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Abstract. We describe a distance-based approach to integrate spatial
information from different sources that is given in the form of constraint
networks over relations from a qualitative spatial calculus. The distance
functions are based on the notion of conceptual neighborhood between
the spatial relations. We opt for a merging approach that is relation-
based instead of model-based and as a result is also able to relax incon-
sistent networks. We investigate the properties of the proposed merging
operators and describe an algorithm for their computation.

1 Introduction

We address the problem of combining information from different sources as it
arises in the context of qualitative spatial representations. Formalisms for repre-
senting spatial information and reasoning about space using sets of qualitative
relations are investigated within the research area of qualitative spatial reason-
ing (QSR), an active subfield of AI research (see [1, 2] for an overview). This
research has led to a multitude of so-called qualitative spatial (and temporal)
calculi dealing with different aspects of space such as topology or direction, suit-
able for tasks in which precise quantitative information is not available or not
desirable.

A spatial arrangement of objects (for instance objects from a spatial database)
can be described using the formalism of a qualitative constraint network (QCN)
over a given qualitative calculus. A QCN is a graph in which the objects are rep-
resented by the vertices and edges are labeled with relations from the calculus
that describe the qualitative relations holding between the objects (cmp. Fig. 1).
The relations can be interpreted as constraints restricting possible geometries
which can be assigned to the objects.

Our goal is to develop a solution to the problem of combining several con-
straint networks over the same calculus in a way that the result is always consis-
tent. This problem occurs, for instance, when merging information from several
databases containing qualitative information or when combining the believes of



2. QUALITATIVE SPATIAL REPRESENTATION

multiple agents (e.g., humans or robots) expressed in a qualitative way. One im-
portant particularity of the QCN formalism which has to be taken into account
when defining suitable merging operators is that in contrast to similar merging
problems in propositional logic it is often not possible to express all disjunctions
of possible models without admitting additional models. This aspect will play
an important role in the investigations presented in this paper.

In earlier work [3], we developed an approach to relax a single inconsistent
constraint network until it becomes consistent. The approach is based on the
idea of using conceptual neighborhood between the relations of a qualitative
calculus [4] to define a distance over constraint networks [5, 6]. The merging
operators we describe in this paper are a direct extension of this idea to the
more general problem of combining several QCNs. We also put the approach
onto a solid theoretical basis by relating it to work on logic-based merging [7, 8]
as recently suggested in [9, 10]. In contrast to the merging operators defined in [9]
which are model-based in the sense that the result only depends on the models
of the input networks, we instead aim for a relation-based approach in which
every relation contained in the input QCN is able to affect the merging result.
We argue that this approach is advantageous in many application scenarios,
in particular when considering spatial database integration where the spatial
relations stored in the database are based on independent observations (for a
concrete example, cf. Sec. 3). Furthermore, our approach allows us to also deal
with inconsistent input networks, which is not directly possible in a model-
based framework. In addition to defining the merging operators, we show how
the result can be computed by incrementally relaxing the input networks until
their intersections become consistent.

In the remainder of the paper, we first lay out the background of qualitative
calculi, constraint networks, and conceptual neighborhood. Then we describe
our merging scenario, develop rationality criteria for our operators, and define
the operators themselves. Finally, we describe an algorithm for calculating the
merging results.

2 Qualitative Spatial Representation

In the following overview on representation and reasoning with qualitative spa-
tial calculi, we restrict ourselves to calculi over binary relations. However, our
approach can be adapted to relations of higher arity as well.

2.1 Qualitative Spatial Calculi

A qualitative spatial calculus C defines a set BC of spatial relations over a domain
of spatial objects DC (e.g., points, lines, regions). For every pair of objects from
the domain exactly one relation from this set of so-called base relations holds (i.e.,
BC is jointly exhaustive and pairwise disjoint). For example, C could define a set
of cardinal directions north-of (N), northwest-of (NW), west-of (W), southwest-
of (SW), etc. plus the identity relation equal (EQ) for points in the plane.
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To be able to express incomplete or imprecise spatial knowledge, the qual-
itative spatial calculus actually is concerned with the so-called set of general
relations RC containing all possible unions of base relations. For instance, given
r � NE Y N Y NW, ArB would express that A is either to the northeast,
north, or northwest of B. Complete ignorance is expressed by the universal rela-
tion U �

�
bPBC

b. Here, we adopt the often used way of notating general relations

as sets of base relations instead of unions, meaning that RC � 2BC and that the
relation above will be denoted as A tNE,N,NWuB. Another special relation is
the empty relation H which cannot be realized by any pair of objects.

