. 

Example: (room cooling/heating, room’s parameters analy-
sis and simulations): 

Let’s assume a situation described (Figure 3), where a single 
room gets unheated while the neighbouring rooms have 
normal temperature at 21oC. The application of BNT helps 
to analyse, what happens with the room temperature (on 
which temperature it will stabilize) and what is the influence 
on heating system in the neighbourhood. The outdoor tem-
perature is assumed stable at -15oC (typical situation for 
Tartu in winter 2011).  

 

 
Figure 3. Initial question, what happens if... 

 
To get any idea about the room’s physical parameters 
(thermal inertia, the total heat capacity, heating budget,  
energy efficency, etc.) some real tests must be made. On 
(Figure 4) one can see a time series of room temperature 
(upper curve) and outdoor temperature (lower diurnally 
oscillating curve). The almost 5-days experiment is made in 
two parts a) cooling the room (the temperature decreases 
exponentially) and b) heating it up (the temperature rises by 
a power law). For the cooling session the ventilation was 

switched off to avoid heating by the constant 21oC air 
inflow. 

The real measurements look quite unsmooth and noisy, 
they must be post-processsed for further data analysis 
(Figures 5 and 6).  
 

From the analysis it can be found the most needed parame-
ters for all similar rooms in the building (assuming the size, 
geometry and configurations unchanged). To get optimal 
results, the preliminary cooling/heating tests must be made 
exactly for the room we investigate (not by using test results 
form a different room). If using measurement results just 
from similar rooms, we must consider that each room is 
unique in details – the mixing of air and the radiating heat 
exchange can be suboptimal because of the furniture, the 
wall materials can be different, etc.    
 For a test situation (Figure 3) we need to find the total 
thermal capacity for the room (incl. the air, furniture, etc). 
After that we can run the simulations and check the influ-
ence of one unheated room to the adjacent neighbors.  
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Figure 4. Real measurements to find the physical parameters. 
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From (Figure 7) we can see that the room temperature 
gets stabilized at around 14oC. The oscillation of heating 
curves indicates the characteristic process of PID-regulators 
and the oscillation can be damped by changing the control 
parameters for PID controllers (for the model’s case the 
PID-controller agents). The cooling stops because of the 
heat inflow through the internal walls (additionally through 
the roof and the floor) and constant air inflow from the 
ventilation. It can be noticed that the heating power in adja-
cent rooms will increase.  
 The illustrative simulation is trivial but it helps to better 
explain the functionality and possibilities the BNT realisa-
tion can offer today. However, demonstration of all the 
developed and tested features of the BNT is outside the 
scope of the article.    

6 Related works 

Hereby we want to emphasize that VMB is not the same as 
Multi-Agent System for Building cOntrol (MASBO) as 
presented in [Booy et al., 2008]. BNT software agents rep-
resent real equipment in the automation system and by 
monitoring the changing environmental conditions (either 
real or simulated) at positions they are virtually fixed, the 

energy efficiency for a building is assured by dynamic feed-
back.   

More related work can be found additionally from [Peru-
mal et al., 2010] and [Dounis and Caraiscos, 2009]. VMB is 
developed to manage monitoring/controlling of changes in 
environmental conditions at a certain finite area of the build-
ing (or environment). VMB acts as a generic model to 
evaluate the impact of changes to the building automation 
and to organize dynamic feedback to support user’s comfort, 
safety and system’s integrity. The modeling/simulation with 
VMB incorporates spatial information as one of the princi-
pal cornerstone – every single element of the model is 
tagged with its space coordinate and therefore the changes 
of environmental conditions may have their impact selec-
tively on a certain part of the automation system. This con-
cept helps easily to mask the environmental 
changes/conditions to a geometrically preselected part of the 
system only (for example, a group of rooms) and to investi-
gate the impact to the whole system. 

An extensive research has been made on trying to identify 
what makes the building “intelligent” or “intelligent 
enough” to fulfill the contemporary requirements on energy 
consumption and user comfort [Wong et al., 2008a, 2008b] 
and how to apply the optimal control methods [Dounis and 
Caraiscos, 2009]. 

It can be noticed that there exists tens of “intelligence in-

dicators” without clear consensus between different user 

groups what is the most important. The authors of present 

work have tried to search information about the need to use 
spatial information as one of the intelligence indicators. 

None of the tens of indicators is clearly related to space 

coordinates or space coordinate usage. It is somehow aston-

ishing, that the intelligent indicators from the research 

[Wong et al., 2008a, 2008b]  do not reflect much need for 

utilizing information about the space (spatial information, 

spatial coordinates). 

The ranking results for “the most important indicators” 

for appraisal of buildings intelligence may differ between 

different user groups and the statistical analysis based on 

analytic models [Wong et al., 2008b] is not trivial. 

A good example about modeling and monitoring zonal in-
formation in a building can be found from: [Dibley et al., 

2010], where a software system has been developed that 

exploits the combination of a number of technologies. As 

well as generating useful knowledge for decision support, 

the software is reported to be self configuring, continually 

adapting to the environment, and employing learning to 

evolve its performance. The agents utilize a distributed 

network of readily available wired and wireless sensors and 

associated data storage providing access to near real time 

and historical data, as well as an Industry Foundation 

Classes (IFC) [BuildingSMART, 2011] model describing 
building geometry and construction. The agents used in 

[Dibley et al., 2010] work individually and cooperatively for 

identifying the usage and dynamics of arbitrarily sized 

spaces in buildings. The building model itself with construc-

tion and positioning of the sensors is described by IFC-file. 
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Figure 7. Simulations based on Analysis I, II 
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(In fact, it can be the way how to link VMB–data with BIM) 

The multi-agent system used in [Dibley et al., 2010] is de-

signed to support decision-making for facilities manage-

ment, trying to track the room’s occupancy, to identify user 

behaviour and individual preferences to provide as efficient 

management of the building as possible.  
Research and publications can be found about functional 

modeling of spatio-temporal aspects of buildings [Bhatt et 

al., 2010], [Hois et al., 2009] and indoor spatial models and 

reasoning with spatial structure [Schultz and Bhatt, 2010], 

[Bhatt et al., 2009] for Spatial Assistance Systems. The 

works are more related to spatial representation of automa-

tion (motion sensors) and their range space to offer optimal 

coverage of the sensors and to avoid “static” conflicts with 

building construction elements. Here the BNT solution 

offers a complementary concept where the sensors as a part 

of automation system can register the environmental 

changes at certain location in space (determined by local 
coordinates) and the software-based agents use this informa-

tion to guarantee the energy efficiency.  

7     Conclusions 

The history for any building starts from a vision of the ar-
chitect who has got a specification of user needs/wishes 
from the owner of the building. The realization of the pro-
ject is made with a wide variety of CAD-software and the 
result can be offered in both human- and machine-readable 
format. At design phase the architect can use a full set of 
visualization possibilities known from 3D design and the 
result can even be demonstrated to the end-user before final 
acceptance.  Ventilation, drainage, water supply etc. belong 
to every building as an inseparable part that cannot be de-
signed without knowing the technical details and physical 
positioning of all the building construction elements.  

For the BNT the work starts from converting the input da-
ta from graphical representation of building (usually the 
Auto-CAD format technical figures) to the internal data 
format of VMB. As a first approach, the process is semi-
automatic.   

The most challenging for the VMB is the implementation 
of thermodynamic modeling of the building. Most contem-
porary simulation programs are based either on response 
function methods or on numerical methods in finite differ-
ence or, equivalently, finite volumes form [Clarke, 2001]. 
For BNT the first option is chosen. It looks unreasonable to 
integrate everything into one solution. One possibility is to 
use commercially available software packages for thermo-
dynamic modeling with finite elements methods. This ap-
proach needs an additional software module for data com-
munication between BNT and COMSOL for example. Due 
to the internal structure of BNT it can be easily expanded or 
linked to third party software.    

In the future more options can be added the software 
package: automated conversion from CAD-figures to VMB, 
automated design/pre-configuration of HVAC and security 
systems components, preliminary cost calculations, etc.  
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Abstract

Most pedestrian navigation systems are intended
for single users only. Nevertheless, there are of-
ten cases when pedestrians are not alone e.g. when
meeting or going somewhere with friends. Moti-
vated by such situations, we built a navigation sys-
tem that allows routes to be calculated for multiple
people who want to meet, but who depart from dif-
ferent locations. In this paper we present how satis-
fying meeting points can be found. We discuss two
approaches, one based on the Steiner Tree Problem
in Networks and one based on the Euclidian Steiner
Problem, which neglects the street network. Both
approaches are evaluated and a user study demon-
strates the applicability of our solutions.

1 Introduction
People often go out with other people, meet friends and pre-
fer covering distances together. According to [Moussad et al.,
2010] 70% of all pedestrians travel in a group. [James, 1951]
found that 71.07% of pedestrian groups groups consisted of
two individuals and 28.93% groups consisted of two to seven
individuals. This results in a average group size of 2.41 in-
dividuals. Nevertheless, most pedestrian navigation systems
are intended for single users only.

To close this gap, we built a mobile pedestrian navigation
system for groups (PNS4G) of users who want to meet. As a
motivating example, imagine two first-year students living in
two different student dormitories in different parts of a city.
They arrange to go to the cinema together. On their way they
want to talk to each other about their current lectures, but
they also have to finish their homework first so they do not
want to have too much detour. Thus a compromise between
detour and the time walking together is needed. Where should
they meet? Figure 1 shows four different possibilities for the
individuals p and q with the common destination g. Current
navigation systems cannot help users to solve this problem.

The focus of this paper is on finding satisfying meeting
points for individuals who depart at different locations and
who have a common goal. We will present two approaches to
find satisfying meeting points and corresponding routes for
the users. Together these routes compose a meeting tree. We

Figure 1: From left to right: Users p and q meet at the des-
tination g, at q’s position, at some intermediate place, at the
Torricelli point.

Figure 2: Meeting tree of three individuals p1, p2, p3 heading
to a common goal g meeting at intermediate points.

will cover this problem for two or more individuals. Figure 2
shows a possible meeting tree for three individuals.

First, we will present the state of the art and introduce our
multi user pedestrian navigation system in Section 2. In Sec-
tion 3 we first present a practical and theoretical formulation
of the problem of finding good meeting points. We then pro-
pose two methods for finding such meeting points in Section
4. The first method is based on the Steiner Tree Problem in
Networks. As the running time of the used algorithm is too
high, we investigate a second method based on a relaxation
of our problem, namely neglecting the underlying street net-
work. By changing the problem definition in this way we
can employ Euclidian Steiner Trees to model our problem
and therefore utilize faster algorithms. Finally, Section 5, we
compare both methods and show the applicability in a user
study in . We conclude by giving an outlook for further re-
search and development in Section 6.
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Figure 3: Screenshot: User (cross hairs) will meet his friend
(user icon) soon at the meeting point (red cross).

2 Towards Multi User Pedestrian Navigation
2.1 Pedestrian Navigation
Current pedestrian navigation systems help pedestrians to
find their way to their goals by giving turn-by-turn instruc-
tions. Today all pedestrian navigation systems known to the
authors are for single users only. Examples of such systems
are Google Maps Navigation, ovi maps, MobileNavigator,
PECITAS [Tumas and Ricci, 2009], P-Tour [Maruyama et al.,
2004], RouteCheckr [Voelkel and Weber, 2008], COMPASS
[van Setten et al., 2004] and many more. Additionally, most
commonly used routing algorithms for pedestrian navigation
in street networks like Dijkstra and A* as well as algorithms
for public transport networks, e.g. [Huang, 2007] and [Ding
et al., 2008] are single source only. Thus, such algorithms
cannot be used for calculating routes for multiple users or
rather meeting trees. However, known from the literature, the
majority of pedestrians go out in groups in their leisure time.

To address this, we created the multi user pedestrian nav-
igation system GroupROSE , an extension of [Zenker and
Ludwig, 2009] . Each user runs a client software (currently
in J2ME) on his mobile phone. One user can invite other
users to a location, e.g. a certain cinema. After the users
have accepted the invitation, their GPS positions are sent to
the server. There, routes for all users are calculated with
appropriate meeting points. These routes are displayed on
the mobile phones and allow turn-by-turn navigation for each
user. Figure 3 shows the client of a user who is going to meet
shortly another user. Then, they will continue their journey to
their destination conjoint. An overview map of the routes of
two users in the city of Berlin can be seen in Figure 4.

2.2 Steiner Tree Problem
From a theoretical point of view the Steiner Tree Problem
resembles the problem of finding meeting points and corre-
sponding routes. Hence we will give a short introduction to
this problem, namely to “Find the shortest network spanning
a set of given points. . . ” [Winter, 1987]. One can find two
similar versions of the Steiner Tree Problem in literature:
Steiner (Tree) Problem in Networks (SPN) Given an undi-

rected network N = (V,E, c) with vertices V , edges E

Figure 4: Comparison between Toricelli point (and lines of
sights) and Steiner point (and routes in the street network).

and cost function c : E → R+ and a terminal set T ⊆ V ,
find the subnetwork S of N such that all nodes t ∈ T
are connected and that the total costs

∑
x∈ES

c(x) are
a minimum. S is called Steiner Minimum Tree (SMT).
Vertices SinVS \T are called steiner points. SPN is NP-
complete [Karp, 1972]. An overview of several exact
and approximative algorithms as well as a introductions
to SPN are given by [Winter, 1987] and [Proemel and
Steger, 2002].

Euclidian Steiner (Tree) Problem (ESP) Given a set T of
n points in the Euclidian plane, find a tree S connect-
ing all t ∈ T minimizing the length of S. Note that
this might introduce new points at which edges of the
tree meet. A minimal tree for 3 terminals shows the
rightmost graph in figure 1. The three edges meet at
the Torricelli point. A prominent exact algorithm was
given by [Melzak, 1961], heuristics e.g. by [Smith et
al., 1981] and [Chang, 1972]. Geosteiner [Warme et al.,
2000] [Warme et al., 2000] is an implementation of an
exact algorithm with special pruning techniques to rule
out implausible SMTs. Detailed information about this
problem can be found in [Winter, 1985].

3 Meeting Problem
Currently, there is no literature known to the author regarding
meeting behaviour and in particular, the finding of suitable
meeting points. Thus we will give our own definition of the
problem.

3.1 Practical Problem Formulation
Given is a map of a city and a set of individuals starting po-
sitions and a goal position in that city. For each individual,
a route has to be found from his starting position to the goal
position. All these routes together compose a meeting tree
(MT). The problem ist to find a MT such that the following
requirements are optimized:

• the distances travelled together should be maximized

• the detour for doing so is minimized.

These requirements correspond to common sense every day
meeting behavior of people. From a social psychological
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point of view, we can formulate a different requirement: Find
a MT such that the costs for all individuals are minimized.

By assigning costs for detour and negative costs to dis-
tances travelled conjoint we transform the common sense re-
quirements to the social psychological requirements. These
requirements also conform to rational choice theory (see e.g.
[Becker, 1976]), which thinks of individuals as if they would
choose actions to maximize personal advantage.

In this paper we assume that positions are given as pairs of
latitude and longitude and that all positions are in a city. The
latter assumption means, that individuals can walk from one
position to another by following roads.

Next, we will give a more formal definition of this problem.

3.2 Theoretical Definition: Meeting Tree Problem
(MTP)

We start with some definitions. A path r = {v1, v2, . . .} is an
ordered set of vertices. rp is the path of individual p. An edge
ew = (vw, vw+1) is a pair of consecutive vertices in a path.
The union of all individuals’ paths {r1, r2, . . . , rn} ∈ MT
is the meeting tree. Each vertex has a position. Positions are
given as pairs of latitude and longitude. The length of an edge
e = (e1, e2) will be measured using the great-circle distance
d(e) = ||e1, e2||.

The cost of a path which is covered by one individual is
csingle(r) :=

∑
e∈r d(e). To consider the fact that people

prefer to walk together we set costs for paths who are covered
conjoint by m individuals to cconjoint(r) =

csingle(r)
s . This

means that the costs of a path covered by more individuals
is weighted by a factor s. In this paper we will always set
s = m, which means, that the conjoint costs of a path only
depend on the distance and not on the number of individuals
travelling on the path. The costs of the MT are calculated by
c(MT ) =

∑
r∈MT cconjoint(r).

Now we can formulate the problem: Given is a set of n
users with starting positions {p1, p2, . . . , pn} ∈ P and a goal
position g. Find the routes r1, r2, . . . , rn} ∈ R such that
c(MT ) is minimized.

In the case of s = m the cost function of the MTP equals
the cost function of the Steiner Tree Problem. Under the as-
sumption that it does not matter whether we exchange starting
positions and goal position, hence writing T = P ∪g, finding
meeting points in the MTP can be reduced to a Steiner Tree
Problem. We are currently preparing a study to investigate
whether this assumption produces a simplification that holds.

In the next section we will present two methods to solve
this problem. Section 5.2 shows that our theory achieves good
results when compared to meeting points from users.

4 Two approaches
4.1 Solving MTP in the street network
At the beginning of our research we interpreted MTP as an in-
stance of a SPN. Thus, we used an extended Dreyfus-Wagner
algorithm as described in [Proemel and Steger, 2002] to cal-
culate the SMT in the network of the streets. The algorithm
first computes the transitive hull of shortest paths for all pairs
of nodes. This equals all SMTs for all pairs of nodes. In

city nodes shortest paths th tr
Hamburg 3 787 7 168 791 225.26s 86.49s
Berlin 3 216 5 169 720 114.69s 56.77s
Madrid 2 496 3 113 760 65.87s 33.28s

Table 1: Time used by Dreyfus-Wagner algorithm

further steps these results are used to calculate SMTs for sub-
sets of 3, 4, 5, . . . nodes. As the first step is the same for all
possible sets of terminals, this step can be precompiled.

On clippings of maps (from OpenStreetMap) of six differ-
ent cities we calculated SMTs for three terminal nodes re-
spectively. Note that three terminals equal a MTP with two
individuals who want to go to one destination. All terminal
nodes were randomly picked and within walking distance to
each other. We measured the time th of the first step from the
Dreyfus-Wagner algorithm to calculate the shortest path tran-
sitive hull and the time tr for the following steps. The results
for some cities are shown in Table 1. You can clearly see the
exponential increase in th and tr. We also measured the times
needed for problem instances with more terminals: for each
additional terminal the time tr doubled. In clippings with
a practical amount of streets calculating a MT took over 30
seconds. As we wanted to construct a system with a responce
time smaller two seconds we explored a second method.

4.2 Solving MTP geometrically
This method works on a relaxed version of the problem.
[Wuersch and Caduff, 2005] observed that “Pedestrian nav-
igation [. . . ] is not confined to a network of streets, but in-
cludes all passable areas, such as walkways, squares, and
open areas, within or out- side buildings.”. In other words,
pedestrian movement can be seen as largely independent of
the street network. Inspired by their observation we neglect
the actual structure of the street network in a first step. Now
our problem resembles the ESP. Such, we can use for example
the Melzak algorithm to estimate meeting points on a geomet-
ric basis only. Afterwards routes to these meeting points are
calculated in the street network. The course of action is de-
tailed in the following paragraphs. Our evaluation in Section
5.2 affirms that this assumption is a reasonable one to make.

First Step: Estimate Theoretical Meeting Points
To calculate meeting points in the ESP we relied on the
program GeoSteiner (see Section 2.2). The runtime of
GeoSteiner for our limited set of terminals is negligible. We
call meeting points obtained by solving an ESP theoretical
meeting points (TMPs).

Second Step: Find MPOIs
TMPs calculated in the previous step can be situated in unac-
cessible places such as buildings or lakes or unintuitve places
such as “42 meters west of house number 14”. Thus, we move
these points to better locations nearby, which we call practi-
cal meeting points (PMPs). A PMP can be in front of what
we call a meeting point of interest (MPOI). MPOIs can be for
example restaurants, bars, bus stops, subway stations, some
points-of-interest (POIs), places open to the public or large
crossroads.
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Figure 5: MPOIs in downtown Nuremberg in front of restau-
rants (yellow) and bus stops (orange), crossroads (blue) and
public open spaces (green).

Figure 6: TMPs (light blue) PMPs (dark blue) and Routes
(arrows) of four users (red) to the destination (green).

We used OpenStreetMap as source for finding MPOIs. Fig-
ure 5 shows various MPOIs in Nuremberg, city centre.

Third Step: Times and Routes
Now, we calculate walking routes in the street network for
the users. Each route spans from the currents users’ position
through zero or more PMP to the goal.

Next, times at which users have to be at specific locations
are calculated. Therefore a tree-traversal starting at the desti-
nation location labels all vertices in the meeting tree with the
time, at which users have to leave when they want to arrive
in time at the next vertice. The destination node is initialized
with the time at which users want to arrive there, an additional
time buffer can be inserted at meeting points.

Using the above tree-traversal, also the individual routes of
all users can be extracted from the MT. An example for the
result of these three steps is shown in Figure 6.

Note that in this figure the user from the top left corner has
to walk a small stretch of way twice. This is due to our heuris-

n l̄N l̄G |l̄G − l̄N | = ∆ σ(∆) ∆ : lN
4 3 003m 3 310m 308m 237m 9.9%
5 3 267m 3 585m 317m 192m 10.3%
6 3 657m 4 212m 554m 480m 15.6%
7 3 224m 4 863m 640m 571m 14.6%

Table 2: Influence from ESP and SPN based approaches on
meeting tree length

tic approach. But one could easily move in an additional step
meeting points causing these indirections such, that walking
distances back and forth are minimized.

5 Evaluation
We conducted three studies to show the suitability of our the-
ory on meeting points and meeting trees.

5.1 Comparing ESP and SPN
To check whether the relaxation, neglecting the street net-
work, yields suitable results, we compared the lengths lG
of meeting trees calculated geometrically with lengths lN of
meeting trees calculated in the street network.

For various numbers of terminals we calculated meeting
tree lenghts for MTPs in five cities. Average lengths for both
methods are shown in table 2.

In the case of four terminals the length of geometric meet-
ing trees are by 9.9% longer than network meeting trees. In
our study this means an overall detour of 308 meters for all
three individuals in the average. This results in even smaller
detours for each individual. As [Helbing et al., 2001] finds
“[d]etours of up to about 25% seem to be acceptable to pedes-
trians.”, detours between 9.9% and 15.6% (12.5%′ in aver-
age) in contrast to the optimal route look very acceptable.

5.2 Meeting points for two persons
In a study we asked 6 participants to mark their preferred
meeting points in three different situations in five citys. All
situations diplayed positions of two individuals and their
common destination on a map. The participants had to mark
the location which they thought is the best meeting point.

The distance between the Torricelli point and the peoples
choices was in the average 287 meters with a root mean
square deviation of 183 meters. As the average meeting tree
length in the graph in this study is 2558 meters, the avarage
maximum detour for both individuals is 11.2%. This result
also looks acceptable.

5.3 Subjective evaluation
Additionally we conducted a subjective evaluation of our ap-
proach. We presented six scenarios to seven participants.
Each scenario consisted of a map with positions of several in-
dividuals and a position of their destination. The participants
had to draw a meeting tree for each scenario. Afterwards,
the probands were presented the automatically created meet-
ing trees from our system using the geometrical approach.
Now, they had to answer a questionnaire on a discrete five
point Likert scale (0: full reject, 5: full accept). For “Do you
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think the automatically created meeting tree is a good com-
promise?” the rated in average 4.31, whether they find the
routes practically 4.0, whether the quality of the automati-
clly created meeting tree is equal to their meeting tree was
answered with 2.83. We summarize that they rated the au-
tomatically created routes positively relating to compromise
and practicabillity. It is plain that they still prefere their own
routes, as we considered only a very limited set of aspects
when calculating MTs.

6 Conclusion
Modeling the meeting behaviour of individuals is a new ter-
ritory. We proposed a practical and theoretical formulation
of the MTP. To solve MTP we presented and evaluated two
methods which lead back to the Steiner tree problem.

The runtime of the method based on SPN is (at least when
using the exact Dreyfus-Wagner algorithm) too high for our
needs. For the future it would be interesting to evaluate
the behaviour of approximative algorithms like [Smith et al.,
1981] on the MTP.

For achieving better runtime we invented another method
working on ESP which neglects the street network. Heuris-
tics of GeoSteiner guarantee short runtime. Compared to the
optimal solution this method results in an average of 12.5%
overall detour, which is according to [Helbing et al., 2001]
acceptable for pedestrians. Further, our study showed that
theoretical meeting points obtained by solving ESP are in av-
erage only 287 meters away of meeting points people would
choose.

As PNS4G is a new area of research there are still many
open questions to answer and many aspects of meeting be-
haviour to be researched. One problem raised in this paper is,
how to set the parameter s, which weights the costs of route
parts travelled conjoint. We think that s reflects the public
spirit of the individuals who are meeting. Currently we are
conducting studies to estimate this parameter. Besides that we
focus on integrating support for considering means of public
transportation in multi user routing.
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Abstract
We present our initial work on an “automatic di-
ary” recognizing and storing episodes of human
daily activities. The goal is to create an applica-
tion that will perform activity recognition based on
data collected from a mobile phone. This includes
a GPS location, WiFi and Bluetooth signals. Our
aim is to combine these sensory data with infor-
mation from publicly available databases of points
of interest thus identifying restaurants, schools etc.
Until now we have collected several months of hier-
archically annotated data, created a desktop viewer
of the logged data and experimented with inference
of activities on two different levels of abstraction.
Several machine learning algorithms were tested in
these experiments.

1 Introduction
Human activity recognition is a tool that enables wide range
of possible applications for a healthy lifestyle [Consolvo et
al., 2008] , helping elderly people [Kröse et al., 2008] etc.
Activity recognition also fits well into the context of lifelog-
ging [Bell and Gemmell, 2009] – continuous logging of all
possible information related to a person’s life. Decreasing
prices of storage capacity enables us to continuously store
many details of our daily lifes. We can store our location,
photographs and even audio at an acceptable price. The key
question is how to make the log accessible to humans. So far
we can search it by time, or use full text search on recorded
audio [Vemuri et al., 2006]. We think that an automatic ac-
tivity recognition can add a valuable key that can be used to
search the lifelog in various applications.

The idea of lifelogging is fueled by current advances in
mobile technologies. Smart mobile phones provide a wide
range of sensors that can be used for human activity recogni-
tion. Thanks to extended battery life time it is now possible
to continuously store information from GPS, WiFi, Bluetooth
and accelerometer almost for a whole day. Imagine that just
by wearing your Android mobile phone a summary of your
daily activity could be automatically computed for you. Dur-
ing the day values from mobile phone sensors will be logged
and at the end of the day the computer will present you sev-
eral possible explanations of your todays activity. Among

these explanations you will pick the one that best matches
what you really did. Then you can share this information with
your friends or family through Facebook or any other social
networking service. Without any effort you will get statistics
showing how and where you spend your time, these statistics
can help you improve managing your time in the future. With
the use of your diary you will be also able to better recall old
episodes, e.g. a medieval castle visit last year. Recall of this
episode will immediately show similar episodes of your life
just like YouTube shows similar videos to the one you are just
watching.

In this paper we approach the goal of enriching the lifelog
by experimenting with the activity recognition on two levels
of abstraction. The first is the level of atomic activities like
sleep, work, watch TV etc. The second is the level of higher
activities like visiting school, shopping, training etc.

The rest of the paper continues by describing the hierarchi-
cal activity representation used in our application. Then we
detail the architecture of our system and procedure for col-
lecting data. Further we review related works in the field of
activity recognition. After that we will show two machine
learning experiments, the first experiment focuses on low
level activity recognition while the second deals with clas-
sification of longer time periods.

2 Activity representation
Findings from psychology suggest that people often perceive
activities in a hierarchical way [Zacks and Swallow, 2007],
e.g. an episode Work day can consist of a Commute, Work
and again Commute episodes, where the Commute episodes
can be further decomposed into Walk, Travel by bus, Waiting
at a bus stop etc. Our system uses this hierarchical activ-
ity representation where activities can be decomposed down
to atomic activities that are not further decomposable. The
activity log is then a forest of trees representing high level ac-
tivities, children of every activity are also activities ordered
by time of their start. Each point in time has associated activ-
ity trace which is a trace from the high level activity down to
the atomic activity.

We believe that this hierarchical activity representation will
make the lifelog more accessible to a human user. Users will
be able to “zoom” their activity to the level of detail that suits
their needs, thereby focusing their search.
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3 System architecture
The overall architecture of the system is shown in Figure 1.

1. The Android mobile phone logs GPS location and pres-
ence of WiFi and Bluetooth signals. During learning
phase, user inputs activity annotation through a simple
GUI. The logged data are stored in an internal SQLite
database.

2. There is a set of desktop command line utilities used to
extract features that are later used in the machine learn-
ing phase. For instance at this point the online geospatial
database Gowalla [Gowalla, 2011] is used to add points
of interest (POIs) to places detected in the movement
log.

3. Machine learning is done inside the RapidMiner1, an
open source machine learning framework.

4. A GUI application is used for viewing and editing the
data both from the database with the lifelog and for re-
sults of the machine learning. Figure 2 shows a screen-
shot of the GUI.

3.1 Implementation
Both the Android client and desktop applications were devel-
oped using Java. The desktop GUI log viewer and the editor
was developed on the top of the Netbeans RCP2. Machine
learning was performed mainly using RapidMiner. Since
RapidMiner does not support Hidden Markov Model (HMM)
used in some of our experiments, we used the JAHMM li-
brary3 which implements HMM. We created a plugin4 for
RapidMiner that provides JAHMM’s functionality. The plu-
gin was released under a GNU GPL license.

Figure 1: Architecture of the system.

4 Data collection
In this paper we present data collected by one participant be-
tween mid November 2010 and April 2011. We have other

1RapidMiner 5.1 Homepage, http://sourceforge.net/
projects/rapidminer, March, 2011.

2Netbeans RCP, Oracle Corporation, http://platform.
netbeans.org, March, 2011.

3JAHMM Homepage, http://http://code.google.
com/p/jahmm, March, 2011.

4The plugin is available for download at http://http://
code.google.com/p/rapidminerhmm/, April, 2011.

Figure 2: Screenshot of the desktop log editor. The editor
contains a map view showed in the center, a timeline with
activity log in the bottom and a calendar for time interval se-
lection in the left.

three participants who collected data over shorter time peri-
ods but each used different sets of activities. The application
allowed users to mark beginnings and ends of their activities
and use custom hierarchy for their description.

The GPS, WiFi and Bluetooth data was collected with pe-
riod from 10 seconds to 2 minutes. Longer period was used to
decrease power consumption when the phone was going out
of power.

5 Related work
In recent years several human activity recognition algorithms
were published. They differ in sensors used as an input to the
system (GPS/WiFi/accelerometer/video). Time scales con-
sidered in these recognizers vary from hours to weeks. As
a formal model for activity recognition Dynamic Bayes Net-
works, including variants of Hidden Markov Models, are the
most popular option. Table 1 shows related work published
in the recent years.

Considering indoor activity recognition most of the sys-
tems use setup of accelerometers bound to specific parts of
the body [Tapia, 2008; Huynh et al., 2008; Stikic and Schiele,
2009]. This restriction is not applicable when considering
normal mobile phone usage. Works using mobile phones
without significant restriction on their usage [Lu et al., 2010]
predicted only classes like walk, run, cycling etc. [Lu et al.,
2010] presents system implemented in a mobile phone that is
optimized for lower power consumption. [Liao et al., 2007]
is the closest to our work’s aim. Iit features hierarchical activ-
ity representation but operates only in outdoor environments.
An example of work from different domain is [Blaylock and
Allen, 2006]. It performs activity recognition using hierarchy
of Hidden Markov Models on data generated by a planning
algorithm. Inputs of this system are purely symbolic, thus it
allows for a higher level activity inference.
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Citation Hier. act. Input data Time scale Environment Algorithm
[Lu et al., 2010] × GPS, Audio, Accel. Days City SVM, GMM, NB, DT
[Liao et al., 2007]

√
GPS 1month City DBN

[Huynh et al., 2008]
√

Accelerometer 1 week Indoor SVM, HMM, NB, LDA
[Stikic and Schiele, 2009] × Accel. Days Indoor Multi instance SVM
[Oliver and Horvitz, 2005]

√
A/V, Keyboard, Mouse Hours Indoor DBN, HMM

[Yin et al., 2004] × WiFi Hours Indoor DBN, N-gram
[Tapia, 2008] × Accel., heart rate Hours Indoor DT, NB
[Kautz et al., 2003]

√
Noisy location 3 weeks Indoor Hierarchical HSMM

[Blaylock and Allen, 2006]
√

Artificial symbols 5000 plans Monroe corpus Hierarchical HMM

Table 1: Several existing activity recognition algorithms. Shortcuts used for algorithms: SVM = Support Vector Machine,
GMM = Gaussian Mixture Model, NB = Naive Bayes, DT = Decision Tree, CRF = Conditional Random Field, LDA = Latent
Dirichlet Analysis, DBN = Dynamic Bayes Network, HMM = Hidden Markov Model, HSMM = Hidden Semi-Markov Model.

6 Experiments
We have made two experiments with the logged data just to
test the applicability of well known machine learning algo-
rithms oo our data. In the first experiment we tested the abil-
ity to infer low level atomic activities like sleeping, working,
hygiene etc. The second experiment focuses on inference of
high level activities like visiting school, friends or parents,
shopping, training etc.

6.1 Low level activities inference
Method
Logged data were transformed into feature vec-
tors f1, f2...fT . Each feature vector ft =
〈latt, lont, speedt, hour of dayt, w

1
t ...w

m
t , b1t ...b

n
t , g

1
t ...g

o
t 〉,

where wi
t ∈ 〈0, 100〉 is a WiFi network’s signal strength

wi ∈ W = {a WiFi network whose first and last occurrence
were at least 1 week apart and it was present for at least 4
hours it total} in time t, bjt ∈ {0, 1} indicates presence of a
Bluetooth device bj ∈ B = {a Bluetooth device whose first
and last occurrence were at least 1 week apart and it was
present for at least 30 minutes it total}, finally gkt ∈ {0, 1}
indicates presence of a place obtained from the Gowalla
database with type k ∈ {Travel, Food, Parks & Nature,
Shopping, Entertainment, Architecture & Buildings, College
& Education, Nightlife, Art} in time t. The feature vectors
were sampled at a constant rate of 1 minute. There were 30
different types of atomic actions, the actions were: Alpine
skiing, Car repair, Clean car, Concert, Cook, Cross-country
skiing, Cycling, Eat, Hair cut, Hand work, Home Office,
Household, Hygiene, Idle, Meeting, Other, Packing, Play
games, Program, Shop, Sleep, Spinning, Strengthening,
Teaching, Travel, Wait, Walk, Watch TV, Working, Writing.

In preliminary experiments we tested a CART decision
tree [Breiman et al., 1984], Hidden Markov Model [Rabiner,
1989], 1-NN classifier [Hart, 1967] and a zero classifier that
predicts the most probable class no matter what the sensory
input is. The decision tree, the zero classifier and the k-NN
were used directly on a sequence of feature vectors. In case
of the HMM feature vectors were clustered using k-means
clustering into 1000 and 4000 clusters used as discrete ob-
servations. Hidden states were atomic actions, matrices of
observation probabilities for states and state transitions were
computed directly from the data. Laplace correction was

Method Accuracy in %
Zero classifier 32.3
1NN 48.5
HMM (1000) 50.0
Decision tree 50.9
HMM (4000) 52.1

Table 2: Comparison of performance of Zero classifier, Deci-
sion tree, 1-NN and two variants of HMM

used, hence none of the probabilities was zero. A Viterbi
algorithm [Rabiner, 1989] was used for inference of the most
probable sequence of hidden states.

Results
Table 2 shows performance of tested algorithms. The best
performing was Hidden Markov Model (HMM) with obser-
vation space clustered into 4000 observations, but its accu-
racy was only 52.1%

The zero classifier predicted Sleep that was the most fre-
quent class with almost 8 hours of sleep a day, this lead to
accuracy of 32.3%. The other three classifiers performed
comparably well with accuracy around 50%. The Hidden
Markov Model succeeded in capturing several temporal de-
pendencies in the data. For example most days begin with
sequence: sleep, hygiene, eat, which was correctly revealed
by the HMM.

The class best predicted by the HMM was Sleep with pre-
cision of 95% and recall of 89%, class Work had precision
73% and recall of 70%. Other classes were predicted with
significantly lower accuracy.

Discussion
The performance of 52% is not satisfactory. This could be
caused by presence of too many classes and by lack of some
important information in the context provided to the machine
learning. Based on this results and related works we have ex-
tended the logging application with a pedometer that will be
used in future experiments. Sleep was predicted relatively
well because this activity was bound with a specific place
that was infered from WiFi network’s signals. We originally
thought that inclusion of Bluetooth data will increase recogni-
tion rate of activities like Meeting that can be bound to pres-
ence of specific people. However due to the fact that most
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people have switched off the Bluetooth discovery mode of
their mobile phone this does not proved to be right.

6.2 High level activities inference
Method
In this experiment we wanted to automatically label high level
activities. In the first step boundaries of high level activities
were identified using the GPS data. Segmentation was per-
formed by identifying intervals when the user was at home
and when he was outside the home location. Algorithm 1
was used to identify these outOfHome locations. Then for
each interval corresponding to one outOfHome log the ac-
tivity logged by the user that overlapped it best was searched
and the outOfhome log was labeled with the name of this
activity.

After this segmentation 113 distinct activities were found,
7 of these were assigned a unique label, these were removed
because there will be no data left to split them into train-
ing and testing sets. The remaining 106 activities were used
for the rest of the experiment, Table 3 shows distribution of
classes in the data set.

For each outOfHome entry a feature vector f was con-
structed. f = 〈the length of the interval, the distance trav-
eled, the time spend in movement/time without movement, the
time of the day when the activity started, the time of the day
when the activity ended, average speed when moving, the
east, west, south and north most locations in that interval,
w1, ..., wo, g1, ..., gp〉, where wi represented WiFi networks
obtained as in the previous experiment, the same applies to
the gi Gowalla places.

Algorithm 1 Movement segmentation
Require: locations — sequence of GPS locations

1: filteredLocations← all locations from locations with
accuracy better than 80 meters

2: parts ← identify intervals of movement and intervals
without movement from filteredLocations, remember
the location of intervals without movement

3: averageHomeLocation ← find a location that occurs
most often at 3 a.m. of each day from the interval, this is
considered to be the home location

4: find sequences of parts from parts list that begin and
end near the averageHomeLocation, add each such se-
quence to the outOfHomeList

5: return outOfHomeList %% list with entries corre-
sponding to intervals when the user was outside the home
location

Results
Because our dataset was relatively small and some classes
were represented by very few examples we used the leave
one out cross validation. This means that we always build a
classification model from n − 1 examples and used it to pre-
dict the n-th example. Again as in the previous experimented
we tested several machine learning algorithms. The best per-
forming was the CART decision tree, the accuracy of classi-
fication was 67.92% (1-NN 42%, Naive bayes 51%). Table 4
shows confusion matrix of the best classifier.

Class name Instances
School visit 23
Shopping 16
Training 15
Visiting friends 12
Work day 12
Weekend trip 11
Visiting parents 10
Trip 5
Visiting doctor 2

Table 3: Class distribution of the activities

Discussion
As can be seen the classifier performed relatively well. There
is a mutual confusion between School visit and Work day
classes because both involve traveling throuhg the same part
of the city. The Trip and Shopping classes are classified rela-
tively bad. This can be caused by high variance inside those
classes, the shopping activity involved several shops and there
were several different targets of trips. The data from Gowalla
database did not help in this case, inspection of the learned
decision trees showed that the Gowalla places were not used.

The main problem of this approach is the assumption that
each outOfHome segment corresponds to only one activity
class. It is often the case that the segment consists of 8 hours
of School visit followed by 30 minutes of Shopping and fi-
nally 2 hours of Visiting parents. In the current procedure
this whole segment would be labeled as a School visit. Finer
grained segmentation remains as future work.

7 General discussion and Future work
Accuracy of low level activity recognition has to be improved
to match result reported in [Lu et al., 2010] where mobile
phones were also used to collect data. Higher level activity
recognition provides better results and it is closer to use in
real lifelogging applications. Future directions of work on
our system include:

• Inclusion of accelerometer data — this should increase
accuracy of low level action inference.

• Connection of low level and high level activities infer-
ence — high level activity recognition performed better
than low level one. This could be used to create a two
level recognizer where a high level activity can be used
to restrict possible lower level activities thus improving
the lower level classifier’s performance.

• Finer grained activity segmentation — the procedure
segmenting activities based on home location can be
used to provide rough bounds that can be later refined
by a different segmentation technique. We want to try
HMM or Conditional Random Fields for this purpose.

• Inclusion of long term time dependencies — from the
collected data we know that e.g. Training occurs twice
a week whereas Shopping occurs usually once a week.
Explanations of activity that are in accordance with this
prior knowledge could be then preferred.
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True class
SV VP WT VF WD TRI TRA SH VD precision

Pr
ed

ic
te

d
cl

as
s

School visit (SV) 18 0 0 0 2 0 0 0 0 90%
Vis. parents (VP) 0 6 0 0 0 0 0 4 0 60%
Weekend trip (WT) 1 0 11 0 0 1 1 0 0 79%
Vis. friends (VF) 1 0 0 8 0 0 1 1 0 73%
Work day (WD) 3 0 0 1 7 0 0 3 0 50%
Trip (TRI) 0 1 0 1 0 1 0 0 0 33%
Training (TRA) 0 0 0 1 3 1 12 1 0 67%
Shopping (SH) 0 3 0 1 0 2 1 7 0 50%
Vis. doctor (VD) 0 0 0 0 0 0 0 0 2 100%
recall 78% 60% 100% 67% 58% 20% 80% 44% 100%

Table 4: Confusion matrix for the high level activity classification.

8 Conclusion
We have presented initial work on our activity recognition
system built on Android mobile phones. Performance of high
level activities that were segmented using GPS data is promis-
ing, however the lower level activities inference has to be
improved. Besides technical issues there are also law issues
regarding collecting of WiFi and Bluetooth signals. For ex-
ample in Czech Republic where the data were collected it is
legal to store data about presence of mobile phone’s Blue-
tooth if the identity of a phone’s owner cannot be revealed
from this data. Phone owner’s written permission is required
otherwise.
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[Kröse et al., 2008] B. Kröse, T. van Kasteren, C. Gibson,
and T. van den Dool. Care: Context awareness in res-
idences for elderly. In International Conference of the
International Society for Gerontechnology, Pisa, Tuscany,
Italy, pages 101–105, 2008.

[Liao et al., 2007] L. Liao, D.J. Patterson, D. Fox, and
H. Kautz. Learning and inferring transportation routines.
Artificial Intelligence, 171(5-6):311–331, 2007.

[Lu et al., 2010] H. Lu, J. Yang, Z. Liu, N.D. Lane,
T. Choudhury, and A.T. Campbell. The Jigsaw continuous
sensing engine for mobile phone applications. In Proceed-
ings of the 8th ACM Conference on Embedded Networked
Sensor Systems, pages 71–84. ACM, 2010.

[Oliver and Horvitz, 2005] N. Oliver and E. Horvitz. A com-
parison of hmms and dynamic bayesian networks for rec-
ognizing office activities. User Modeling 2005, pages
199–209, 2005.

[Rabiner, 1989] L.R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[Stikic and Schiele, 2009] M. Stikic and B. Schiele. Activ-
ity recognition from sparsely labeled data using multi-
instance learning. Location and Context Awareness, pages
156–173, 2009.

[Tapia, 2008] M. Tapia. Using machine learning for real-
time activity recognition and estimation of energy expen-
diture. PhD thesis, Massachusetts Institute of Technology,
2008.

60



[Vemuri et al., 2006] S. Vemuri, C. Schmandt, and W. Ben-
der. iRemember: a personal, long-term memory prosthe-
sis. In Proceedings of the 3rd ACM workshop on Contin-
uous archival and retrival of personal experences, pages
65–74. ACM, 2006.

[Yin et al., 2004] J. Yin, X. Chai, and Q. Yang. High-level
goal recognition in a wireless LAN. In Proceedings of the
national conference on artificial intelligence, pages 578–
584. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2004.

[Zacks and Swallow, 2007] J.M. Zacks and K.M. Swallow.
Event segmentation. Current Directions in Psychological
Science, 16(2):80, 2007.

61



Space, Time and Ambient Intelligence

STAMI 2011 62



Contract-Based Cooperation for Ambient Intelligence
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Abstract
Ambient Intelligence (AmI) describes environ-
ments that sense and react to the humans in time
to help improve their living quality. Software
agents are thus important in realizing such environ-
ments. While existing work has focused on indi-
vidual agent’s reactions, more interesting applica-
tions will take place when agents cooperate to pro-
vide composed services to humans. When coop-
eration is required, the environment needs mecha-
nisms that regulate agent’s interactions but also re-
spect their autonomy. Accordingly, this paper de-
velops a contract-based approach for offering com-
posed services. At runtime, agents autonomously
decide whether they want to enter contracts. Agents
then act to fulfill their contracts. Ontologies are
used to capture domain information. We apply this
multiagent system on an intelligent kitchen domain
and show how commitments can be used to realize
cooperation. We study our application on realistic
scenarios.
Keywords: Agents, commitments, ontologies

1 Introduction
Ambient Intelligence (AmI) indicates environments that are
aware of and responsive to human presence. Besides various
types of sensors and nanotechnology, software agents are one
of the emerging technologies for AmI. Autonomous, intelli-
gent agents are used for a wide range of tasks from searching
for information to adaptive decision making [WP12, 2007].
With this aspect of it, AmI can be realized by a multiagent
system. Multiagent systems are systems where multiple intel-
ligent agents interact [Wooldridge, 2002]. These interactions
are generally given a meaning using commitments, which are
contracts among agents to satisfy certain properties [Singh,
1999]. Using contracts among agents regulate the interactions
and enable cooperation among them.

In this paper, we propose an AmI system which consists of
autonomous agents. The system is dynamic in various ways:
resources can be added or consumed, agents may enter and
leave the system or they can change the services they provide.
We follow a user centered design focusing on the user’s needs

and demands [Saffer, 2006] for this system as it is consistent
with the human-centric nature of the AmI systems. One of
the intelligent agents represents the user of the system and it
is called User Agent (UA). Other agents cooperate with UA
in order to satisfy the user’s needs. One distinguishing aspect
is that predefined contracts, which are generated before agent
interaction, do not exist in the system. Such static structures
do not apply well to the dynamism of the system described
above. Instead of relying on predefined contracts, relevant
contracts are created in conformity with the internal states of
the parties during agent interactions. The internal states of
the agents are not visible to other agents and the agents de-
cide whether or not to take part in the contracts themselves.
When a contract cannot be created, it is UA’s duty to estab-
lish another one that guarantees realization of the properties
needed to satisfy the user.

The rest of the paper is organized as follows: Section 2 ex-
plains the advantages of the dynamically generated contracts
over statically generated ones. Section 3 describes the overall
system architecture and explains contract evolutions. Section
4 demonstrates the application of the system on an example
domain. Section 5 studies the system over selected scenarios
and Section 6 compares the system with the related work.

2 Contracts for Ambient Intelligence
A contract between agents X and Y is represented as
CC(X,Y,Q,P) and interpreted as the debtor agent X is com-
mitted to bring the proposition P to the creditor agent Y when
the condition Q is realized. Contracts assure that the cred-
itor obtains the promised properties and ease the process of
tracing the source of possible exceptions. In some multiagent
systems, the system is designed so that the role of the agents
are set, agent capabilities do not change, the resources to re-
alize these capabilities are determined and the agents’ access
to these resources are unlimited. In such static environments,
the contracts can be specified during compile time and agents
can follow these contracts at run time. Since the system is not
going to change at run time, there is no reason to attempt to
generate the contracts at run time.

Consider a multiagent AmI system with UA and two other
agents, Agent 1 and Agent 2. Assume that the following con-
tracts are generated at design time and adopted by the agents:

1. CC(Agent 1, UA , Service 1 Request, Service 1)
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2. CC(Agent 2, UA , Service 2 Request, Service 2)

That is, if UA requests Service 1, then Agent 1 will always
provide that service. Similarly, if UA requests Service 2, then
Agent 2 will always provide that service. These two contracts
work well as long as the agents of the system, their capabili-
ties, resources and the user preferences do not change.
Scarce Resources: The scenario depicted above is far from
being realistic. Any change in the environment prevents the
system from satisfying the user’s needs. Consider the case
that the resources necessary to provide the services 1 and 2
are not available any more. For example, Agent 1 may run
out of Resource 1 that is fundamental to serve Service 1. So,
Agent 1 fails to serve Service 1 when requested, although it is
committed to serve it. This leads to an overall system failure
since UA is not served a part of the service bundle. In such
cases, the statically generated contracts described above are
not sufficient to realize the user’s preferences. Instead, the
agents should decide whether or not to take part in the con-
tracts and also they should try to generate new contracts that
may help to fulfill the former ones. For scarce Resource 1
example, Agent 1 may ask for a new contract including the
following commitment: CC(Agent 1, UA , Resource 1, Ser-
vice 1), which means that if UA provides Resource 1, then
Agent 1 can provide Service 1. If UA accepts the new pro-
posed contract and provides Resource 1 to Agent 1, Agent 1
provides Service 1 to UA . Service 1 would not be provided if
the later contract had not been generated by Agent 1 dynami-
cally.
Dynamic Environment: In an open environment, agents
may leave the system, the agents that have left the system
may come back, or new agents may enter the system. When
UA tries to serve a bundle, states of the agents should be con-
sidered. It is not rational to wait for a service from an agent
that has already left the system, although it is committed to
serve it. So, the appropriate agents should be carefully se-
lected before agreeing on any commitment. For example, in
the above scenario, Agent 1 decides to leave the system for
some reason, meanwhile, a new agent, Agent 3, which offers
the same services as Agent 1 enters the system. Although
there is a contract agreed on with Agent 1, in order to receive
Service 1, UA should make another contract with Agent 3:
CC(UA , Agent 3, Service 1 Request, Service 1). If UA can
dynamically create a new contract with Agent 3, it can ensure
receiving Service 1.

3 Approach
We develop a contract-based multiagent system for ambient
intelligence. The agents cooperate by creating and carrying
out contracts that they dynamically generate at run time.
Architecture: Main components of the system are depicted
in Figure 1. Agents are shown in rectangle nodes and the
ontologies are shown in ellipse nodes. Line edges describe
two way interaction whereas dashed edges represent access
to the ontologies.

There is one UA which interacts with all of the agents in
the system. UA keeps track of the user’s needs and desires
and tries to provide the user her preferred set of services. El-
ements of this set are often served by various agents, so other

UA

Environment
Ontology

Domain
Ontology Agent

1

Agent
2

Agent
3

Figure 1: Architecture of the system

agents cooperate with UA to offer their services. UA usually
starts the communication, however other agents are also able
to make contract requests. All agents make the decision for
whether or not entering in a contract themselves.

There are two ontologies that are accessible by all of the
agents in the system. An ontology is the description of the
conceptualization of a domain [Aarts, 2004]. Elements that
are described in an ontology are the individuals, that are the
objects of the domain; classes, that are collections of objects;
attributes, that are properties of objects; relations that are the
connections between objects and rules defined on these ele-
ments [Gruber, 1995].

The first ontology is the environment ontology, which de-
scribes the environment. The agent, contract and service
bundle descriptions as well as additional spatial information
about the environment is described in the environment on-
tology. Although the descriptions for the agent and contract
structures are depicted in this ontology, information about in-
dividuals are not kept in here. The information not revealed in
this ontology is a part of the agent’s initial state and managed
by the related agent itself. The second ontology is the domain
ontology. In this ontology, detailed descriptions of the ser-
vices and other domain dependent information are provided.

Reasoner
Message
Manager

Inventory
Manager

Contract
Manager

Domain
Ontology

Environment
Ontology

Agent

Figure 2: Architecture of an agent

Figure 2 depicts the structure of an agent. Each agent in
the system has access to the environment ontology and the
domain ontology. Every agent has a local inventory where
it keeps the availability information on the service resources.
The inventory of an agent is consulted first to decide if the
necessary service resources are available. The information
about the agent’s inventory is private and it is not shared with
the other agents of the system. The contract manager of an
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agent manages the contracts of the agent. It updates the con-
tract states, traces the fulfillment of the propositions and con-
ditions. Obviously, each agent handles its contracts itself so
there is not a common contract base of the system as it is not
the case in the real life. The reasoner of the agent makes the
decisions, takes actions and handles messages.
Contract Lifecycle: In our system, interaction among agents
is conducted via messages and it is based on contracts be-
tween two agents. Contracts are dynamic entities of the sys-
tem end their states are updated by the agents after receiving
or sending certain type of messages. States of contracts used
in the system are:

• requested: These contracts are requested from an agent,
however the reply for the request has not been received
yet.

• rejected: These contracts are the ones that are requested
and got a negative respond in return. They do not have
any binding effect on either of the parties.

• conditional: These contracts are agreed on and created
by both parties. However, their conditions and proposi-
tions remain unsatisfied.

• active: These contracts are agreed on and created by
both parties. Moreover; their conditions are satisfied by
the creditor.

• fulfilled: These contracts are agreed on and created by
both parties. Their conditions and propositions are sat-
isfied.

The message types used to carry these contract, their condi-
tions and propositions are listed below:

• request: These messages are used to form a contract,
thereby leading the contract to its requested state.

• reject: A reject message changes the contract state from
requested to rejected.

• confirm: A confirm message updates the states of the
requested contracts to conditional.

• inform: An inform message is used to fulfill the condi-
tions of the conditional contracts (thereby, making the
contract active) or the propositions of the active con-
tracts (thereby, making the contract fulfilled).

Agent Lifecycle: Workflow diagram for UA is given in Fig.
3. When UA tries to establish contracts for a service bundle,
it starts with getting addresses of the agents that provides ser-
vices from the bundle. If it cannot find any agents for one
or more services, bundle cannot be served (Failure). If there
are agents that serve services of the bundle, UA sends them
contracts requests and starts waiting for the replies. Once
it receives a confirmation for a contract, it checks whether it
gathers confirmation for all contracts it has requested. If there
are still some contracts to be confirmed, UA continues to wait
for the replies. If all of the contracts are confirmed, UA pro-
vides the conditions of the contracts. UA duty ends here as
it is the other agents duty to provide the services promised
and the exceptions are not in the scope of this work. If UA
receives a rejection instead of a confirmation, it searches for
other agents that serve the same service immediately. If there
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Figure 3: Workflow of User Agent

are no such agents, UA cannot provide the bundle to the user
(Failure). If there are other agents serving the same service,
UA repeats the process of requesting contracts. UA may also
receive a contract request as a reply for its initial request.

When an agent including UA receives a contract request,
it should decide to create it or not. There are three possible
reactions that it may take: 1) Rejecting to create the contract,
2) Creating the contract in line with the requester’s desire,
3) Requesting another contract that has the same proposition
as the contract requested by the requester with a different set
of conditions. It is assumed that agents are willing to create
contracts unless they lack necessary amount of ingredients
and they do not receive any contract requests beyond their
serving capabilities.

Algorithm 1 explains the behavior of an agent other than
UA when it receives a request message. The message re-
ceived can start a new conversation between agents, or it
might carry on a previous one. So, an agent checks whether
the message is part of a previous conversation or not (line 5).
If the message is related to a previous contract, it retrieves the
contract from its contract base and calculates the similarity
between the conditions of the two contracts (line 6). If the
similarity is above a threshold set by the agent itself (line 7),
it confirms the contract and prepares a confirmation message
to be sent to the requester via the message manager of the
agent (line 8). If the similarity is below the threshold, a rejec-
tion message is prepared instead of the confirmation message
(line 10). If the message is not related to any other conver-
sation, the agent checks its inventory for the proposition (line
18). If the proposition is not ready in the inventory (line 19),
for this time the agent checks the inventory for the ingredi-
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Algorithm 1: Request Received
Input: request:Request Message received
Output: m:Message to send
String id=request.getConversationID();1
Contract c=request.getContent();2
boolean found=false;3
for i← 1 to contracts.size() do4

if contracts(i).conversationID==id then5
similarity=getSimilarity(c.proposition,6
contracts(i).proposition);
if similarity>threshold then7

m.type← confirm8
else9

m.type← reject10

found = true;11
break;12

if !found then13
ResourceList rList=c.getProposition();14
ResourceList missing;15
for i← 1 to gList.size() do16

Resource r=rList.elementAt(i);17
double invQ=Inventory.getResourceQuantity(r);18
if g.RequestedQuantity > invQ then19

missingResources(g,missing);20
if missing.size()!=0 then21

m.type← request;22
c.condition← missing;23
m.add(c);24
return m25

m.type← confirm;26
m.add(c);27
return m28

ents of the proposition. If there are some missing ingredients
(line 21), the agents prepares a request message asking for the
missing ingredients in return of the proposition of the contract
and returns this message (lines 20-25). Otherwise, the agent
prepares a confirm message (lines 26,27).

In addition to receiving a request message, an agent can
also receive an inform message. If that is the case, the agent
extracts the messages to get its content and finds relevant
contracts through its contract manager. If it finds a contract
whose condition matches the content and whose state is con-
ditional, it updates the state to active. This means that, the
agent itself is now responsible to carry out the rest of the con-
tract by bringing about its proposition. On the other hand, if
it finds a contract whose proposition matches the content and
its state is active, meaning if the sending agent is fulfilling a
contract, it updates its state to fulfilled.

4 Example Domain
We apply our approach on an AmI kitchen domain. An AmI
kitchen consists of various autonomous agents such as Coffee
Machine Agent (CMA), Tea Machine Agent (TMA), Fridge

Agent (FA) and Mixer Agent (MA), which represent devices
in a regular kitchen. Each of these agents provide different
services. Agents use some ingredients related to their services
as resources. For example, CMA, which serves coffee, has
coffee beans and water in its inventory. It may also have some
coffee ready in its inventory. Similarly, TMA which serves
Tea is expected to have tea leaves and water. On the other
hand, FA has some cake to serve. UA of the system tries to
serve the user a service bundle which is a menu consisting of
several beverages and dishes for this domain. Each element
of a menu is usually served by a different agent of the kitchen.

The user of the system is satisfied when she gets the ex-
act menu she prefers. Establishing contracts is a necessity in
such a system for user satisfaction since the static contracts
will not work for the reasons described in Section 2. Agents
of the system may get broken, broken ones may be fixed or
replaced, or new agents may enter the system so the assuring
power of the predefined contracts established between agents
is limited. The availability of the resources is limited, so the
agents do not always have access to the resources they need.

The environment ontology of this system describes the
agent structure, contract structure and spatial information
about the kitchen such as the temperature and humidity level.
The domain ontology of this environment is a food ontology,
in which various types of food and beverages together with
their ingredients are described. Agents use the recipes pro-
vided in the ontology for their services. In this ontology. the
ingredients and types of some most popular items such as cof-
fee and tea, are carefully classified and some similarity factor
is placed between pairs that are substitutable. The similarity
factor shows how well these items can substitute each other.
Higher the similarity factor is, stronger the similarity relation-
ship between the items that are compared to. These similarity
factors are used to serve the demanded dish with a slightly
different recipe when the original ingredients are not avail-
able in the inventory of the agent and UA cannot establish a
contract that promises the missing ingredient. In such cases,
the agent may try to prepare the dish using the substitude of
the missing ingredient. Let’s consider three types of Flour
that are classified under Wheat Flour class. These types are
All Purpose Flour, Cake Flour, and Bread Flour. All Purpose
and Cake Flour are 0.7 similar, whereas Cake Flour and Bread
Flour are 0.8 similar. When a service which requires one of
these types of flour is requested, and the exact resource is not
available, the resource that are similar may be substituted by
one of the other types, leading to the same service served with
tolerably different resources.

The detail level of a domain ontology changes from system
to system. Agents of another kitchen may use a domain on-
tology just for the ingredients without the similarity relation-
ship. Another one may also include the types of silverware
that should be used with a specific dish.

4.1 Scenario 1
For the first scenario, user tells UA that she wants a menu
consisting of two different services, coffee and cake, which
should be served together. UA needs to find the agents serv-
ing the menu items, for this case they are CMA and FA .
Then, UA needs to establish contracts for all of the items in
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Figure 4: A caption from example domain ontology, repre-
senting flour class

the menu and receive the items. CMA needs some coffee
beans to serve coffee and it manages to create a contract when
it accepts to provide coffee beans to CMA . Once all contracts
are established, UA fulfills the conditions of the contracts and
gets served.

4.2 Scenario 2
For the second scenario, UA again tries to serve a coffee and
cake menu of the user’s choice. The menu item coffee is
served by CMA and the cake is served by MA. UA estab-
lishes a contract with CMA. However, MA is out of cake flour
which is essential for serving a cake. It requests some from
UA , however UA cannot provide it and after consulting the
domain ontology, UA offers bread flour, which is a replace-
ment for the original ingredient. Once again, after all con-
tracts are established, UA fulfills the conditions of the con-
tracts and gets served.

4.3 Scenario 3
The third scenario begins similar to the second one. UA tries
to establish contracts for the coffee and cake menu. It estab-
lishes one with CMA . MA asks for a substitute for the cake
flour, which is an ingredient to make the cake. Not being
able to provide the cake flour, UA offers bread flour. How-
ever, this time MA does not find the substitute similar enough
to replace the original item. UA cannot establish a contract
with Mixer Agent and looks for another agent that can pro-
vide cake. It discovers FA and establishes a contract with it.
UA fulfills the conditions and waits for the services but CMA
gets broken and does not respond.

5 Results
Jade [Bellifemine et al., 1999] agent development framework
is used to implement the agents, which natively provides mes-
saging system, yellow pages and the distributed system archi-
tecture. Yellow pages service is given by Directory Facilita-
tor (DF) Agent of each container and once the agents register
their services to DF, others can find them through a query to
DF. Agent implementation is separated from the underlying
details of the messaging service.

FA UA CMA
M1: request(CC(CoffeeRequest,Coffee))M2: request(CC(CakeRequest,Cake))

M3:confirm(CC(CakeRequest,Cake))
M4: request(CC(CoffeeBeans,Coffee))
M5: confirm(CC(CoffeeBeans,Coffee))

M6: inform(CakeRequest)
M7: inform(CoffeeBeans)

M8: inform(Cake)
M9: inform(Coffee)

Figure 5: Sequence Diagram for Scenario 1

MA UA CMA
M1: request(CC(CoffeeRequest,Coffee))M2: request(CC(CakeRequest,Cake))

M3: request(CC(CakeFlour,Cake))
M4: confirm(CC(CoffeeRequest,Coffee))

M5: request(CC(BreadFlour,Cake))
M6: confirm(CC(BreadFlour,Cake))

M7: inform(BreadFlour)
M8: inform(CoffeeRequest)M9: inform(Cake)

M10: inform(Coffee)

Figure 6: Sequence Diagram for Scenario 2

5.1 Execution of Scenario 1
Figure 5 depicts the scenario described in section 4.1. For
simplicity, agent names are omitted from the contracts. In
order to realize the scenario, UA sends request messages to
start conversation (M 1 and M 2). FA immediately sends a
confirmation back (M 3). On the other hand CMA is in need
of some coffee beans, so it sends a request message back (M
4). UA accepts this offer (M 5). By accepting CMA’s request,
UA establishes all contracts necessary to serve the menu. It
sends an inform message to realize the condition of the con-
tract with FA (M 6). It also sends an inform message to de-
liver the condition of the contracts with CMA (M 7). FA and
CMA send the propositions of the corresponding contracts
(M 8, 9).

5.2 Execution of Scenario 2
For the scenario described in Section 4.2, the flow of com-
munication is depicted in Fig. 6. UA sends relevant request
messages to start conversation (M 1 and M 2). Mixer Agent
immediately makes a request for cake flour, since it does not
have the necessary amount of flour to bake the cake (M 3).
Unfortunately, UA cannot provide cake flour, but it consults
the domain ontology for the most similar item and it finds
out that it is the bread flour and luckily, it can provide bread
flour, so it makes a contract request back with bread flour as
condition and cake as proposition (M 5). The substitute satis-
fies MA and it accepts to take part in the contract (M 6). So,
UA establishes all contracts that it needs to do, since CMA
has already accepted the request with M 4. UA sends inform
messages to both agents, satisfying the conditions of the con-
tracts (M 7, 8). After receiving the conditions, agents serve
the propositions of their contracts (M 9, 10).

5.3 Execution of Scenario 3
Communication flow between agents for the scenario de-
scribed in Section 4.3 is represented in Fig. 7. The sce-
nario starts with UA’s sending contracts requests to service
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CMA UA MAFA
M1: request(CC(CakeRequest,Cake))M2: request(CC(CoffeeRequest,Coffee))

M3: confirm(CC(CoffeeRequest,Coffee))
M4:request(CC(CakeFlour,Cake))

M5: request(CC(BreadFlour,Cake))
M6: reject(CC(BreadFlour,Cake))

M7: request(CC(CakeRequest,Cake))
M8: confirm(CC(CakeRequest,Cake))M9: inform(CoffeeRequest)

M10: inform(CakeRequest)
M11: inform(Cake)

Figure 7: Sequence Diagram for Scenario 3

providers MA and CMA (M 1, 2). CMA sends a confirma-
tion (M 3) whereas MA requests another contract, demand-
ing cake flour to provide cake (M 4). Unable to provide cake
flour, UA requests yet another contract, offering bread flour to
get some cake from MA (M 5). MA does not find bread flour
similar enough to cake flour, so it rejects the contract offered
by UA (M 6). UA searches for another agent that can provide
cake service, so it discovers FA. It makes a request (M 7) and
receives confirmation in return (M 8). With this confirmation,
UA gets confirmation for all contracts to get services for the
cake and coffee bundle, so it fulfills the conditions of the con-
tracts (M 9, 10). FA provides the service it is committed to
serve (M 11), however CMA gets broken and cannot provide
the service. After a certain time, UA gives up hope on CMA
and starts looking for a new agent to provide the same service.

6 Discussion
The main contribution of our work is to dynamically gener-
ate and use contracts to ensure that the user’s needs are sat-
isfied in a dynamic environment. Unlike Hagras et al., we
do not assume that any agent serving a person must always
and immediately carry out any requested actions [Hagras et
al., 2004]. Instead, we develop a model for an open dynamic
system where the continuity of the services are secured, even
when some agents stop working or leave the system, without
being noticed by the user.

Although it is assumed that the agents are willing to coop-
erate under certain conditions in Section 5, the model which is
represented in this paper does not have a predefined commu-
nication protocol. The existence of less or more cooperative
agents in the system does not destroy the system’s ability to
operate. We can also say that the agents in the system do not
have designated roles, as they can change the services pro-
vided by them.

We benefit from the ontologies to achieve a high degree
of interoperability; however, the contracts that are gener-
ated in the system are not kept in ontologies like in the case
of Fornara and Colombetti [Fornara and Colombetti, 2010].
Since the evolution of the contracts are handled by the agents,
our model deliberately lacks a central monitoring system,
which has access the information on all of the transactions.
Hence, contracts are also kept independently.

Unlike some AmI frameworks such as Amigo [Thomson
et al., 2008], our application does not offer a low level inter-
operation structure. In Amigo framework agents do not have
any options but to provide their services when their relevant

methods are called by the other agents. Also, in that frame-
work, exact structure of the service methods of the provider
agent such as the parameters and the name and so on should
be known by the demanding agent. Instead of such frame-
work, we provide a high level interaction model where agents
willingly provide their services or not. It is not necessary for
the demanding agent to know the details about the provider
agent’s methods.

Future work may include the development of a policy for
exceptions. The sanctions that will be applied to an agent that
does not follow a contract should be set to avoid the abuse of
the system. Also, the cancellation and release policies for
agents should be defined, so that the agents can inform the
other party when they cannot deliver the services they are
committed to.
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Abstract 

Nowadays, the percentage of elderly people is in-
creasing. Consequently, there is not enough 
younger people to take care of them. To provide 
sustainable elderly care we propose health care 
monitoring system, based on data mining approach. 
The aim of this study is to provide health monitor-
ing system to allow quality and safe living of eld-
erly at homes instead of needing them to go to 
nursing homes, which are also overcrowded. 
Moreover, their offspring would not be over-
whelmed with care for the elderly. Therefore, the 
aim of this research is to provide sustainable eld-
erly care. The study proposes a general and specific 
approach, both achieving classification accuracies 
over 97%. 

1 Introduction 
Nowadays, the percentage of elderly people is increasing 
[Toyne, 2003]. Elderly tend to lead an isolated life away 
from their offspring; however, they may fear being unable 
to obtain help if they are injured or ill. During the last dec-
ades, this fear has generated research attempts to find assis-
tive technologies for making living of elderly people easier 
and independent. The aim of this study is to provide ambi-
ent assistive living services to allow quality and safe living 
of elderly at home instead of needing them to go to nursing 
homes, which are overcrowded. Moreover, their offspring or 
other relatives would not be overwhelmed with care for the 
elderly. Therefore, the aim of this research is to provide 
sustainable elderly care. 
 We propose two approaches to an intelligent and ubiqui-
tous care system to recognize a few of the most common 
and important health problems of the elderly, which can be 
detected by observing and analyzing the characteristics of 
their movement. In the first approach we use medically de-
fined attributes and support vector machine classification 
into five health states: healthy, with hemiplegia (usually the 
result of stroke), with Parkinson’s disease, with pain in the 
leg and with pain in the back [Pogorelc, B. and Gams, M. 
2010].  
In the second approach we classify into same five health 
states using more general data mining approach. The 

movement of the user is captured with the motion capture 
system, which consists of the tags attached to the body, 
whose coordinates are acquired by the sensors situated in 
the apartment. Output time series of coordinates are mod-
eled with the proposed data mining approaches in order to 
recognize the specific health problem. In the case that health 
problem is recognized, the medical center is notified. 

2 Related Work 
In the related work, motion capturing is usually done with 
inertial sensors [Strle and Kempe, 2007; Bourke et al, 
2006], computer vision and also with specific sensor for 
measurement of angle of joint deflection [Ribarič and Roz-
man, 2007] or with electromyography [Trontelj et al, 2008]. 
For our study, the (infra-red) IR camera system with tags 
attached to the body [eMotion, 2009] was used.  
 We do not address the recognition of activities of daily 
living such as walking, sitting, lying, etc. and detection of 
falling, which has already been addressed [Confidence, 
2009; Luštrek, and Kaluža, 2009], but more challenging 
recognition of health problems based on motion data. 
 Using similar motion capture system as in our approach 
the automatic distinguishing between health problems such 
as hemiplegia and diplegia is presented [Lakany, 2008]. 
However, much more common approach to recognition of 
health problems is capturing of movement which is later 
examined by medical experts by hand [Ribarič and Rozman, 
2007; Craik and Oatis, 1995; Moore et al, 2006]. Such ap-
proach has major drawback in comparison to ours, because 
it needs constant observation from the medical profession-
als. 
 The paper [Miskelly, 2001] presented a review of assis-
tive technologies for elderly care. The first technology con-
sists of a set of alarm systems installed at person’s homes. A 
system includes a device in the form of mobile phone, pen-
dant or chainlet that has an alarm button. They are used to 
alert and communicate with the warden. When the warden is 
not available, the alert is sent to the control centre. How-
ever, such devices are efficient only if the person recognizes 
an emergency and has the physical and mental capacity to 
press the alarm button. 
 The second technology presented in [Miskelly, 2001] is 
video-monitoring. The audio-video communication is done 
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in real-time over the ordinary telephone line. The video can 
be viewed on monitor or domestic television. The problems 
of the presented solution are ethical issues, since the elderly 
users don’t want to be monitored by video [Confidence, 
2009]. Moreover, such approach requires constant attention 
of the emergency center. 
 The third technology in [Miskelly, 2001] is based on 
health monitors. The health monitor is worn on the wrist 
and continuously monitors pulse, skin temperature and 
movement. At the beginning of the system usage, the pattern 
for the user is learned. Afterwards, the deviations are de-
tected and alarms are sent to the emergency centre. Such 
system detects collapses, faints, blackouts etc.  
 Another presented technology is the group of fall detec-
tors. They measure the accelerations of the person with the 
tags worn around the waist or the upper chest. If the accel-
erations exceed a threshold during a time period, an alarm is 
raised and sent to the community alarm service. Bourke et 
al. [Bourke et al, 2007] present the acceleration data pro-
duced during the activities of daily living and during the 
person falls. The data was acquired by monitoring young 
subjects performing simulated falls. In addition, elderly 
people have performed activities of daily living. By defining 
the appropriate threshold they can distinguish between the 
accelerations during the falls and the accelerations produced 
during normal activities of daily living. Therefore, the ac-
celerometers with the threshold can be used for monitoring 
elderly people and recognizing falls. However, threshold 
based algorithms produce mistakes, for instance fast stand-
ing up from/sitting down on the chair could result in cross-
ing the threshold which is erroneously recognized as a fall. 
 In [Rudel, 2008], architecture of a system that enables the 
control of the users at their homes is described. It consists of 
three levels. The first level represents the ill persons at their 
homes equipped with communication and measurement 
devices. The second level represents information and com-
munication technology that enables the communication with 
the main server. The last level represents the telemedicine 
center including duty operator, doctors and technical sup-
port; the centre for the implementation of direct assistance at 
home; and team of experts for implementing telemedicine 
services. Such system does not provide any automatic detec-
tion of an unusual behavior but instead requires constant 
observation by the medical center.    
 Williams et al. [2003] have showed that the ability to 
perform daily activities is decreased for the people that have 
fallen several times and that the decrease can be detected 
using accelerometers. They have tested elderly people that 
have not fallen yet and those that have fallen several times. 
All of them were asked to perform a predefined scenario 
including sentence writing, objects picking etc. The accel-
erations differ significantly between the two groups of peo-
ple during the test. 
 The aim of this paper is to realize an automatic classifier 
able to support autonomous living of elderly by detecting 
health problems recognizable through the movement. Earlier 
works (e.g. [Kaluza et al, 2010]) describe machine learning 
techniques employed to analyze activities based on the static 

positions and recognized postures of the users. Although 
that kind of approaches can leverage a wealth of machine-
learning techniques, they fail to keep into account the dy-
namics of the movement. 

3 Materials and Methods 

3.1 Targeted Activities and Health Problems for 
Detection 

The research is comparing the specific and the more general 
approach to recognition of health problems. It classifies 
walking patterns into five different health states; one healthy 
and four unhealthy. All the health problems we are recog-
nizing were suggested by the collaborating medical expert 
on the basis of occurrence in the elderly aged 65+, the 
medical significance and the feasibility of their recognition 
from movements.  
 The following four health problems were chosen as the 
most appropriate [Craik and Oatis, 1995]: 

 Parkinson’s disease: a degenerative disease of the 
brain (central nervous system) that often impairs 
motor skills, speech, and other functions. The 
symptoms are frequently tremor, rigidity and pos-
tural instability. The rate of the tremor is approxi-
mately 4–6 Hz. The tremor is present when the in-
volved part(s), usually the arms or neck, are at rest. 
It is absent, or diminished with sleep, sedation, and 
when performing skilled acts. 

 Hemiplegia: is the paralysis of the arm, leg and 
torso on the same side of the body. It is usually the 
result of a stroke, although diseases affecting the 
spinal cord and the brain are also capable of pro-
ducing this state. The paralysis hampers move-
ment, especially walking, and can thus cause falls. 

 Pain in the leg: resembles hemiplegia in that the 
step with one leg is different from the step with the 
other. In the elderly this usually means pain in the 
hip or in the knee. 

 Pain in the back: There is also a similarity to hemi-
plegia and pain in the leg in the inequality of steps; 
however, the inequality is not as pronounced as in 
walking with pain in the leg. 

 Classification was done using i) medically defined attrib-
utes and SVM classifier and ii) the k-nearest neighbor ma-
chine learning algorithm and dynamic time warping for the 
similarity measure. 

3.2 Features for Data Mining 
The recordings consisted of the position coordinates for the 
12 tags worn on the shoulders, the elbows, the wrists, the 
hips, the knees and the ankles, sampled with 10 Hz. The tag 
coordinates were acquired with a Smart IR motion-capture 
system with a 0.5-mm standard deviation of noise. From the 
motion capture system we get position of each tag in x-y-z 
coordinates. 
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In the first (specific) approach using medically defined at-
tributes 13 attributes were defined with help of an medical 
expert. These are: 

I. Absolute difference between i) the average dis-
tance between the right elbow and the right hip 
and ii) the average distance between the right 
wrist and the left hip  

II. Average angle of the right elbow 
III. The quotient between the maximum angle of the 

left knee and the maximum angle of the right 
knee 

IV. Difference between the maximum and minimum 
angle of the right knee 

V. Difference between the maximum and minimum 
height of the left shoulder 

VI. Difference between the maximum and minimum 
height of the right shoulder 

VII. Quotient between i) the difference between the 
maximum and minimum height of the left ankle 
and ii) the maximum and minimum height of the 
right ankle 

VIII. Absolute difference between i) the difference be-
tween the maximum and minimum speeds 
(magnitudes of velocity) of the left ankle and ii) 
the difference between the maximum and mini-
mum speeds of the right ankle 

IX. Absolute difference between i) the average dis-
tance between the right shoulder and the right 
elbow and ii) the average distance between the 
left shoulder and the right wrist 

X. Average speed (magnitude of velocity) of the 
right wrist 

XI. Frequency of the angle of the right elbow pass-
ing the average angle of the right elbow 

XII. Average angle between i) the vector between the 
right shoulder and the right hip and ii) the vector  
between the right shoulder and the right wrist 

XIII. Difference between the average height of the 
right shoulder and the average height of the left 
shoulder 

We compared the specific approach with the general ap-
proach where movements were represented with more gen-
eral attributes. The advantage of latter approach is that we 
can add some new health state(s) to be recognized using the 
same algorithm and attributes.  
 Considering the abovementioned, in the general approach 
we designed attributes as the angles between adjacent body 
parts. The angles between body parts that rotate in more 
than one direction are expressed with quaternions: 

 t
SLq  and t

SLq  ... left and right shoulder angles 
with respect to the upper torso at the time t 

 t
HLq   and t

HRq  ... left and right hip angles with re-
spect to the lower torso 

 t
Tq   ... the angle between the lower and upper 

torso 
 t

EL , t
ER , t

KL  and t
KR ... left and right el-

bow angles, left and right knee angles. 
 

3.3 Dynamic Time Warping 
We will present dynamic time warping (DTW) as a robust 
technique to measure the “distance” between two time series 
[Keogh and Ratanamahatana, 2005]. Dynamic Time Warp-
ing aligns two time series in the way some distance measure 
is minimized (usually Euclidean distance is used). Optimal 
alignment (minimum distance warp path) is obtained by 
allowing assignment of multiple successive values of one 
time series to a single value of the other time series and 
therefore DTW can also be calculated on time series of dif-
ferent lengths. Figure 1 shows examples of two time series 
and value alignment between them for Euclidean distance 
(left) and DTW similarity measure (right).  
 

Figure 1: Example of two time series. Lines between time 
series show value alignment used by Euclidean distance 
(left) and Dynamic Time Warping similarity measure 
(right). 
 
 Notice that the time series have similar shapes, but are 
not aligned in time. While Euclidean distance measure does 
not align time series, DTW does address the problem of 
time difference. By using DTW, optimal alignment is found 
among several different warp paths. This can be easily rep-
resented if two time series A = (a1, a2, ..., an) and B = (b1, 
b2, ..., bm), ,i ja b R  are arranged to form a n-by-m grid. 
Each grid point corresponds to an alignment between ele-
ments ia A  and jb B . A warp path 

1, 2 ,..., ,...k KW w w w w  is a sequence of grid points, where 
each kw  corresponds to a point  ( , )ki j  – warp path W maps 
elements of sequences A and B. 
A warp path is typically subject to several constraints: 

 Boundary conditions: 1 (1,1)w   and ( , )kw n m . 
This requires the warping path to start in first point 
of both sequences and end in last point of both se-
quences. 

 Continuity: Let ( , )kw a b  then 1 ( ', ')kw a b   
where ' 1a a   and ' 1b b   . This restricts the 
allowable steps in the warping path to adjacent 
cells. 

 Monotonicity: Let ( , )kw a b  then 
1 ( ', ')kw a b   where ' 0a a   and ' 0b b  . 

This forces the points in W to be monotonically 
spaced in time. 

 
From all possible warp paths DTW finds the optimal one: 
  
 
 
 
Here d(wk) is the distance between elements of time series. 
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Algorithm The goal of DTW is to find minimal distance 
warp path between two time series. Dynamic programming 
can be used for this task. Instead of solving the entire prob-
lem all at once, solutions to sub problems (sub-series) are 
found and used to repeatedly find the solution to a slightly 
larger problem. Let DTW(A, B) be the distance of the opti-
mal warp path between time series A = (a1, a2, ..., an) and B 
= (b1, b2, ..., bm) and let D(i, j) = DTW (A’, B’) be the dis-
tance of the optimal warp path between the prefixes of the 
time series A and B: 
  
 
 
 
 
Then DTW(A, B) can be calculated using the following re-
cursive equations: 
 
 
 
 
 
 
Here d(ai, bj) is the distance between two values of the two 
time series (usually Euclidean distance is used). The most 
common way of calculating DTW(A, B) is to construct a 
n*m cost matrix M, where each cell corresponds to the dis-
tance of the minimal distance warp path between the pre-
fixes of the time series A and B (Figure 2): 
 
 
 
 
 
We start by calculating all the fields with small indexes and 
then progressively continue to calculate fields with higher 
indexes: 
 for i = 1...n 
  for j = 1...m 
   M(i,j) = min(M(i-1,j), M(i,j-1), 
M(i,j)) + dst(ai,bj ) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Minimal distance warp path between time series A 
and B. 
 

The distance corresponding to the minimal distance warp 
path equals the value in the cell of a matrix M with the 
highest indexes M(n,m). A minimal distance warp path can 
be obtained by following cells with the smallest values from 
M(n,m) to M(1, 1) (in Figure 2 the minimal distance warp 
path is marked with dots).  
Many attempts to speed up the DTWs have been proposed 
[Salvador and Chan, 2007] which can be categorized as 
constraints. Constraints limit a minimum distance warp path 
search space by reducing allowed warp along time axis. 
Two most commonly used constraints are Sakoe-Chiba 
Band [Sakoe and Chiba, 1978] which we used and Itakura 
Parallelogram [Itakura, 1975] which are shown in Figure 3. 

  
Figure 3: Itakura Parallelogram (left) and Sakoe-Chiba Band 
(right) constraints. Only shaded cells are used by DTW al-
gorithm. 
 

3.4 Modification of the Algorithm for Multidimen-
sional Classification 

The DTW algorithm commonly described in the literature is 
suitable to align one-dimensional time series. This work 
employed a modification of the DTW which makes it suit-
able for multidimensional classification.  
 First, each time point of the captured time series consist-
ing of the positions of the 12 tags coming out of motion 
capture system is transformed into angle attribute space, as 
defined in this paper. The classification will then be per-
formed in the transformed space.  
 To align an input recording with a template recording (on 
which the classifier was trained), we first have to compute 
the matrix of local distances, d(i,j), in which each element 
(i, j) represents the local distance between the i-th time point 
of the template and the input at the time j. Let Cjs be a ge-
neric feature vector element relative to a template recording, 
and Qis be the feature vector element relative to a new input 
recording to recognize, where 1 s N    is the considered 
feature. 
 For the definition of the local distance the Euclidean dis-
tance was used, defined as follows: 
 
 
 
  
 Given the matrix of local distances a matrix of global 
distances D is built. The value of the minimum global dis-

1
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tance for the complete alignment of DTW procedure, i.e. the 
final algorithm output, is found in the last column and row, 
D(Tr, Tr). The optimal alignment can also be efficiently 
found by back tracing through the matrix: the alignment 
path starts from D(Tr, Tr), then it proceeds, at each step, by 
selecting the cell which contains the minimum cumulative 
distance, between those cells consented by the alignment 
path constraints, until D(1, 1) is reached. 
 

4 Results 
In the first (specific) approach, for each recording attributes 
were calculated and SVM classifier was used to classify 
them into five health states. Confusion matrix, which repre-
sents number of examples of a certain true class (in rows) 
classified in one of possible five classes (in columns), is 
shown in Table 1. 
In the second (general) approach, the DTW algorithm was 
used to stretch and compress an input time series in order to 
minimize a suitably-chosen distance measure from a given 
template. We used a nearest neighbor classifier based on 
this distance measure to design the algorithm as a health 
state classifier. 
 The classification process is considering one input time 
series, comparing it with the whole set of templates, com-
puting the minimum global distance for each alignment and 
assuming that the input recording is in the same class of the 
template with which the alignment gives the smallest mini-
mum global distance (analogous to instance-based learning). 
Confusion matrix is shown in Table 2. 
The 10-fold cross-validation for 5-nearest neighbor classi-
fier resulted in classification accuracy of 97.9% and 97.6% 
for the specific and the general approach, respectively. 
Thus, the performance of both approaches is similar. 
  For the real world cases, we can use confusion matrices 
for three purposes: 

 False positives (false alarms): How many can be 
expected using these classifiers. When in real 
world use the system would report false alarm, e.g., 
normal walking is classified as some health prob-
lem, ambulance could drive to pick up the elderly 
which would cause unnecessary costs. 

 False negatives: How many can be expected using 
these classifiers. False negatives could mean poten-
tially risky situation for the elderly, as his/her 
health problem would not be recognized automati-
cally. 

 Errors (misclassifications): Between which health 
states (classes) the errors (misclassifications) oc-
curs. Consequently, we can add additional features 
to help distinguish between those particular classes. 
The misclassifications happened very rarely. 

 
 
 
 
 
 

classified as  
H L N P B 

H 45 0 0 0 0 
L 1 24 0 0 0 
N 0 0 25 0 0 
P 2 0 0 23 0 tr

u
e 

cl
as

s 

B 0 0 0 0 21 

 
Table 1. Confusion matrix for the first (specific) approach, where 
H=hemiplegia, L=pain in the leg, N=normal (healthy) walking, 
P=Parkinson’s disease and B=Pain in the back. Numbers denote 
quantity of the classified examples. 
 

classified as 
 

H L N P B 
H 42 2 1 0 0 
L 0 25 0 0 0 
N 1 0 24 0 0 
P 0 0 0 25 0 tr

u
e 

cl
as

s 

B 0 0 0 0 21 

Table 2. Confusion matrix for the second (general) approach, 
where H=hemiplegia, L=pain in the leg, N=normal (healthy) walk-
ing, P=Parkinson’s disease and B=Pain in the back. Numbers de-
note quantity of the classified examples. 
 
 The results show that in both proposed approaches false 
positives/negatives are very rare, i.e., they would not cause 
much unnecessary ambulance costs. Since the method accu-
rately classified most true health problems, it represents 
high confidence and safety for the potential use in elderly 
care. 
 

5 Conclusion 
This paper proposed elderly health monitoring system pro-
viding sustainable elderly care. It presented comparison 
between specific and general approach to detection of health 
problems of the elderly. In the specific approach, medically 
defined attributes and SVM classifier was used. In the gen-
eral approach, k-nearest neighbor algorithm with multidi-
mensional dynamic time warping was employed. Both ap-
proaches classify movement of elderly person into five 
health states; one healthy and four unhealthy. Even though 
the first approach is more general and can be used also to 
classify other types of activities or health problems, it still 
achieves high classification accuracies, similar to the more 
specific approach. Since both approaches to health monitor-
ing system are achieving high classification accuracies for 
recognition of health problems which are also causes for 
falls, they have advantage over often presented fall detection 
systems in sense that they recognize health problems in their 
early stages and also prevent falls. 
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Abstract
Ambient Assisted Living (AAL) systems are de-
veloped to facilitate the daily lives of elderly peo-
ple, increase their autonomy and improve their
safety. The symbolic reasoning about space and
time is a fundamental aspect of these systems for
recognizing situations and providing customized
assistive services. In this paper, we propose a se-
mantic and architectural approach for the Spatio-
Temporal Reasoning in AAL systems. This ap-
proach combines first order reactive reasoning, and
narrative representation and reasoning. The paper
presents the narrative semantic representation foun-
dations and the narrative inference architecture. An
AAL scenario inspired from everyday life situa-
tions is presented and analyzed to show the feasi-
bility of the proposed approach.

1 Introduction
AAL systems are developed to facilitate the daily lives of
elderly people, increase their autonomy and improve their
safety. Such systems must be capable for instance to detect
any critical event such as a cardiovascular attack, a fall or an
intruders presence, and react accordingly. AAL systems aim
also at assisting the elderly anytime and anywhere by provid-
ing customized services; for instance, switching the light on
in a given location when the presence of a person is detected.
Situations cited above involve an immediate reaction under
the form of an alarm sending or an action on a device. How-
ever, there are numerous daily activities and situations that
obey to complex processes and in which multiple events must
be correlated in respect to their spatial and temporal order-
ing to infer the right situation. Inferring deterioration in the
physical and psychological status of an elderly person from
changes in his habitual schedule or her physical activity is
a typical case illustrating the complexity of spatio-temporal
modeling and reasoning at a high semantic level about situa-
tions.

To address these challenges, the conceptual representation
of the entities in AAL systems must be powerful enough to
supply a general description not only of the usual classes
of static objects such as a phone or a chair, but also of dy-
namic entities like events, actions, situations, circumstances,

etc. The representation of static entities like physical objects
and simple events can be kept relatively simple and based,
e.g., on the traditional binary model. In this last approach,
the properties or attributes that define a given concept are
then expressed as binary (i.e., linking only two arguments)
relationships of the property/value type, independently from
the fact that these relationships are organized, e.g., into frame
format as in the original Protégé model, or take the form of
a set of ’property’ statements defining a class in a W3C lan-
guage like OWL or OWL 2. However, more advanced forms
of knowledge representation should be used to represent and
reason about dynamic events and situations. For instance,
in [Martinez et al., 2007], the authors presented a mobile
robot using the W3C reasoner RACER. However, the ontol-
ogy that was used is static and very limited. It permits to
handle only physical entities like corridors and living rooms,
which makes it difficult to find a way to represent and reason
about dynamic events like grabbing a door handle in order
to open this door. An AAL system, seen as a real world ap-
plication, needs a full knowledge about its environment and
a non-monotonicity reasoning support based on the Closed
World Assumption (CWA). In fact, facts that are interpreted
under the CWA are used to reduce the values into quanti-
fied expressions describing situations. OWL is a description
logic-based ontology language, based on the Open World As-
sumption (OWA). It is not suitable for AAL systems because
it was designed to be monotonic, and therefore cannot use the
CWA to prevent large ontologies from admitting inconsisten-
cies resulting, e.g., from multiple inhe-ritance [Bertino et al.,
2003].

The symbolic reasoning about space and time has been
addressed in [Stock, 1997] as a fundamental aspect of the
future AAL systems. An AAL system can be considered
as a Dynamic Domain (DD) in which entities can generate
events anywhere and anytime. A reasoning process based on
a chronological and semantic analysis, about past and ongo-
ing events, requires therefore focusing about narratives, pre-
dictive reasoning, etc. In this paper, we propose a Seman-
tic and architectural approach for Spatio-Temporal Reason-
ing in AAL systems. This approach, based on CWA, com-
bines first order reactive reasoning, and narrative representa-
tion and reasoning. It transforms low-level events of virtual
or physical entities generated by sensors, using for instance
a Rete first order inference engine, into higher level abstrac-
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tion of complex and structured situations through conceptual
representation implying mutual relationships among events
captured at a lower level. To describe entities and events,
the approach uses hierarchical structures of semantic predi-
cates and functional roles of the Narrative Knowledge Rep-
resentation Language (NKRL) [Zarri, 2009]. The reasoning
process analyzes the chronological semantic relationships be-
tween events. This approach benefits from the potential se-
mantic relationships about events occurrences in both past
and present time, and also about their spatial temporal de-
pendencies. NKRL provides also a formal representation of
any elementary event and determines through requests (ques-
tions) the general conceptual category of the specific event.
This paper is organized as follows: Section 2 presents some
related work on qualitative reasoning for AAL systems. Sec-
tion 3 and section 4 describe respectively the narrative se-
mantic representation foundations and the narrative inference
architecture used in this paper. Section 5 presents the whole
architecture of the proposed framework. Section 6 illustrates
the feasibility of the proposed approach in an AAL scenario
inspired from everyday life situations. The last section pro-
vides concluding remarks about ongoing and future works.

2 Related Work
In the last few years, a number of qualitative and quantitative
reasoning approaches have been proposed for events process-
ing, contexts and situation recognition from low-level sensors
[Ye et al., 2011]. Using quantitative reasoning approaches in
AAL systems is not sufficient to deal with the heterogene-
ity of sensors and data, the sporadic occurrence of events,
and also if there is a causality chain that explains an ordered
occurrence of these events. Qualitative reasoning is a good
complement and sometimes an alternative to quantitative ap-
proaches for recognizing human contexts and situations. This
strong paradigm is based usually on a symbolic representa-
tion of the context knowledge such as propositions, predi-
cates, description logics ontologies and rules. The reasoning
is applied using inference over statements describing the re-
lationships between facts using a collection of rules, and de-
termines the validity of these statements on inference rules,
logic programming and case based reasoning. The most cited
approaches in the state of the art concern the use of logic
programming or complex events processing tools for con-
text recognition and reaction. Pashke et al. have proposed
a programming logic middleware based on ECA procedures
(event, condition, action). The action corresponds to the best
decision regarding the current situation (i.e. context) char-
acterized by the couple (event, condition). [Yonezawa et al.,
2009] have proposed SOEML as a smart object event mod-
eling language to enable context-aware service in ubiquitous
computing environment. It allows users to define both simple
and complex event based on the threshold values of sensors.
In [Bhatt et al., 2010], authors highlight the importance of
reasoning in qualitative spatial representation and reasoning
on the dynamic context. They used Event Calculus formalism
to perform spatio-temporal abduction mechanism with an off-
the-shelf logic of action and change. They demonstrate the
role that abductive reasoning can play in application based

on hypothetical spatial structures. From an application per-
spective, authors will use their approach in AAL such smart
environments. Moreover, authors in [Bhatt et al., 2011] have
depicted another interesting emerging application where the
importance of space and time cannot be ignored. D.Riboni
proposed the use of description logics ontologies in the val-
idation of the activities knowledge inferred using low level
quantitative reasoning such as statistical techniques [Riboni
et al., 2009]. Other approaches propose the combination of
the inference rules or logic programming with Description
logics ontologies. The latter can be used to support seman-
tic reasoning and interoperability. The reasoning concerns
mainly the detection of ontology inconsistency and the infer-
ence of new individuals of context concepts or roles [Bettinia
et al., 2009]; for example, transforming the collected sensor
data, into a new set of concepts and roles individuals. More-
over, the consistency reasoning can be used during the on-
tology knowledge base construction to check the consistency
in a class hierarchy and the consistency between instances.
For instance, the consistency cheking allows to detect either
there is classes that are subclasses of two classes, classes that
are declared as disjoint; or two instances that are contradic-
tory to each other such as an elderly person is in two spatially
disjoint locations at the same time. Wang et al. proposed
to combine description logics ontology called CONON with
horn like inference rules, while [Yau et al., 2006] developed
a situation ontology, which includes concepts to express time
constraints on the logical specifications of situations. They
used first order logic inference rules to support the conver-
sion of situation specifications to FOL representations that
can be used by potential FOL rule-based inference engine.
The performance they obtained, concerning the transforma-
tion of situations specification, makes their model unusable
for the recognition of time sensitive context captures. Chen
et al. proposed an ontology called SOUPA [Wang et al., 2004]
with the use of the logic programming written Flora 2 to allow
different agents on the one hand, to share the same consistent
interpretation of knowledge and on the other hand, to perform
inferences to determine the current context in a specific place.
However, for many reasons, the failure or unavailability of
one or several sensors can cause the failure of all the inference
process. Overcoming such an issue by adding more inference
rules and new sensors will lead in the most to complex and
non-maintainable rule bases. Alexandre et al. proposed an
ontology model of video events, based on Video Event Rep-
resentation Language, VERL and Video Event Markup Lan-
guage, VEML [Alexandre et al., 2006]. This model consists
of two ontologies. The first ontology provides a semantic de-
scription of the resources classes corresponding to the VERL
definitions. The second ontology is an event taxonomy that
provides a description of the annotation structures that ap-
pears in the VEML representations that refer to the VERL
event definitions ontology. This model can be used to sup-
port tasks like context understanding in video surveillance,
video browsing and content-based video indexing. The lack
of suited reasoning to infer semantics of the possible n-ary
relations between events definitions and events taxonomy is
the main limitation of this approach.

Case-based reasoning is a logic-based qualitative reason-
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ing that is of particular interest in the context of pervasive and
AAL applications because it does not need to run with train-
ing data or a huge rule base. Indeed, it allows to learn new
situations and activities incrementally as they occur. Knox
et al. proposed SituRes, a case-based reasoning technique
combined with ontology to perform cases base reduction by
semantically linking the case solutions with the semantic fea-
tures of cases and their related sensors [Knox et al., 2010].
Despite scalability issues, the approaches presented above al-
low to build promising added value situation aware AAL en-
vironments, with a minimalistic support of reasoning about
time and lack of explicit support of the possible semantic rela-
tions and chronology between events and their contexts in the
present and past time. These relations from our point of view
are necessary for a better recognition of situations and the ad-
equate decision making in a dynamic domain such AAL.

3 Narrative semantic representation
foundations

NKRL consists of two main ontologies: HClass and
HTemp. NKRL concepts are inserted into a generaliza-
tion/specialization directed graph structure (HClass) often,
but not necessarily, reduced to a tree where the data structures
representing the nodes of HClass correspond, essentially, to a
standard ’ontology of concepts’ (according to the traditional,
’binary’ meaning of these terms). HTemp is a hierarchy of
templates used to represent dynamic knowledge. These tem-
plates are based on the notion of ’semantic predicate’ and are
organized according to an n-ary structure. They are conceived
as the formal representation of generic classes of elementary
events like ”move a physical object”, ”be present in a place”
and their relationships. HTemp can be seen as an ontology of
events.

Let Ω be the ontology of concepts, and Ψ the ontology of
events. E is the set of known static entities within the envi-
ronment. Each entity is an information source, abstracted as
a symbol and its semantics is grounded on Ω. The approach
that we propose is based on the following statements:

Definition 1:
Ω is composed of two connected components: Concepts
Ci and Individuals Vi. A concept Ci represents intentional
knowledge that describes the general properties of concepts.
An individual Vi is characterized by the fact of always being
associated, often in an implicit way, with a spatio-temporal
dimension, like DAVID , BATHROOM . Ci are represented
in lower case while Vi are represented in upper case.

Proposition 1:
A concept Ci is a ’binary’ description, composed of a set
of axioms having the form H ⊂ W where H and W are
concepts. For instance, ”individual person ⊂ human being”
denotes that ”individual person” is a specialization of ”hu-
man being”.

Proposition 2:
Individuals Vi are added, when necessary, as ”leaves” in Ci.
Two individuals associated with the same description but hav-
ing different labels will be considered as different individuals.

This is not true in OWL. An individual Vi represents its own
instances and all the instances are subsumed by concepts. For
instance, geographical location ⊃ location ⊃ BATHROOM,
denotes that BATHROOM belongs to the concept of location.

Proposition 3:
Building a correspondence between the low-level features
and the high-level conceptual descriptions requires an ab-
stract model taking into account static (physical) and dynamic
(events and situations) characteristics, roles, properties, etc.
of entities. A model instance Mi of each event is an n-tuple
specified as follows:

Mi =< Ui, F
Ei , SEi , AEi , LEi , IΨi , TMi > (1)

Where:

• Ui ⊂ Ω denotes the ID of the entity Ei producing the
event;

• FEi ⊂ Ω denotes the function of Ei

• SEi ⊂ Ω denotes the set of outputs of each event gener-
ated by Ei

• AEi ⊂ Ω denotes the set of actions handled by Ei

• LEi ⊂ Ω denotes the current location of Ei

• IΨi ⊂Ψ is a structure that encapsulates the inputs of the
NKRLs predicate associated to Ei

• TMi corresponds to the timestamp of the event Ei

Definition 2:
NKRL’s Templates are instantiated according to a n-ary struc-
ture described formally as follows [Zarri, 2009]:

(Li(Pj(R1a1)(R2a2).........(Rnan))) (2)

With:

• Li, a generic symbolic label identifying a given tem-
plate.

• Pj a conceptual predicate pertaining to the set
(MOVE, PRODUCE, RECEIVE, EXPERIENCE, BE-
HAVE, OWN, EXIST).

• Rn a generic role pertaining to the set (SUBJ(ect),
OBJ(ect), SOURCE, BEN(e)F(iciary), MODAL(ity),
TOPIC and CONTEXT). The set of roles Rn is con-
structed from IΨi and the corresponding arguments en-
capsulated within an that can consist of a simple con-
cept such as geographical location, individual such as
LIVING ROOM or associations of structured associa-
tion of several concepts like: ”working noise HOOD”.
The HOOD is here an instance of the concept hood .
When it is associated with the concept working noise, it
means that the HOOD is running.

When a particular elementary event pertaining to one of these
general classes (Predicates and Roles) must be represented,
the corresponding template is instantiated to produce what,
in the NKRL’s jargon, is called a predicative occurrence.
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Table 1: PARTIAL REPRESENTATION OF EXPERIENCE
TEMPLATE

name : EXPERIENCE: GENERIC SITUATION
nl description : ’a given entity is affected by a gener-ic (not
value charged) situation’
PREDICATE: EXPERIENCE

SUBJ var1 : [(var2)]
OBJ var3
date-1:
date-2 :

var1 = <artefact >| <human being or social body>
|<location > | <pseudo sortal geographical>
var2 = <location > | <pseudo sortal geographical>
var3 = <condition > | <label/name >|<reified event>

Proposition 4:
Each instance of Ψ corresponds to a predicative occurrence
denoted by Φ. Φ is a conjunction of the following elements:
Predicate, roles Rn and their list of fillers fn ⊂ Ω and the
corresponding location LEi of the latter, timestamp TMi and
a set of constraints { < } defined by a variable vari (example
of constraints { < } are given in Table 1). Formally:
Φ =PREDICATE ⊕ { Rn ⊗ fi ⊕ LEi } ⊕ TEi ⊕ { < }

In a template, see Table 1, the arguments of the predi-
cate corresponding to the an terms in Eq. 2, are represented
by variables with associated constraints. The latter are ex-
pressed as concepts or combinations of concepts, i.e., using
the terms of the HClass ontology. In the reasoning process,
all the ”explicit variables”, identified by conceptual labels in
vari will be replaced by Ci/Vi ⊂ Ω compatible with the orig-
inal constraints { < } imposed on variables vari.

Definition 3:
IΨi ∪ TMi ≡ Φ Mi. This means that Mi includes all the
semantic spatio-temporal informations of eEi

i .

Definition 4:
All inference rules are handled according to the following
equation [Zarri ,2009] :

X iff Y1 and Y2 ...... Yn. (3)

Where X is the situation/context to infer and Y1,....., Yn rep-
resent the reasoning steps. X, Y1,..., Yn are represented as
instances of the template (Φ).

Proposition 5:
Let ei=<t,s> an elementary event with s ∈ TEi its time de-
tection and t ∈ LEi its space location. Thus, two disjoints
events ei and ej are formally defined as follows:
∀ eEi

i (¬ ∃ eEj

j (( e
Ej

j = eEi
i ) ∧ (i 6= j))) with eEi

i the event
generated by Ei

Remark 1:
The partition between sortal concept and non sortal concept
constitutes the main architectural principle of Ω, and corre-
sponds to the differentiation between ”(sortal)” concepts that
can have direct instances like SMITH and ”(non-sortal)”
notions, which cannot be instantiated directly into speci-
mens, like gold , which can admit further specializations as
white gold for example, but do not have direct instances.

Definition 5:
The two temporal attributes associated with the predicative
occurrence Φ, date1 and date2, constitute the ”search inter-
val” used to limit the search to the slice of time that it is con-
sidered appropriate to explore.

Example 1.
The EXPERIENCE Templates (Table 1) are used to repre-
sent situations where a given entity, human or not, is subject
to some sort of ”experience” (illness, richness, economical
growth). For instance, the predicative occurrence Φ given be-
low states that the concept temperature in the location BATH-
ROOM 1 is growing as specified in the role OBJ, from the
date-1: 17/4/2011/07:45.
eEi
i ≡ Φ = EXPERENCE SUBJ (SPECIF

temperature:BATHROOM 1)
OBJ growth
date-1: 17/4/2011/07:45
date-2:

Proposition 6:
A Context Πτ at a given time consists in an aggregation of
elementary events eEi

i , formally:
Πτ = (eE1

1 ∧ eE2
2 ∧ ..... ∧ e

En−1

n−1 ∧ eEn
n )

A Situation is then an aggregation of contexts denoted by∑
Πτ , formally:

Πτ ∧ Πτ ∧ Πτ ∧ .....∧ Πτ ∧ |=
∑

Πτ

Proposition 7:
To infer a context/situation, multiple events must be cor-
related with respect to their spatial and temporal ordering.
For this purpose, NKRL uses the second order structure
called binding occurrences such as GOAL, COORD(ination),
CAUSE, etc. For instance, we would state that: the system
switches on the light in the bathroom once the presence of
DAVID (human being) in this location is detected. The sys-
tem encodes the causality of the two events at run time as
follows: ME1

1 =”the presence of DAVID in the bathroom is
detected at 07h:30” and ME2

2 =”the system switched on the
light at the same time”. The full description of these events
are given in Table 2, where aal1) and aal2) represent respec-
tively the first event and the second event while aal3) links
these two events.

Table 2: BINDING OCCURRENCES
aal1) EXIST SUBJ DAVID : (BATHROOM 1)

date-1: 17/4/2011/07:30
date-2:

aal2) MOVE SUBJ SYSTEM 1
OBJ (SPECIF lighting BATHROOM 1):
(switch off, switch on)
date-1: 17/4/2011/07:30
date-2:

aal3) CAUSE(aal2 aal1)

4 Narrative inference architecture
A simplified schema of the NKRL reasoner is shown in Fig 1.
Each component can be described sketchily as follows [Zarri,
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2009] : Context: Recognizing a context/situation is based on
the concept of ”Search Patterns”. The latter are data struc-
tures that supply the general framework of information to be
searched. They offer therefore the possibility of querying
this base directly. Formally, a search pattern can be assimi-
lated to specialized/partially instantiated templates where all
the ”explicit variables” identified by conceptual labels in the
variable vari. In the Example 1 and Table 2, all the variables
have been replaced by concepts/individuals compatible with
the original constraints imposed on these variables.

Figure 1: Simplified architecture of NKRL reasoner

Filtering Unification Module(FUM):
Verifying the ”semantic congruence” between a search pat-
tern and facts in the Knowledge Base is carried out by this
module. The matching process could be better defined as a
simple ”filtering” process, giving that all the variables, un-
der the form of ”implicit variables” are only present on the
search pattern side. The implicit variables (concepts) of the
pattern must all find a correspondence with some of their
subsumed HClass terms, concepts or individuals, within the
matched occurrences. During a successful retrieval opera-
tion, any HClass concept (to be assimilated now to an implicit
variable) that occurs in a search pattern can match/unify (in
the corresponding predicative occurrences of the knowledge
base) all the ”identical” concepts, but also all the ”subsumed”
concepts (i.e. all the specifications of this concept compati-
ble with the structure of HClass) and all the individuals rep-
resenting its own instances and all the instances of the sub-
sumed concepts. This way of operating corresponds to a sort
of semantic/conceptual expansion of the original pattern; this
process of search patterns unification is defined as a first level
of inferencing of NKRL.

Hypothesis rules:
These rules allow to build up automatically a sort of ’causal
explanation or context’ for an information (a predicative oc-
currence Φ) retrieved within an NKRL knowledge base using
Filtering Unification Module and a context (search-pattern)
in a querying-answering mode. In the context of a running
hypothesis rule, the head X of Eq. 3 corresponds then to a
predicative occurrence. Accordingly, the ’reasoning steps’ Yi
of Eq. 3 called ’condition schemata’ in a hypothesis context
must all be satisfied (for each of them, at least one of the cor-
responding search patterns must find a successful unification
with the predicative occurrences of the base) in order that the
set of predicative occurrences retrieved in this way, can be
interpreted as a context/causal explanation of the original oc-
currence X.

Transformations rules:
These rules try to ’adapt’, from a semantic point of view, a
search pattern that ’failed’ (i.e. that was unable to find a uni-
fication within the knowledge base) to the real contents of this
base making use of a sort of ’analogical reasoning’.
In a transformation context, the ’head’ X of Eq. 3 is then
represented by a search pattern (p). The transformation rules
try then to automatically ’transform’ pi into one or more dif-
ferent p1,p2 ....pn that are not strictly ’equivalent’ but only
’semantically close’ to the original one : X (Fig.1).

Remark 2:
When it is impossible to find an explicit knowledge within
the knowledge base using hypothesis rules, then the two in-
ferences mechanisms mentioned above (Hypothesis rules and
Transformation rules) are combined to discover all the possi-
ble implicit information associated with the original context
X.

Controller module:
It is responsible for managing the whole execution of infer-
ences procedures. The inferences procedures shown in Fig 2,
by executing hypothesis rules and using eventually transfor-
mations rules, aim at finding semantic relationships between
events stored into the knowledge base. The step reasoning Yi
is started once the reasoning step Yi−1 has succeeded. The Yn
(eq. 3) denotes the leaf in the tree-structure which symbolizes
the success of reasoning process.

Remark 3:
Inferences procedures explore all the variables vari at each
reasoning step Yi (Fig 2). For clarity’s sake, we explain the
inference procedures by introducing the follow-ing example.

Example 2.
All the following NKRL code has been simplified for clar-
ity’s sake. Here the aim concerns the recognition of the ac-
tivity ”cooking” of a person in a kitchen, by asserting that
this person has used for instance a cooking entity. The corre-
sponding search pattern is then: ”has the person used a cook-
ing entity?”. As it is impossible to validate this search pat-
tern with the data that we have at our disposal, we can use
a transformation rule in order to find an indirect answer to
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Figure 2: Graphical representation of NKRLs Inferences pro-
cedures

the original query. Let us assume that it is possible to as-
sert that the person has powered on a coffee machine and that
this coffee machine is located in the kitchen. The antecedent
part, denoted by X in Table 3, of the transformation rule cor-
responds to say that a human being (var1) is ”behaving” in
the kitchen (var2) as a user of some cooking entity (var3).
The first consequent scheme (denoted by Y1 in Table 3) states
that var1 changes the state of the coffee machine from idle
to running . The second scheme denoted by Y2 in Table 3)
states in turn, that the coffee machine (var3) is in the kitchen
(var2). The logic of the transformation rule is equivalent to
say that moving the coffee machine from idle to running
state is equivalent to say that the person is using some cook-
ing entity in the kitchen location given that the coffee ma-
chine is located in the kitchen. Note that coffee machine is
a specific concept of the generic concept cooking entity, as
described in the HClass ontology.
Note that all the NKRL schemata used in general in the infer-
ence rules are partial instantiations of the templates (HTemp)
that are part and parcel of the definition of the language.

Table 3: TRANSFORMATION RULE
X)PREDICATE BEHAVE

SUBJ var1 : (var2)
MODAL user
TOPIC cooking entity

var1 =human being
var2 =location
Y1)PREDICATE MOVE

SUBJ var1: (var4)
OBJ var3: (idle , running )

var3 = coffee machine
var4 = kitchen
Y2)PREDICATE OWN

SUBJ var3
OBJ property
TOPIC ( SPECIF var3 (SPECIF

located in var4) )

Proposition 8:
Although the inferences procedures could infer on the context
using several hierarchical steps, but in practice, the transfor-
mation and hypothesis rules have a very simple format that

allow efficient reasoning from time point of view. The sub-
sumption characteristics of Ω allows reducing considerably
the number of constraints R in each node. Furthermore, given
that our approach is CWA-based, two different instances of a
concept cannot refer to the same entity. The name of the in-
stance must be unique to avoid any possible contradiction.

5 Semantic architecture

Figure 3: Semantic architecture

Ensuring the homogeneity of the knowledge base and clas-
sifying each entity according to its role, allow easily aggregat-
ing spatio-temporal events into coherent facts shared between
the reactive rule engine and narrative reasoning engine. The
architecture of our framework, depicted in Fig 3, is composed
of three main architectural blocks:

1. The Reasoning Main Core: this block keeps a coherent
representation of the world situations by handling the
link between the real world abstraction and the knowl-
edge bases. This block consists of a Manager Module
that handles events incoming from i) the real world sen-
sors through the real world abstraction module; ii) the
reactive rule engine; iii) the narrative rule engine. The
communication between the two reasoners is handled by
the Manager Module through a publish/subscribe mes-
saging.

2. NKRL Core: it consists of a transformer module that
uses narrative representation model to infer predefined
contexts. This block consists also of the NKRL Rea-
soner Engine where all predicatives occurrences cor-
responding to the narrative description of the spatio-
temporal events are inferred using both transformation
and hypothesis rules. The proposed framework offers
a high abstraction level of the underlying hardware and
software sensors infrastructure. It easily collects spatio-
temporal low level events and transforms them into
higher level abstractions.
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3. The standard communication component that represents
the third block allows the communication with real
world entities through heterogeneous protocols. This ar-
chitecture that is flexible and extensible provides loose
coupling of all components

6 Scenario
To demonstrate the feasibility sof the proposed framework,
we consider an AAL scenario inspired from everyday life sit-
uations: An elderly person is looking for her/his phone in
her/his home. The system tries then to recognize the cor-
responding context or situation by performing the following
requests: when was the last time the person used his phone?
Where was the person when she/he hangs up her phone? De-
pending on the context inferred, the system will suggest the
location where the phone is. The AAL system is assumed to
be instrumented with RFID tags to identify each object de-
ployed in the environment. Pressure sensors are placed under
the sofa and the chairs to detect events such as: ”the person is
sitting on her sofa, the person is standing up from a chair”. In
NKRL formalism, knowing where a given object is located is
represented by the following query:
X(Query1): PREDICATE EXIST (SPECIF mobile phone
DAVID) : (geographical location)

Detailed story’s events:
The most important elementary events are represented into
NKRL format in Table 4. David, an elderly person, leaves
his bed at 7h:20 mn and enters in the bathroom. The system
switches on the light in the bathroom at 7h:36 mn. He opens
the shower tap located in the bathroom. Suddenly, his mobile
phone located in the living room rings. He takes the call and
few minutes later, he returns to the bathroom, and he closes
the door. The system detects that the call has ended at 7h:50
mn. David leaves his house at 8h:45mn. At 18h:30, he comes
back, takes a seat on the sofa in the living room. He decides
to call a friend and then he asks the system to find his phone.

Reasoning procedure:
Assuming that there is no localization system embedded in
the mobile phone, the AAL system cannot get a direct re-
sponse to the query, denoted by X(Query 1), and starts there-
fore to recognize automatically the context using the transfor-
mation rule (Table 5) to find the location of the phone.

The antecedent X’ can unify the original query (Query1)
at time t0; in this way it is possible to associate to var1 the
value mobile phone 1 and to var2 the value DAVID . These
two values will be used all along the inferences procedures.
The first consequent scheme Y1 (Table 6) states that DAVID
is addressing a query ”touch query” to the system concerning
the location of his MOBILE PHONE 1. The second conse-
quent scheme goes to see if it possible to find a David’s call
that occurred before t0.

The third consequent scheme (Y3) checks that between
t0−n and t0 the MOBILE PHONE 1 is idle. This can
suggests us that the location of the MOBILE PHONE 1
is the location location of DAVID at time t0−n, i.e the
BATH ROOM, where DAVID has made a call. Of course,
this is a possible ”indirect answer”: all the inference rules

used in NKRL are part of family of rules where different ex-
planations can be verified. The Table 4 shows the most impor-
tant predicatives occurrences existing in the knowledge base
at a given moment; it is easy to find among them those unify-
ing the consequent schemes given in Table 5. The system will
first search in the knowledge base when the phone was used
for the last time and then where the person was when the last
call ended? The last location would be the most likely loca-
tion where the phone is. For this purpose, the system will exe-
cute the inferences rules, especially the rule ”locate an object”
described in Table 5. It provide a sort of causal explanation
of the triggering event by retrieving in the knowledge base in
the style of: i) the elderly person has used her/his phone. The
system can then suggest that the phone is in the last location
where the elderly person has ended the call. Given that the
event related to the last coming call is present in the knowl-
edge base system as depicted in table 4, the system tries then
to infer if the phone was used or not. Replying to this query
needs to find in the knowledge base the following semantic
events: 1) the person moves towards her/his phone, 2) the
phone stops ringing, and 3) the call takes a certain time.

Table 4: REPRESENTATION OF THE ELEMENTARY
EVENTS IN NKRL FORMAT

aal1) PREDICATE MOVE
SUBJ DAVID : LIVING ROOM 1)
OBJ touch query :

(SYSTEM SCREEN 1)
TOPIC (SPECIF location (SPECIF

(MOBILE PHONE 1 DAVID )
date-1: 17/4/2011/19:35
date-2:

aal2) PREDICATE MOVE
SUBJ DAVID : (BATH ROOM 1)
OBJ message
date-1: 17/4/2011/7:50
date-2

aal3) PREDICATE OWN
SUBJ MOBILE PHONE 1
OBJ property
TOPIC idle
date-1: 17/4/2011/7:50
date-2: 17/4/2011/19:35

aal4) PREDICTE OWN
SUBJ DAVID :ROOM
OBJ property
TOPIC up
date-1:17/4/2011/7:20
date-2:

aal5) PREDICATE MOVE
SUBJ DAVID
OBJ (SPECIF tap BATHROOM 1):
(trun off, trun on)
date-1:17/4/2011/7:33
date-2:

aal6) PREDICATE OWN
SUBJ PHONE CALL 1
OBJ property
TOPIC finish
date-1:17/4/2011/7:50
date2:
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Table 5: TRANSFORMATION RULE
X1)PREDICATE EXIST

SUBJ (SPECIF var1 var2):
(geographical location)

var1=mobile phone
var2=human being
Y1) PREDICATE MOVE

SUBJ var2
OBJ touch query : ( system screen)
TOPIC (SPECIF location

(SPECIF (var1 var2)
date1: t0
date-2:

var1= human being
var2=mobile phone
Y2) PREDICATE MOVE

SUBJ var1: (var3)
OBJ message
date-1: t0−n

date-2:
var3 = geographical location
Y3) PREDICATE OWN

SUBJ var1
OBJ property
TOPIC idle
date-1:t0−n

date-2:t0

7 conclusion
In this paper, we presented a semantic and architectural ap-
proach for the Spatio-Temporal Reasoning in AAL systems.
This approach, based on a qualitative reasoning, uses hi-
erarchical structures of semantic predicates and functional
roles of the Narrative Knowledge Representation Language
(NKRL). It benefits from the potential semantic relationships
about events occurrences in both past and present time, and
also about their spatial temporal dependencies. Through a
scenario illustrating a daily life typical situation, we have
shown the feasibility of the proposed approach and also its
potential to explain a causality chain between events. Our
ongoing works is the real-time implementation of the pro-
posed approach on ubiquitous platform composed of a robot
compagnon and sensors/actuators dessiminated in the AAL
environment.
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Abstract
Air quality has a direct impact to human health.
Current advancements in sensor technology are
making air pollution sensors smaller, cheaper and
more mobile than ever before. This made com-
munity monitoring of air pollution a rapidly grow-
ing area in environmental sensing. In this paper,
we first introduce the problem of air pollution dis-
persion, and survey the current mainstream mod-
els address this problem. We then identify the rea-
soning tasks for a model with more data available
from a heterogeneous network of static and mobile
air quality sensors. Lastly, we propose the frame-
work for a data-driven, region-based model that
reasons about qualitative changes in air pollution,
and discuss how the forward, backward and meta-
reasoning tasks would benefit form such a region-
based approach.

1 Introduction
Air pollution is a complex problem involving many variables.
It has a direct impact on human health, and the World Health
Organization estimated that every year it causes up to 2 mil-
lion premature deaths worldwide [1]. Figure 1 illustrates the
overall picture of air pollution. The pollutants are typically
results of combustions due to human economic activity such
as traffic, heating and industry. They are transported by wind,
and some react in the presence of sunlight to form secondary
pollutants. In the end, the deposition of the pollutants leads
to adverse effects on human health, animal health and plant
growth. In order to minimize these adverse effects, control
strategies are put in place to limit the emission of pollutants
at their source. Current research efforts in air pollution dis-
persion are focused on understanding the natural processes in
order to find an effective and efficient strategy that is an op-
timal tradeoff between environmental impacts and economic
productivity [9].

Measuring air pollution has traditionally been an expen-
sive exercise. Equipment with high accuracy and precision
are costly to both acquire and maintain, and consequently a
typical city in United States or Western Europe only has a
few permanent stations that continuously monitor air qual-
ity. The mainstream modeling approach relies on numerical

Figure 1: Air pollution processes and their effects

simulations based on physical and chemical principles, and
the models are typically independent to the measurements.
The latter is typically used to validate the former. However,
with the introduction of smaller, cheaper and more mobile air
quality sensors, it is expected that data-driven, statistical ap-
proaches will play a more prominent role in the monitoring
and modeling of air pollution. The deployment of such mo-
bile sensors over a cellular network would allow air pollution
information over vast regions to be updated and distributed in
real time. An accurate dispersion model can then make use of
such measurements build a realistic map of air pollution, and
deliver advanced warnings to people who may be sensitive to
elevated levels of pollution within the affected regions.

Given a set of air pollution measurements over a certain
region, we would like to know three things: what are the
pollution levels at places where there are no measurements;
what are the expected pollution levels for certain regions of
interest in the future; and where did the pollution came from.
The first two correspond to a forward reasoning task, inter-
polating the measurements both in space and in time. The
third corresponds to a backward reasoning task, where we
abduce the cause of the air pollution for the given scenario,
identifying possible unknown sources. In addition, there is a
meta-reasoning task about where the sensors can be optimally
placed to better answer the previous questions.

In this paper, we analyze the problems involved in model-
ing the dispersion of air pollution, and survey the current state
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of the art approaches in both physical and statistical models.
We then identify the three type of reasoning tasks that we can
perform from a set of measurements collected over a network
of static and mobile air quality sensors. Lastly, we propose
the framework for a qualitative, region-based model for air
pollution dispersion, and outline reasons of why such a model
is appropriate for this problem domain.

2 Backgrounds
2.1 The Problem Domain
Primary air pollutants such as carbon monoxide (CO), nitric
oxides (NOx), fine particles (PM2.5, PM10) and volatile or-
ganic compounds (VOCs) are typically created by combus-
tion. They are released from either stationary sources such as
chimneys, or mobile sources including cars, trains, airplanes,
etc. A stationary source that singularly contributes to a sig-
nificant degradation of air quality is known as a point source.
A number of stationary and mobile sources that individually
do not significantly affect air quality, but altogether makes a
significant difference in a geographical region is known as an
area source. These sources are an integral part of the overall
picture of air pollution, and a typical application of air qual-
ity research is to identify the most appropriate source for an
economical emission control strategy.

Some primary pollutants undergo chemical reactions and
produce secondary pollutants. One example is lower atmo-
spheric ozone (O3), an important component of photochem-
ical smog. It is formed when NOx reacts with VOCs in the
presence of sunlight. While ozone is invaluable in high atmo-
sphere that act as a layer to absorb the majority of the sun’s
ultraviolet light, at lower atmosphere it is found to be toxic
to living systems. At night, the ozone in lower atmosphere
also reacts with NOx to form nitric acid, which in turn leads
to acid rain.

The behavior of the pollutants in the atmosphere can be
characterized by several processes. One process is the move-
ment of pollutants due to horizontal wind, which is known
as transport. The pollutants also gradually spread while their
concentration is reduced, a process known as diffusion. The
process that leads to the formation of secondary pollutants is
known as chemistry. These processes, together with emis-
sions and depositions, complete the picture for air pollution.

2.2 The Existing Models
As air pollution measurements cannot be collected every-
where at once, we need models to better inform us about the
behavior of air pollution over both space and time. The mod-
els may also help us to understand what would happens in
hypothetical scenarios, which allows policy makers to design
better pollution control plans.

Physical Models
The physical models aim to reconstruct a complete picture of
the air pollution within a given region based on physical and
chemical equations that describe the behavior of air pollu-
tants within various grid cells. Currently this approach is the
most widely used and accepted methodology for both govern-
ment agencies and the environmental science research com-
munity. There is a myriad of physical models that are actively

Figure 2: The windfield and the resulting O3 estimations in
the city of Bogota from the physical model TAPOM [29].

deployed and used by regulatory authorities and universities,
including CMAQ [5], CAMx [2], CHIMERE [4], ADMS [7],
TAPOM [29], and GRAL-Sys [22]. A comprehensive review
of the physical modeling approach can be found in Godish
2003 [9].

A physical model does not directly use any air quality mea-
surements, although measurements may be useful in tuning
various parameters in a model. The physical modeling ap-
proach works by first collecting the emission inventory (EI),
which describes all known sources and sinks of emissions. It
also computes the wind fields from given meteorological and
topographical parameters for every single grid cell over the
modeling period. The model then uses the EI, wind fields
and other meteorological information as inputs to a series of
equations that model the transport, diffusion and chemistry
of air pollution. The physical model can be understood as
a sophisticated rule-based system, and they are considered
“validated” when real-world measurements taken at various
monitoring stations fit well with model projections.

The goal of these models is to determine the relations be-
tween the effects of source of emissions and ground-level
pollutant concentrations [9]. A validated physical model is
thought of as having understood such relations well. Ulti-
mately, the purpose for these physical models is to design
effective and efficient pollution control plans after a careful
cost and benefit analysis. For example, Zarate [29] (Fig. 3)
analyzed several hypothetical scenarios in validated simula-
tion models over the city of Bogota, and concluded that most
of the harmful secondary air pollution in the city are caused
by the on road traffic emissions released before 9am in the
city itself. This is useful in designing abatement strategies
to optimize the balance between environmental impact and
economic cost.

The use of such models is also a subject of some contro-
versy, mostly involving which models should be used and the
interpretation of the results. The underlying concern is about
the accuracy of the predictions from such models under cer-
tain specified scenarios. In fact, Oreske et.al. [23] argued that
verification and validation of such models is impossible due
to the fact that the subject of the model (the atmosphere) is an
open system, and it is sufficient that such model give us some
insight to the behavior of system in the real world. The cur-
rent consensus is that there are few alternatives to their use,
particularly when it involves decision-making about policies

87



Figure 3: The estimations from statistical models for Ozone
concentration in Harris County, Texas [6] (left) and black car-
bon concentration in the city of Vancouver [16] (right).

with both environmental and economical impacts.

Statistical Models
In contrast to physical models that simulate pollution behav-
ior from first principles, the statistical approach constructs a
model based on a dataset of measurements. A wide variety of
techniques are used in different statistical models to perform
spatial and temporal interpolation of measurements. For ex-
ample, Caroll et.al. [6] analyzed population exposure by in-
terpolating the ozone concentration beyond the 9 to 12 mea-
surement stations in Harris County, Texas from 1980 to 1993.
The ozone model is comprised of a deterministic component
that is based on time and temperature, and a non-deterministic
component (a Gaussian Process) to account for all other vari-
ables. A different approach can be found in the works of
Kibria et.al. [13], where a Bayesian model was created to
map the PM2.5 fields from eight measurement stations in the
Philadelphia region between 1992 and 1993.

One feature of statistical models in the past is that there are
usually a low number of measurement stations. This is un-
derstandable given the cost of the measurement stations. To
compensate for this, additional information such as land-use
is introduced in some models [16; 19]. However, as sensor
measurements become cheaper to acquire, the data-driven,
statistical approach is expected become more viable in pro-
viding a detailed snapshot of air pollution. This in turn would
also give us insight into the natural processes involved in the
dispersion of air pollution.

One of the most important problems in reconciling sen-
sor measurements to models is about scale. There are many
atmospheric processes that influence the air quality of a re-
gion at a given time. Each of these processes occurs at their
own spatial and temporal scale. The processes that influence
continuous, real-time measurements on the street level are
very often due to turbulence, local traffic conditions and other
micro-scale events whose precise information is difficult to
ascertain. Again, this reinforces the case for the statistical
approach over physical modeling for dealing with street-level
pollution data and the subsequent exposure analysis.

3 Reasoning With More Data
3.1 Measurement Acquisition
Currently, air pollution information is typically collected
from large, expensive measurement stations. They are mostly

located on the rooftops of building or in large parks, where
the sampled air is representative of the overall concentration
of pollutants over a large area, and the variability is relatively
low compared to streets. The advent of cheaper mobile air
quality sensors has meant that measurements can now be ob-
tained at an unprecedented scale. In the OpenSense project at
EPFL [3], we are working with the public transport author-
ity of the city of Lausanne to deploy sensing units on top of
buses as well as bus stops, and the information will commu-
nicate over a wireless network in real-time. This would allow
us to build up a more detailed and complete picture for the
dispersion of air pollution in a real-world setting.

3.2 The Reasoning Tasks
In the setting where we have a good spatial distribution of
mobile air quality sensors, there are a few things we would
like to infer from the sensor measurements collected over a
period of time. These include “what does the overall pollution
level look like”, “where did all the pollution came from?’,
“should I be outdoors in the next hour given my allergies”,
etc. In this section we summarize three types of reasoning
tasks involving the sensor measurements, and how the current
state of the art models address these tasks.

A reasonable restriction of the problem is to limit our in-
terests to the pollutants that are relative unreactive in the at-
mosphere, such as fine particles (PM2.5, PM10) and sulfur
dioxide (SO2). In this case we are only interested in how
they are transported and diffused, and not getting involved
any non-linear chemical reactions. It is clear that before we
create a full model of air pollution we must first solve this
simpler subproblem.

Forward Reasoning
The first type of reasoning tasks involving these measure-
ments is the spatial and temporal interpolation of measure-
ments. They begin with the measurements, and by using
some assumptions and inference rules, one deduce more facts
from the data. They include queries for pollution levels at
locations where there are no measuring devices; future pol-
lution levels at measurement sites; likelihood of dangerous
pollution levels for a given region in the next hour etc. Any
model for air pollution dispersion is likely to propose a solu-
tion to these reasoning tasks, and the quality of the solution
can be evaluated by taking more measurements.

A physical model can be seen as an example of a tool for
forward reasoning, but it relies on emission data instead of
actual pollution measurements. A physical model can be un-
derstood as a rule-based system that takes emission and mete-
orological information and computes the expected dispersion.
Some physical models such as ADMS-Urban [7] also takes
into account of pollution measurements and builds a com-
plete and detailed map of the pollution. Similarly, statistical
models can simply use the extra measurements to make more
precise predictions.

Backward Reasoning
The second type of reasoning tasks involves working back-
wards from the sensor measurements to reach an explanation.
This may involve identifying a previously unknown pollu-
tion source, understand causes to the observed level of pollu-
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tion, or explain the mechanisms in the dispersion of the pol-
lutants. Unlike forward reasoning, it appears to be a more
difficult task and the models required for backward reasoning
are likely to be more complicated due to uncertainties.

There are far fewer works on automated source detection
in the literature on air pollution dispersion. This may be due
to the fact that currently there are insufficient measurements
to adequately infer about emission sources. In physical mod-
els, explanation for the formation of a secondary pollutant
can be found by analyzing hypothetical emission scenarios
from a validated photochemical model [26]. The problem
is related to spatio-temporal event-detection in data-mining,
where complex spatio-temporal patterns are extracted from a
monitoring sensor network [28].

Meta-Reasoning
The third type of reasoning tasks is about how forward and
backward reasoning can be better accomplished to a given
utility function with the available resources. One such typi-
cal task is sensor placement: where are the best locations to
place sensors in order to get the most relevant information. A
similar problem in the temporal dimension is selective sam-
pling, where one determines when measurements should be
taken. A third problem that somewhat subsumes the first two
is sensor selection, where constraints on battery, communica-
tion bandwidth or source reliability require us to select only a
subset of sensors in a network to be sent to a central server. In
the context of community sensing, the meta-reasoning tasks
are important when one needs to deal with a large variety
of community-sensing based applications in an efficient and
sustainable manner.

Golovin et.al. [10] provided a good summary of previous
works that looked at the sensor selection problem, and in-
vestigated the problem in a distributed online setting. The
paper is one of the latest additions to a line of works [21;
15; 14] that showed near-optimal guarantees when the sens-
ing utility function satisfies the diminishing returns property
called submodularity. This approach has been shown to be
the current most performant method for the application of
contamination detection in waterways [24].

In summary, all three types of reasoning tasks would benefit
from an accurate and detailed description of the air pollution
on the street level. It is also important that the model is rea-
sonably efficient, as there is little value in predicting pollution
dispersions that happened in the distant past. Therefore, an
efficient spatial abstraction is essential in a model that tackles
these reasoning tasks.

4 A Region-Based Model
Current numerical models of spatial phenomena have almost
exclusively relied on fixed grids where all grid cells have the
same size and shape. This regularity greatly simplifies mod-
eling, as all cells can be modeled in the same way. When
modeling phenomena in the environment, however, a big dis-
advantage is that grid cells rarely match regions where param-
eters behave in a homogenous way, such as streets, buildings,
rivers and lakes, fields, forests, or parkland. Thus, either the

Figure 4: Outputs from microscale model GRAL-Sys for the
city of Zurich (left) and ADMS-Urban for London (right)

grid is made extremely fine, or each cell contains a mixture
of different regions.

In air pollution dispersion, evidence points to strong local
variability of pollution levels; from peaks in streets, facto-
ries and buildings, pollution levels drop very rapidly to much
lower values on different types of land. The cost of com-
putation invariably increases when the grid-cells get smaller.
These phenomena cannot be captured by models based on
regular grids unless the grids are made unmanageably fine.

Some existing physical models do map the dispersion of
air pollution with very fine grids at the microscale. Figure 4
illustrates the output from some of the current leading mi-
croscale models which look at air pollution at a street level.
The left part of the figure came from a snapshot the pollu-
tion levels in the city of Zurich from the model Gral-Sys [12;
22], and the right part came from the model ADMS-Urban [7]
that looks at the city of London. In both models the streets
are clearly distinguishable. Gral-Sys accomplished this by
creating very fine grid-cells with 3 meters mesh-width. This
leads to limitations to the size of the modeled area, which in
the work of Kehl [12] was the 3.3 km2 of Zurich city centre.
In contrast, ADMS uses a technique that it called “intelligent
gridding”, one that create extra grid points to follow the shape
of the roads. The extra grid points along the street boundaries
allow the pollution to be visible from the output of physical
simulations.

Both model show that the concentration of pollutants is
relatively homogenous within a street compared to its neigh-
boring regions. Therefore, one intuitive way to bypass the
problem of having finer grids is to adopt a region-based ap-
proach where pollutants behave homogeneously within a re-
gion. Such spatial abstraction exploits structures in the spatial
information and enables more efficient reasoning. Therefore,
we propose the frameworks for building a qualitative, region-
based model for air pollution dispersion.

4.1 Physical Regions
In the previous example, we show that there is a case for treat-
ing the streets as special regions to its surroundings. Simi-
larly, we can model other physical regions where the internal
pollution level is likely to be similar. These regions form the
basic building blocks of the model. A possible way of iden-
tify such regions is to partition the modeling region according
to land use, such as streets, residential areas, parks, industrial
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Figure 5: Topological relations between regions in the Region
Connection Calculus (RCC8)

plants, airport, etc. Each region has its unique emission char-
acteristics, and its pollution level is also influenced by the
transport and diffusion of pollution to and from neighboring
regions. Such regions may be obtained with vector-based GIS
data, and tools such as OpenStreetMaps [11].

Apart from the physical regions denoted by land use, other
regions of interest are those of certain pollution concentra-
tion. These may be defined qualitatively by a threshold con-
centration, such as “the region of pollution level X or higher”.
This then forms a naturally nested containment relation with
regions of other pollution concentrations, as the region will
always contain “the region of pollution level Y or higher” for
any Y > X . Note that they are general regions in the sense of
the Region Connection Calculus (RCC8) [25], and may exist
in many physically separate parts. Each contiguous part may
be considered a qualitative physical field [20].

4.2 Region-Region Relations

Given the physical regions of streets, parks and airports etc.,
a measurement taken on a particular street can then be inter-
preted as a connection primitive between the street region and
the region of the measured level of pollution. One can then
build the RCC8 relations (Fig. 5) between the street and the
pollution region from existing decentralized algorithms [8].
Additional inference may be possible for some extra assump-
tions. For instance, if we make the reasonable assumption
that the pollution regions are larger than atomic street region,
then we can infer that the street is either partially overlapped,
tangential proper part, non-tangential proper part or equal
of the pollution field. The forward reasoning task that infers
the relations of the pollution to neighboring regions would
then be dependent on both the information on the source of
emissions and the smoothing criteria on the degradation of
pollution levels with respect to distance and wind direction.
It would then involve reasoning with more than a singular
aspect of qualitative spatial information, and techniques for
combining multiple spatial calculi may be useful in this con-
text [18; 27].

In addition to performing logical inferences with spatial re-
lations, it is clear that many queries in the outlined reasoning
tasks involve a certain degree of probabilistic reasoning. At
this stage, detailed air pollution measurements are rare. How-
ever, one can learn trends of pollution dispersion between re-
gions from numerical simulations of existing models. The
knowledge can then be encoded as a graphical model, where
the nodes denote the level of pollution within a region, and
edges denote the influence of pollution levels between neigh-
boring regions. The graphical model then provides a proba-
bilistic reasoning framework for the relevant forward, back-
ward and meta reasoning tasks.

5 Discussions
We propose to model atmospheric phenomena based on re-
gions that mirror the actual use of the land. In such a model,
the values of relevant pollution parameters are expected to be
much more homogeneous than in a grid-based model. Con-
sequently this would reduce the variance of the statistical re-
lations used to model pollution behavior and leads to a more
accurate model.

We have distinguished forward and backward reasoning
tasks. Both tasks involve probabilistic inference along the
adjacencies of the cells in the model. This inference is com-
plicated by the fact that the graph that models these adjacen-
cies contains many cycles that may make exact probabilistic
inference by known methods intractable. An important open
question is whether the spatial nature of the problem can be
exploited for tractable probabilistic inference. Let us consider
a few ideas how this might be possible.

The first property is that the adjacency graph is planar
and chordal, a fact that allows polynomial-time versions of
many graph-theoretic problems, in particular finding clus-
ter trees. Another possibility is to combine inference from
several region-based models with different resolutions, re-
gion structure or granularity that constrain one another. This
might allow use of theories such as the region connection cal-
culus. It is also possible to model the underlying physical
phenomena in terms of regions. For examples, in a process
of dispersion holes in a cloud of pollution tend to disperse,
and regions tend to grow while decreasing in concentration.
Wind moves a region uniformly in a certain direction. This
might allow the use of theories such as process grammars [17;
20] to model the transformation of regions and reduce the un-
certainty in inference.

The problem of air pollution dispersion clearly has a strong
spatial component. It will be interesting to see what role ex-
isting theories of spatial reasoning can play in solving these
inference problems, and what changes can be made to make
some of the existing methods applicable. We expect applica-
tions in the modeling and monitoring of environmental pro-
cesses to be a major driver for future research in qualitative
spatial reasoning.
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Abstract

Activity recognition is an essential task in many
ambient assisted living applications. Activities are
commonly recognized using data streams from on-
body sensors such as accelerometers. An important
subtask in activity recognition is signal segmenta-
tion: a procedure for dividing the data into inter-
vals. These intervals are then used as instances for
machine learning. We present a novel signal seg-
mentation method, which utilizes a segmentation
scheme based on dynamic signal partitioning. To
validate the method, experimental results including
6 activities and 4 transitions between activities from
11 subjects are presented. Using a Random forest
algorithm, an accuracy of 97.5% was achieved with
dynamic signal segmentation method, 94.8% accu-
racy with non-overlapping and 95.3% with overlap-
ping sliding window method.

1 Introduction
Activity recognition using on-body sensors is required for
many ambient assisted living applications. This paper fo-
cuses on an important subtask in activity recognition: signal
segmentation, the process of dividing the data into intervals.
On-body sensors are collecting and continuously outputting
streams of data. These streams are used to recognize the
user’s current activity.

The problem tackled in this paper is how to segment the
data into intervals most suitable for activity recognition. Most
approaches use overlapping and non-overlapping sliding win-
dows, which means that the data is divided into intervals of
fixed length. On each interval features are computed and
then used as an instance for activity recognition. We present
a novel method for signal segmentation, which attempts to
match the intervals to the borders between different activities.

Dynamic signal segmentation method is based on search-
ing for significant differences between consecutive data sam-
ples. A significant difference is determined by a dynamically
computed threshold. It is updated whenever a new data sam-
ple is received, and adapts to changes in the data stream.

The paper is structured as follows. Section 2 gives an
overview of related work on activity recognition with on body

sensors. Section 3 describes two signal segmentation meth-
ods: the sliding window method and the novel dynamic signal
segmentation method. Section 4 lists the attributes extracted
from the input data that are fed into the machine learning al-
gorithms. Section 5 presents the experiments in which the
signal segmentation methods are compared. Finally, Section
6 concludes the paper and outlines the future work.

2 Related work
Various sensors are used for activity recognition: ac-
celerometers and gyroscopes, real-time locating systems
(RTLS) [Mircevska et al., 2009], cameras [Qian et al., 2004;
Vishwakarma et al., 2007] and environmental sensors [Zhan
et al., 2007]. Cameras pose a (real or perceived) threat to
privacy, RTLS are expensive, and both require installation
in the apartment as do environmental sensors. Because of
that accelerometers and/or gyroscopes, which are inexpensive
and portable, are most commonly for activity recognition, al-
though in some situations they are not unobtrusive to the user.

Koskimaki et al. [2009] used a single wrist worn ac-
celerometer to collect the acceleration and angular speed data.
They defined four activities and one class value to denote
”other” activities. Using the overlapping sliding window
method with the window size of half a second, almost 90%
accuracy was achieved. Ravi et al. [2005] tried to recognize
eight activities, using one accelerometer placed on the ab-
dominal area. Two of these activities are the same as in our
testing scenario, others are similar. They divided the signal
into overlapping five-second windows, and achieved accuracy
of 73.3%. Mannini and Sabatini [2010] tried to recognize
seven activities using five accelerometers placed on the body.
Four of these seven activities are identical to the ones in our
scenario. They achieved 98.5% accuracy when using the 6.7
second overlapping sliding window method. None of this re-
searches had tackled the problem of recognizing transitions
between activities.

Bifet and Gavalda [2007] have presented a segmentation
algorithm that is recomputing the size of the sliding window
accordingly to the rate of change observed from the data. The
window is growing when the data is stationary, and shrinking
when change is taking place. In order to work, the algorithm
has to be integrated into a machine learning algorithm. Nunez
et al. [2007] also presented an incremental decision tree algo-
rithm, which is adapting sliding window size to portions of
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the target concept. Each leaf of the decision tree holds a time
window and a local performance measure. When the per-
formance of a leaf decreases, the size of its local window is
reduced. Some limitation may arise when dealing with large
amount of data as the decision tree has to be updated when
new examples are available.

3 Signal segmentation
Two methods are typically used to evaluate a stream of data
for activity recognition. The first method is to use a single
data point to determine the current activity. This method is
not commonly used as the information gathered from a single
data point is in most cases not sufficient for activity recogni-
tion. The second method involves signal segmentation. This
means that consecutive sensor data are grouped. In contrast
to the first method, multiple data points are used to determine
the current activity. Using multiple data points allows more
information to be extracted from the data, so the activities
can be determined more accurately. However, the question of
how exactly to group consecutive data needs to be tackled.

Some common methods for signal segmentation are over-
lapping and non-overlapping sliding windows, and signal
spotting [Junker et al., 2004; Benbasat et al., 2000; Amft
et al., 2005]. In this section a new method for signal segmen-
tation is proposed - dynamic signal segmentation method.

3.1 Sliding window method
The sliding window method is the most commonly used sig-
nal segmentation method for activity recognition with ma-
chine learning. The sliding window method accumulates
sensor data over a fixed time window. Features are com-
puted over one time window and are used as an instance for a
learning/testing set. Two approaches are commonly used for
data segmentation with sliding windows. The first approach
is non-overlapping sliding windows, where consecutive time
windows do not share common data samples. The second
approach is overlapping sliding windows, which share com-
mon data samples between time intervals; for example, two
consecutive time windows may have 50% of data samples in
common.

3.2 Dynamic signal segmentation
Dynamic signal segmentation method is a novel method for
signal segmentation. In principle the method can be used on
any domain where a stream of sensor data has to be processed
and the data has to be divided into segments. We tested the
usability of the method on an acceleration-based domain for
the purpose of activity recognition. We assume that, in addi-
tion to the acceleration data, the method can also be used for
ECG or thermometer data, but it has not been tested yet.

The method searches for a significant change between con-
secutive data samples and divides the data into intervals at
that point. The significant change is defined as a sequence
of consecutive data samples where the values are in descend-
ing order, and the difference between the maximum and the
minimum element in the sequence is larger than a threshold.
The condition that the values should be in descending order is

specific to our problem of accelerometer-based activity recog-
nition, since each strong deceleration is typically quickly fol-
lowed by an acceleration. Considering both would thus lead
to dividing the data twice when a significant change occurs.
For other types of data, both descending and ascending order
should be considered.

Examples of sequences with the values in descending order
are shown in Figure 1 denoted with a dotted line. When a
set of descending data samples is found, the last element of
this sequence is used as an ending point of one and starting
point of the next interval. Therefore, the length of an interval
is changing dynamically, as opposed to the sliding window,
where it is set to a specific length. The features computed
from each of the intervals are used as an instance for machine
learning.

Figure 1: Descending sequence, denoted with dotted line, on
a three-second time window.

The threshold, at each data sample, is computed from pre-
vious N data samples. Therefore, an initialization process of
the algorithm uses N data samples to compute the first thresh-
old. These data samples are used to compute the average min-
imum (avgmin) and average maximum (avgmax) values. The
average minimum value is defined as the average of the first
smallest ten percent of values in the last N data samples. The
average maximum value is defined as the largest ten percent
of values. In Figure 2, maximum values are denoted with cir-
cles and minimum values with squares. An average of each
of these points is computed.

When these two values are obtained, the threshold can be
computed:

threshold = (avgmax − avgmin) · C
where C ∈ [0, 1] is a constant selected prior to the start of
the algorithm. This approach for setting the threshold is bet-
ter than using only the minimum and the maximum values
on an interval . For example, if there are some errors in the
data, such as abnormal high or low peaks, these will be par-
tially corrected with the other values for averaging minimum
or maximum. The constant C can be computed from a learn-
ing dataset as follows:

C =
1
n ·
∑n

i=1 ai

amax − amin

The value n denotes the number of data samples in a learning
dataset, amin and amax are the minimum and the maximum
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Figure 2: Four minimum and four maximum points on 40
data sample interval.

accelerations on the interval and ai is the length of an acceler-
ation vector at data sample i. Another way to set the constant
C would be to tune it by running the dynamic signal segmen-
tation on a separate dataset.

In addition to selecting the appropriate constant C, the de-
veloper has to determine which input signal should be used
for threshold computation. This depends on a diversity of in-
put signals and the domain. Our experiments were done using
two 3-axial accelerometers attached to the left thigh and the
chest. If, for example, we were driving a car, vertical accel-
eration would stay identical for almost all the time and same
would apply for the threshold. On the other hand, if sev-
eral activities, like walking, running, etc., were performed,
the vertical acceleration would probably be the best choice as
it would provide maximum information about activities.

A general solution when using one 3-axial accelerometer
would be to use the length of the acceleration. However, when
using more than one accelerometer, like in our example, the
input signal for a threshold computation should be derived
from multiple accelerometers. In our experiments the input
signal for threshold computation was the arithmetic mean of
lengths from both accelerometers and was derived as follows:

A =
1

2
·
√
a2x + a2y + a2z ·

√
b2x + b2y + b2z

where a⃗ = [ax, ay, az] and b⃗ = [bx, by, bz] are acceleration
vectors from both accelerometers.

4 Feature computation
In our experiments, once the stream of data was segmented
either by the sliding window method or the dynamic signal
segmentation, we used the same procedure to compute the
features activity recognition by machine learning. Some ad-
ditional information could be derived when using dynamic
signal segmentation method, for example the time duration
of an interval. However, in order to have comparable results,
these additional attributes were not used.

As stated above, two accelerometers were used in our ex-
periments. The following attributes were derived separately
for the acceleration vectors from each of the accelerometers:

• The average length of the acceleration vector within the
window, which could be of fixed size or computed with
dynamic signal segmentation.

• The variance of the length of the acceleration vector.
The variance within the window was defined as follows:

δ2 =

∑N
i=1(ai − a)2

N

where N is the number of acceleration data within the
window, is the length of the i-th acceleration vector and
a is the average length of the acceleration of all previous
samples.

• The average acceleration along the x, y and z axes.
• The maximum and the minimum acceleration along the

x, y and z axes.
• The difference between the maximum and the minimum

acceleration along the x, y and z axes.
• The angle of change in acceleration between the maxi-

mum and the minimum acceleration along the x, y and z
axes. It was defined as follows:

Ω = arctan

(
amax − amin

tamax − tamin

)
where amax and amin are the maximum and minimum
acceleration along one axis within the window, and
tamax and tamin are the times when they were mea-
sured. Figure 3 shows the principle of computing the
angle of change in acceleration in one time window.If
tamax > tamin the angle is positive, otherwise the angle
is negative.

Figure 3: The angle of acceleration in a time window.

• The orientation of the accelerometer. We assumed that
the acceleration vector a = [ax, ay, az], which con-
sists of the accelerations along the three axes of the ac-
celerometer, generally points downwards (in the direc-
tion of the Earth’s gravity). Let z be the axis pointing
downwards when the accelerometer is in upright posi-
tion. The angle ϕ between the acceleration vector and
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the z axis thus indicates the person’s orientation, and was
computed as follows:

ϕ = arccos

 az√
a2x + a2y + a2z


To sum it up, 18 attributes were computed for each ac-

celerometer. The final attribute was the angle between ac-
celerometer vectors. It was obtained by computing the scalar
product of vectors, normalized to their length:

Θ = arccos

(
a⃗ · b⃗

∥a⃗∥ · ∥⃗b∥

)

Vectors a⃗ and b⃗ each represent the acceleration from both
accelerometers. One instance in learning/testing set was
thus represented with an attribute vector consisting of 37 at-
tributes.

5 Experiments
We compared the performance of the signal segmentation
methods on a scenario recorded by 11 healthy volunteers (7
male and 4 female), 5 times by each. Three of these record-
ings (2 male and 1 female) were used to create the training
set and the other 8 were used to create the test set.

The scenario included 6 activities and 4 transitions. Transi-
tions are defined as short actions between two activities. The
activities and transitions are listed in Table 1.

Activity Transition
1. standing 7. falling
2. walking 8. sitting down
3. on all fours 9. standing up
4. sitting 10. lying down
5. sitting on the ground
6. lying

Table 1: Activities and transitions

To classify new instances we trained a classifier using the
Random forest algorithm on our training set. The algorithm
was implemented in Weka machine learning suite [Hall et al.,
2009]. The constant C, used by dynamic signal segmentation,
was set to 0.4. This value was obtained by testing the dynamic
signal segmentation algorithm on a different dataset than used
for this paper. The same procedure was used to determine
the value N for the number of data required for threshold
computation. The value N was set to 100. The length of the
sliding window was set to 1 second.

Each data sample in our training and test sets was labeled
with an activity, whereas both the sliding window method
and dynamic signal segmentation recognize the activity of a
whole time interval. For training and testing purposes we thus
considered the true label of an interval to be the majority if the
labels of all the data samples in the interval.

5.1 Results
We compared the results of dynamic signal segmentation to
overlapping and non-overlapping sliding window methods.
We divided the scenario into two separate problems. The first
problem was to recognize only the activities, and the second
problem was to recognize both the activities and the transi-
tions. Both problems were tested on the same dataset with
one difference, in the first case the transitions were excluded
from the training and test sets. The performance of the three
methods was measured in terms of classification accuracy.
Table 2 shows the results of all the methods.

Methods
Non-

overlapping
sliding
window

Overlapping
sliding
window

Dynamic
signal

segmentation

Activities 94.8% 95.3% 97.5%
Activities

and
transitions

89.0% 89.6% 92.9%

Table 2: All the methods compared using just activities and
activities with transitions.

Based on these results we can conclude that there is a
difference between non-overlapping and overlapping sliding
windows, compared to dynamic signal segmentation method.
On the other hand, the difference between the two sliding
window methods and the dynamic segmentation method on
the problem without transitions is 2.9 and 2.4 percentage
points, and when the transitions are included it is 3.9 and 3.3
percentage points.

The quality of dynamic signal segmentation method de-
pends on the threshold computation. For example, if the value
N , which determines the number of previous samples used
for threshold computation is set too high, the threshold does
not update fast enough. As a consequence, transitions be-
tween activities are overlooked. On the other hand, if the
number of previous samples is set too low, the threshold is
over-fitted to the acceleration data. As a consequence data is
fragmented and not appropriate for proper activity recogni-
tion. Figure 4 shows the threshold values in a single record-
ing. We can notice that the threshold is changing according to
activities. When a static activity, e.g. lying or sitting, is per-
formed the algorithm updates the threshold to a small value,
but while a person is walking, the threshold is updated to a
higher value.

If the threshold computation was not implemented in the
algorithm, the data stream would be divided using a simple,
predefined threshold. Static activities like standing and sitting
would not be separated using this approach. Another problem
would be the determining the threshold.

As mentioned in section 3.2, the avgmin and avgmax val-
ues are used to compute the threshold. These values are ob-
tained by computing the mean value of minimum and max-
imum ten percent of values. Other approaches can be used
to obtain these values. Instead of the mean value, we could
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Figure 4: Changing of threshold values in a scenario.

compute a median value or use only minimum and maximum
values. Results of these approaches are shown in Table 3.

Mean Median Only min and max values
Accuracy 97.5% 96.9% 96.1%

Table 3: Accuracy of different approaches for computing
avgmin and avgmax values.

By analyzing the confusion matrix [Kohavi and Provost,
1998] for the experiment excluding the transitions between
activities (Table 4), we can conclude that the accuracy of all
the activities except on all fours is above 90%. On all fours
is usually confused with lying on the stomach, because the
sensor orientation are the same (parallel with the ground and
facing the ground). Another reason for poor performance,
when recognizing on all fours activity, can be found in a small
number of instances of this activity in the learning set (only
0.6 %). One of the solutions would be to change our scenario
accordingly to extend the recording time when a person is on
all fours.

Sta Walk On4 Sit SitG Ly
Sta 95.2% 4.8% 0 0 0 0

Walk 2.0% 97.5% 0.4% 0 0 0.1%
On4 3.5% 10.6% 51.8% 0 0 34.1%
Sit 0 0.3% 0 95.9% 3.4% 0.4%

SitG 0 0.2% 0 5.2% 92.6% 2%
Ly 0 0.1% 0.1% 0.1% 0 99.7%

Table 4: Confusion matrix for activity recognition. Standing
(Sta), walking (Walk), on all fours (On4), sitting (Sit), sitting
on the ground (SitG), lying (Ly).

The results of activity recognition with transitions between
activities are presented in Table 5. The overall accuracy of ac-
tivities has decreased as there are four more classes that have
to be predicted. Recognition of transitions is 62.2% accurate.
This could have occurred due to the fact that the length of
the transitions is much shorter than the length of activities;

therefore the labels may not correspond perfectly to the data
in these short intervals. This can happened because of several
reasons: mislabeling, sometimes it is hard to determine the
correct limit between transition and activity even by hand.

Activity/transition Accuracy
standing 90.5%
walking 96.9%
on all fours 23.3%
sitting 96.9%
sitting on the ground 93.8%
lying 98.7%
falling 42.1%
sitting down 49.5%
standing up 69.7%
lying down 41.2%

Table 5: Accuracy of activity and posture recognition.

6 Conclusion

We have presented a novel method for signal segmentation,
which is an important subtask in activity recognition. Sig-
nal segmentation is a process of dividing the stream of data
into groups and is used for dividing of acceleration data, gy-
roscope data etc. Common methods for signal segmentation
are overlapping and non-overlapping sliding windows. These
methods divide the data into fixed time intervals. Our method,
dynamic signal segmentation, is dividing the data based on
patterns in data stream. The method is searching for signifi-
cant changes in the data based on the threshold. The thresh-
old is updated with every new data sample and is changing
dynamically, according to the signal. When such a change is
found in the data, it is used as a limit between consecutive
intervals. An interval is then used as an input for machine
learning.

We compared the performance of common signal segmen-
tation methods with our dynamic segmentation method on
a scenario recorded by 11 healthy volunteers (7 male and
4 female). Each scenario included six activities and four
transitions between activities. Using the Random forest al-
gorithm 97.5% accuracy was achieved with dynamic signal
segmentation, 95.3% with overlapping and 94.8% with non-
overlapping sliding window method. We have also showed
that transition have negative effects on accuracy of activity
recognition. All the methods had lower accuracy with transi-
tions instances in learning/testing set.

There are several directions for future work. The first is
the development of more acceleration related attributes and
augment them with feature selection techniques. The second
direction is automatic labeling of the data: an algorithm for
semi-supervised learning which would group similar intervals
together into clusters. User would only need to manually la-
bel these clusters after the experiments. The third direction is
in improvement of the existing algorithm with techniques for
statistical data analysis.
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Abstract
Event management and response generation are
two essential aspects of systems for Ambient In-
telligence. This work proposes handling these is-
sues by means of an approach with which to model
and reason about actions and events which, under
the umbrella of a philosophical and common-sense
point of view, describes what actions and events
are, how they are connected, and how computa-
tional systems should consider their meaning. This
work uses the Scone Knowledge-Base (KB) system
with which to both reason about and model the con-
text and the related events. This approach is capa-
ble of generating ad-hoc responses, in terms of ac-
tions to be performed, supported by the knowledge
about the possible-world and multiple-context se-
mantics.

1 Introduction
It is a well known fact that intelligent systems struggle with
innovation and change whereas humans seem to perform well
in most cases. Why is this? or what lies beneath this human
skill? The response of cognitive science to these questions
points out the human ability to handle and reason about pos-
sible worlds. The notion of possible worlds is used here to re-
fer to those states of affairs or “worlds” which, given an event
or a premise, are true in all the worlds considered possible.
For example, to state an analogy with the Sherlock Holmes
stories, the true facts are provided by the clues in the case.
Holmes therefore considers all the worlds in which the given
premises are true. Note how new clues might lead Holmes to
reject worlds that were previously considered to be plausible.

Closely related to the notion of possible worlds, the con-
text concept is here understood as the set of facts or proposi-
tional knowledge that describe a specific state of the world,
in the same way that J. Allen’s refers to the world concept in
[Allen, 1984]. This concept is represented by a description
set of both the static and dynamic aspects of the world, thus
modeling what is known about the past, present, and future.

The J. Allen nomenclature can be used to state that the static
aspects of the world are easily captured as properties while
the dynamic aspects are captured as occurrences or events.

The notion of multiple contexts is connected with that of
possible worlds and refers to the mechanism used to concur-
rently handle the possible-world semantics, at the knowledge-
base level. The multiple-context mechanism provides a mean
to model actions and events by describing the state of the
world before, during, and after the action or event takes place.
For example, a person moving event gives rise to a new
world-state in which the person that moves changes location.
If a person moves from the kitchen to the living room, the
world-state, before the event takes place, is described by the
person being present in the kitchen, while the world-state af-
ter the event has taken place is described by the fact that the
person is then located in the living room. However, if that
person, before moving, approaches an object and picks it up,
where is the object after the moving event? Moreover, what
will happen if it is a slippery object? The purpose of this work
is to model and reason about actions and events, while con-
sidering those scenarios that involve the inference of implicit,
non-deterministic or delayed effects of events. The follow-
ing scenarios, extracted from [Mueller, 2006], illustrate those
situations that require special attention:

1. In the kitchen, Lisa picked up the newspaper and walked
into the living room.

2. Lisa put a book on a coffee table and left the living room.
When she returned, the book was gone.

3. Jamie walks to the kitchen sink, puts the stopper in the
drain, turns on the faucet, and leaves the kitchen.

4. Kimberly turns the fan’s power switch to “on”.

In the first scenario, it is easily inferred that since Lisa was
intially in the kitchen, she picked up the newspaper while she
was there and then took it into the living room. It is also
obvious to us that if Lisa is in the kitchen she cannot be in
any other room at the same time, since we are considering
rooms as non-overlapping spaces in a house. With regard to
the second scenario, we can easily infer that if Lisa left the
living room, she is no longer there, and that if the book is
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not there when she returns, something must have happened
because things tend to remain in the state they are unless a
partiuclar event affects them. The “frame problem” concerns
determining those things that can be assumed to stay the same
from one moment to another. In the third scenario we easily
conclude that, after a while, the water will start spilling onto
the floor. Finally, with regard to the question of what will hap-
pen in the fourth scenario, we can assume that if everything
works as it is supposed to, the fan will start up.

1.1 Action Planning in Ambient Intelligence
The objective of this work is to propose an approach for ac-
tion planning with endowed capabilities to handle the non-
trivial aspects of common-sense reasoning. The innovative
aspect of this work lies in the heuristics provided by common-
sense knowledge concerning actions and events captured in
the proposed model.

This work focuses its attention on planning in Ambient In-
telligence. Note that Ambient Intelligence environments are
characterized by: a) the multiple sources of change affect-
ing the context; b) the device availability aspects that cannot
be determined beforehand; and c) the expection of intelligent
and autonomous reactions in response to context changes.
These aspects, along with the nonlinearity of the problems in-
volved in Ambient Intelligence, are responsible for the small
amount literature found in the field.

The strategy followed here consists of: a) proposing a
model for actions and events that captures the common-
sense knowledge involved; b) representing possible worlds
by means of a context activation scheme; c) modeling ac-
tions and events in terms of the multiple contexts that de-
scribe the world before, during, and after the action or event
takes place; d) and finally, rather than considering primitive
and compound tasks, in an HTN-like style (Hierarchical Task
Network) [Erol et al., 1994], we consider actions that are pro-
vided by services and those which are not. By doing this, the
proposed approach addresses the device dynamism that char-
acterizes Ambient Intelligence environments.

The remainder of this paper is organized as follows: First,
in Section 2 a model for actions and events is proposed and
formalized. Section 3 describes how the proposed model is
represented in Scone, emphasizing the multiple-context and
context activation scheme. Section 4 demonstrates how the
key issues of common-sense have been addressed. Section
5 presents an action planning strategy with common sense.
A proof of the benefits derived from considering common-
sense knowledge as a constituent part of an action planning
approach is demonstrated with a case scenario. Finally, Sec-
tion 6 shows the conclusions drawn from the work presented
herein.

2 Modeling actions and events
Actions and events have commonly been treated as being
equivalent, or as having the slight difference of considering
actions as events which have been intentionally generated
[Hommel et al., 2001]. On the contrary, the theory of action
for multi-agent planning [Georgeff, 1988] advocates for a dis-
tinction between actions and events, although it hints that ac-

tions are accomplished by agents in their endeavor to achieve
a goal.

Davidson’s theories, particularly those regarding the phi-
losophy of action, also identify actions with events, as is ar-
gued in [Davidson, 1963]. Actions are described as a com-
bination of two views. On the one hand, actions can be seen
as causal explanations of body movements and on the other
hand, actions can also be seen as the justifying reason that
leads the action to take place. Davidson considers events to
be equivalent to actions. The sole difference is that when an
action is considered as an event, it is re-described in terms of
its effects.

The model proposed here for actions and events adopts the
Davidsonian view. It should be highlighted that Cyc [Lenat,
1995], through its language CycL, represents actions and
events using a Davidsonian approach. Actions are described
as events but are carried out by an agent. The approach im-
plemented in Scone has been extended to include the notion
of primary reasons for an action, along with its temporal and
location aspects.

Apart from the concept of action and event that concern us
here, some other relevant entities must also be considered in
relation to actions and events so as to capture their semantics.
The following definitions state the foundation of the proposed
model for actions and events:

Definition 1. A Context is a set C composed of state-
ments which, when used together, describe knowledge about
the world. There may be multiple contexts describing each of
the different views of the world. The meaning or truth value
of a statement is a function of the context in which it is being
considered.

The function meaning : T,C → M , where T is the set
of statements describing the world, C is the set of possible
contexts, and M the set of possible meanings, meaning(t, c)
therefore returns the meaning or truth value of the statement
t in the context c. This can be formally stated as:

∀ci ∈ C∀ti ∈ T :

mi = meaning(ti, ci) ⇐⇒ ti ⊆ ci
(1)

The meaning or truth value of a given statement depends
on the contexts in which it has been declared.

Definition 2. An Action A is causally explained from the
perspective of their relation to the primary reason that ratio-
nalizes them. The function AG : A → G, such that A is
the actions, G is the agent, and the function AG returns the
agent performing the given action. Furthermore, the function
PR : A,G→ E is the primary reason for an agent perform-
ing an action ton seek the effects of the event caused. Finally,
the function PA : A,O → G, such that O is the object, and
the function returns the agent that performs the action upon
the given object.

∃g ∈ G∃a ∈ A∃o ∈ O :

(AG(a) ∧ PR(a, g)) ⇐⇒ PA(a, o)
(2)

Therefore, an action is performed upon an object, if and
only if there exists an agent with a primary reason to perform
the action.

Definition 3. An Event E is the individual occurrence
that causes changes in the world. The criteria followed by
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the Davidsonian doctrine on individuation of events argues
for the equality of events when the same effects occur. The
Davidsonian view is here adapted to internalize the multi-
ple contexts approach. In this paper it is therefore consid-
ered that two events are equivalent when the same effects are
caused by different actions. The effects of events are cap-
tured in the after context, while the preconditions for an event
to take place are described by the before context. The func-
tions BC : E → C and AC : E → C, such that BC(e) and
AC(e) respectively return the statements of which the before
and after context of a given event are composed. Furthermore,
the function effect : A,O → S, such that S represents the
set of statements that describe the world after the event took
place.

∀e ∈ E : (BC(e) ∪ effect(a, o))→ AC(e) (3)

Given the events e1 and e2, it can be said that e1 is equiv-
alent to e2 when e2 originates, at least the same effects that
characterizes the after context of the e1:

∃e1, e2 ∈ E : e1 = e2 ⇐⇒ AC(e1) ⊆ AC(e2) (4)

Definition 3. A Service S is provided by a device D and
it performs a set of actions upon an object or a set of objects.
The function PD : S → D, such that D is the set of available
devices, and the function returns the device or devices that
provide a given service.

∃s ∈ S∃d ∈ D∃a ∈ A∃o ∈ O :

(PA(a, o) ∧ PD(s))→ AG(a) = d
(5)

The definition of service therefore implies that the agent of
an action provided by a service is a device.

Definition 4. An Object is the set O of possible environ-
mental objects upon which actions are performed. The func-
tion OA : A→ O returns the set of possible objects that can
receive a given action.

∃o ∈ O∃a ∈ A∃e ∈ E : OA(a) ∧ PA(a, o)→ e (6)

The occurrence of an event e implies the existence of an
object o upon which the action a is performed.

3 Possible worlds and multiple contexts in
Scone

Automating common-sense reasoning is a task that requires a
sufficiently expressive language, a knowledge base in which
to store such a large amount of knowledge, and a set of
mechanisms capable of manipulating this knowledge, so as
to infer new information. The Scone KB project is an
open-source knowledge based system, intended to repre-
sent symbolic knowledge about the world as an intercon-
nected network made up of node units and links between
them. Its principal strength lies in the way in which search
and inference are implemented. Scone adopts a marker-
passing algorithm[Fahlman, 2006] devised to be run in the
NETL machine[Fahlman, 1979]. Despite the fact that these
marker-passing algorithms cannot be compared with gen-
eral theorem-provers, they are indeed faster, and most of the
search and inference operations involved in common-sense
reasoning are supported: inheritance of properties, roles, and

relations in a multiple-inheritance type hierarchy; default
reasoning with exceptions; the detection of type violations;
search based on set intersection; and the maintenance of
multiple, immediately overlapping world-views in the same
knowledge base.

One of the main objectives with which Scone was con-
ceived for was to emulate humans’ ability to store and re-
trieve amounts pieces of knowledge, along with matching and
adjusting existing knowledge to similar situations. To this
end, the multiple-context mechanism implements an effective
means to tackle this objective. The multiple-context mecha-
nism also provides an efficient solution by which to tackle a
classical problem of Artificial Intelligence, since it is frame
problem.

The great potential of the multiple-context mechanism
used by Scone can be better stated by using the example de-
scribed in [Fahlman, 2006]. Since “Harry Potter World” is
quite similar to the real world, a new context, “HPW”, could
be created as an instance of the real world1. Nevertheless,
there are differences between these two contexts, such as the
fact that in the “HPW” context a broom is a vehicle. This
fact can be easily stated in the “HPW” without affecting real
world knowledge, in the same way that knowledge of the real
world could be cancelled so as to not be considered in the
“HPW” context. The way in which Scone handles multiple
contexts so as to avoid incongruence problems is by activat-
ing one context at a time. By doing this, only the knowledge
contained in the active context is considered for the reasoning
and inference task.

Unless otherwise stated, the knowledge described in a par-
ent context is inherited by the child context. The context itself
is also a node and, like the other the nodes, it stores a set of
maker-bits. One of these marker-bits is the context-marker.
This bit, when enabled, determines the activation of all the
nodes and links that are connected to the active context.

3.1 Actions and events in Scone
Representing actions and events in Scone simply consists of
defining two new contexts, one describing the world before
the action or event takes place and another that represents
the state of the world afterwards. The following example de-
scribes a simplified definition of the move event.
NEW-EVENT move

:roles
origin is a place
destination is a place
moving-object is a person

:throughout
origin differs from destination

:before
moving-object is located in origin

:after
moving-object is located in destination

In accordance with the aforementioned representation of the
move event, Lisa moves can be defined as an individual

1In Scone terminology, “general” is the context node that holds
knowledge about the real world, and “HPW” would be an individual
node, connected by an is-a link to the “general” node.
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node of the move event for the specific occurrence of Lisa
moving from the kitchen to the living room.
NEW-EVENT-INDV Lisa moves
the origin of Lisa moves is kitchen
the destination of Lisa moves is living-room
the moving-object of Lisa moves is Lisa
IN-CONTEXT before
STATEMENT-TRUE? Lisa is in living-room

=> No
GET the location of Lisa

=> kitchen
IN-CONTEXT after
STATEMENT-TRUE? Lisa is in living-room

=> Yes
Note how in the before context Lisa is not yet in the living
room but when the active context changes from the before
context to the after context, the same question is positively
answered.
4 Leveraging common sense in modeling and

reasoning about actions and events
The work in [Mueller, 2006] enumerates a list of issues that
should be tackled by any attempt made to automate common-
sense reasoning. The following subsections analyze these is-
sues from the viewpoint of their representation and support in
performing inference and reasoning. Recall that the main fo-
cus of the proposed approach is to leverage common sense
into action planning in Ambient Intelligence. Hence, the
knowledge modeled has been basically restricted to aspects
concerning actions and events.

4.1 Time and location
Modeling and reasoning about actions and events should be
undeniably associated with a theory of time. Here, the ap-
proach proposed to model time adopts the time conceptual-
ization of the Event Calculus[Kowalski and Sergot, 1986],
augmented with the multiple-context mechanism. A context
node can be used to capture the knowledge about the state of
the world at a specific time point or time interval. Regarding
space, the work in [Bhatt et al., 2010] also resorts to an ap-
proach based on the Event Calculus formalism as a mean to
model spatio-temporal abduction for action and change.

Considering that this work is mainly intended for action
planning in Ambient Intelligence, the interest in modeling
and reasoning about location is focused on providing en-
hanced location services. Nevertheless, the proposed ap-
proach is not exclusive to services, but can also be used
to represent any aspect regarding location. Open standards
have been used for interoperability purposes2 Additionally,
the work in [Bhatt, 2010] advocates the convenience of en-
hancing commonsensical reasoning mechanisms with qual-
itative representation and reasoning techniques to deal with
space and location issues [Bhatt et al., 2010].

4.2 Effects of events
As mentioned above, the multiple-context mechanism is the
most suitable means of modeling the effects of events. In the

2Open Geospatial Consortium (OGC). OpenGIS Loca-
tion Services (OpenLS): Core Services. http://www.
opengeospatial.org/standards/ols.

simplest scenario, the deffinition of a new context suffices
to capture the knowledge about the effects of events, or even
to capture the indirect effects. Nevertheless, some other sce-
narios require more elaboration when describing the effects
of events.

Sometimes, these effects, rather than being univocally de-
termined by the event occurrence, are subject to the existance
of certain conditions. Modeling these context-sensitive ef-
fects therefore implies considering the possible worlds that
may appear as a result of the event, as determined by the given
circumstances. For example, the effect of Lisa picking up an
object is that of the object being held by Lisa. If we now
consider the scenario of a slippery object, the effect of pick-
ing up the object does not necessarily imply that the object
is being held since it might be dropped. Depending on how
careful Lisa is when she picks up the object, the effect will be
of the object being dropped or being held. The means of han-
dling these sorts of effects is to define a new context for
each different constraint value. Hence, in the case scenario
of Lisa and the slippery object, three new context nodes
hold the descriptions of the possible world. These context
nodes hang from the parent after context node: one of
the contexts describes the effects of picking up a slippery
object without paying special attention; a second context
describes the effects of picking up a slippery object while
paying special attention to not dropping it; finally, the last
context considers the effect of picking up a normal object.

Nevertheless, the constraints that determine the occurrence
of certain effects or others cannot always be known or eval-
uated. For example, if the level of attention that Lisa pays
to picking up the object cannot be assessed, there is no way
of foreseeing whether the object will or will not be dropped.
The non-determinism of those scenarios creates uncertainty
which must also be captured in the action description.

The occurrence of concurrent events also requires a special
treatment when coincident events involve cumulative, impos-
sible or cancelling effects. For example, it is not possible to
enter two different locations at the same time or, if a door is
pulled and pushed at the same time, it remains static.

4.3 Common-sense law of inertia
The “frame problem” has been addressed here by means
of the multiple context mechanism. Note that the after
context is a copy of the before context which cap-
tures those aspects of the world that change as a result of the
event occurrence. This property, which makes things con-
tinue in the same state, is known as the common-sense law of
inertia.

The difficulty involved in dealing with the common-sense
law of inertia is that of having to capture and model the
knowledge concerning delayed effects or continuous change.
As stated above, a delayed effects occurs if the kitchen sink
has its plug in and someone turns on the tap: after a while
the water will overflow. The common-sense law of inertia
is also involved with regard to the water level since it keeps
on increasing unless the tap is turned off. Nevertheless, the
level does not increase endlessly but rather increases until it
reaches the height of the kitchen sink. Afterwards, the water
overflows until the water level equals the height of kitchen
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sink.
The event calculus notion of fluent is here adopted to deal

with these properties that change over time, such as the water
level in the open tap example. At each time instant the
world must be modeled to capture the value of the changing
property.
NEW-EVENT turn-on faucet

:roles
faucet-liquid is a liquid
faucet-drain is a drain
faucet-valve is a valve
level-of-faucet-drain is a FLUENT

:before
current-time is T0
faucet-valve is turned-off
level-of-faucet-drain is empty

:after
faucet-valve is turned-on
IN-CONTEXT time-instant T1
level-of-faucet-drain equals (flow * (

elapsed-time / base-area))
IN-CONTEXT time-instant T2
level-of-faucet-drain equals full
faucet-liquid is dropped-off

4.4 Default reasoning and mental states
Default reasoning alludes to the fact that common-sense rea-
soning is usually performed in uncertainty. For example, the
result of turning the fans power switch to on will be that the
fan will start spinning around. However, what if the fan is
not plugged or it is not working? Most of the time there is
no complete information about all these details, so perform-
ing default reasoning with exceptions is the most appropriate
way in which to handle incompleteness.

In Scone, default reasoning with exceptions is handled by
means of cancel-links. Please, refer to the work in [Fahlman,
2006] for further information on this subject.

Reasoning about mental states has also been previously ad-
dressed. The work in [Chen and Fahlman, 2008] proposes an
approach based on “ mental context” so as to model mental
states and their interactions.

5 Action planning with common sense
As has already been mentioned above, the main difficulty
faced by systems for Ambient Intelligence lies in coping with
innovation. Surveillance contexts typically provide an ideal
scenario for unforeseen situations to take place. Furthermore,
in most cases, the system will be prompted to elaborate a re-
sponse in order to manage the unexpected event. A simulated
intrusion in a surveyed building poses an interesting scenario
in which to asses the performance, regarding action planning,
of the proposed model.

First, the presence sensor installed in the servers’ room de-
tects an intruder break-in. The guards are automatically no-
tified with the sensor detection. One of the system’s goals
under these circumstances is to identify and to locate the in-
truder.
IN-CONTEXT intruder-intention
GET the intention of intruder

=> Not known

IN-CONTEXT intruder-break-in
GET the location of intruder

=> servers-room
STATEMENT-TRUE? guards are notified of

intruder-location
=> Yes

GET the identification of intruder
=> Not known

STATEMENT-TRUE? intrusion alarm status is on
=> Yes

The sound of the alarm makes the intruder aware that his pres-
ence has been detected. He therefore decides to run away.
Meanwhile, the guards are in their way to the servers’ room.
NEW-EVENT-INDV intruder-leaves-room
intruder is the agent
server-room is the object
IN-CONTEXT intruder intention
GET the intention of intruder

=> Too many
After the intruder leaves the room, his location is no longer
the servers’ room. On the contrary, the intruder is moving
through the building in an attempt to escape without being
caught. This state of affairs leads to the need for a plan to pur-
sue the goal of locating the intruder. The location of a person
is one of those properties that may need to be released from
the common-sense law of inertia while the person is moving.
Bearing this in mind, the trajectory of a person in movement
can be inferred from the successive locations at three consec-
utive moments in time.
SET-FLUENT intruder is located in loc0 at t0
SET-FLUENT intruder is located in loc1 at t1
SET-FLUENT intruder is located in loc2 at t2
STATEMENT-HOLDS? intruder is moving

=> Yes
GET-FLUENT intruder location at t3

=> (covered-distance / elapsed-time) * t3
Now, at time instant t3, let us say that the intruder’s pres-
ence cannot be distinguished at the expected location loc3.
So what has happened? Well, in between loc2 and loc3
there is a room. What makes a person abandon the moving
trajectory followed?
RELEASE-FLUENT intruder location

=> location fluent released
LIST-EVENTS-CAUSING moving-object abandons

trajectory-of-move
=> enter, stop, sit, jump, lay down, ...

Given the plausible events, the system then becomes engaged
in proving which of the actions has certainly taken place. The
means of verifying this is to check whether the current con-
text is consistent with any of the after context of the
plausible actions.
LIST-AFTER-CONTEXT stop

=> 1. RELEASE-FLUENT moving-object from
location

2. the location of moving-object is
current-location

STATEMENT-TRUE? the location of intruder is
loc3 => Not known

LIST-EVENTS-REQUIRING the location of thing
is place => capture, sense, notice, ...

GET service performing capture
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=> video-recording, face detector,
fingerprint reader, etc.

NEW-INDV shp3 is shape
the center-of-shape sph3 is loc3

GET video-recording in shape shp3
=> videoRec-at-shp3

LIST-EVENTS-PRECEDING recording upon person
=> focus-person

LIST-EVENTS-PRECEDING focus-person
=> detecting-face, detecting-smile,

detecting-temperature, etc.
GET service performing detecting-face

=> face-detector
GET face-detector in shape shp3

=> faceDet_at_server
STATEMENT-TRUE? the location of moving-object

is shp3 => No

Each of the possible events causing the intruder to abandon
the trajectory will be evaluated recursively3.

The Planning algorithm proposed in [Santofimia et al.,
2010] starts with an empty plan, the Π plan, to be completed
with the list of actions, provided by services. This course
of actions is intended to emulate the demanded non-feasible
action. The course of actions is provided as a set of actions
performed on objects, A and O respectively, and the results R
of accomplishing such actions. The function resultOf refers
to the returned value obtained as result of instantiating the ai
action.

6 Conclusions and future works
This work is founded on the conviction that systems for Am-
bient Intelligence should consider common sense as a con-
stituent element. This work uses action planning, enhanced
with common-sense knowledge about actions and events, as
the cornerstone of the decision making process.

The main contribution of this work is threefold. First,
a model for actions and events in Ambient Intelligence is
proposed to characterize the Ambient Intelligence domain
knowledge. Second, the model is represented and enhanced
to consider the key issues of common-sense reasoning. Third,
the proposed strategy for action planning is grounded in
multiple-context and possible-world semantics.

This work is an improvement on existing approaches for
planning in Ambient Intelligence when devising ad-hoc tai-
lored solutions, on the basis of the available devices and ser-
vices. Common-sense knowledge is considered throughout
the planning, so rather than constraining the planning solution
to context knowledge (explicit knowledge), implicit knowl-
edge leads to more appropriate solutions. In the aforemen-
tioned case scenario, please note how the trajectory of the
intruder has been devised. Also note how the common-sense
law of inertia has been used to infer that if the person is not
where he was supposed to be, he must have been affected by
a particular event. It has been demonstrated above that the
stop event is not considered possible, since the current state
of the world does not match the after context of the
stop action.

3http://sites.google.com/site/csrijca11/
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