In addition to defining relations, a qualitative calculus also defines a set
OC � tX,Y, ,̄!, �u of operations over RC . X, Y, and ¯ are the operations of
intersection, union, and complement which keep their set-theoretic meaning. The
unary operation ! is the converse operation which tells us the relation holding
between B and A from the relation holding between A and B, e.g. tNu! � tSu.
The binary composition operation � yields the relation that has to hold between
A and C when we know the relation holding between A and B as well as between
B and C, e.g., tNu � tSWu � tNW,W,SWu.

2.2 Qualitative Constraint Networks

A spatial arrangement of objects Oi can be described qualitatively based on a
qualitative calculus C by providing a set of relational facts using relations from
RC , e.g., O1tNuO2, O1tEuO3, O2tS, SEuO3, etc. The relations can be seen as
constraints that restrict which values of DC can be assigned to the objects. We
formally define such a qualitative spatial representation as a qualitative con-
straint network (QCN) in which the objects correspond to variables and the
spatial relations correspond to constraints.

Definition 1 (Qualitative Constraint Network (QCN)) A qualitative con-
straint network over a qualitative calculus C is a pair pV,Cq where:

– V � tv1, v2, ...vmu is a set of variables
– C : V 2 Ñ RC is a function mapping each pair of variables from V to a

relation from RC where Cpvi, vjq � r P RC means that relation vi r vj has to
hold for the values assigned to vi and vj

– for all 1 ¤ i, j ¤ m, Cpvi, viq � id and Cpvi, vjq � Cpvj , viq
! holds (id is

the identity relation of C).

In the remainder of this text we will also use the abbreviation Cij for Cpvi, vjq.
One way to illustrate a qualitative constraint network is by a directed graph as
shown in Fig. 1 containing a vertex for every variable vi and one directed edge
for every pair of variables vi, vj with i   j which is labeled by the corresponding
relation. By convention, edges labeled with the universal relation U are omitted.

Naturally, the scene description provided by a QCN can be consistent or
not. The QCN, hence, can be seen as a constraint satisfaction problem (CSP)
in which the domain is typically infinite (e.g., points in R2). An assignment of
values from DC to the variables vi is a solution if it satisfies all constraints Cij .

3
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Fig. 1. Input QCNs N1 to N3 and a scenario of N3.

A QCN N is consistent if it has at least one solution. A QCN s is called atomic
or a scenario if any Cij consists of a single base relation. We say that a scenario
s � pV,C 1q is a scenario of QCN N � pV,Cq if all C 1

ij � Cij .

We will use a predicate consistent(N) to state that QCN N is consistent. We
denote the set of all scenarios of N as xxNyy and the set of all consistent scenar-
ios as JNK. QCN will refer to the constraint network in which all constraints
Cij are U for a given set of variables V and a given calculus C) and, hence,
xxQCNyy stands for the set of all possible scenarios given V and C. Figs. 1(a)–
1(d) show several exemplary QCNs with cardinal direction constraints. The QCN
in Fig. 1(d) is a scenario of the QCN in Fig. 1(c).

Deciding consistency of QCNs is NP-complete for many calculi but often
tractable subalgebras are known. There exist two main methods for deciding
consistency, both based on techniques developed for discrete CSPs. The so-called
algebraic closure algorithm enforces a local consistency called path-consistency
[12] and runs in Opn3q time for n variables. If algebraic closure is not sufficient
to decide consistency for the relations occurring in the network, a backtracking
search is performed [13] that recursively splits the constraints, until a level is
reached which can be checked with algebraic closure.
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Fig. 2. A conceptual neighborhood graph for the cardinal direction calculus [11].

2.3 Conceptual Neighborhood

Our merging approach is based on the notion of similarity or distance between
QCNs. Similarity is related to how the relations of the QCN can change, an
aspect which is described by the notion of conceptual neighborhood introduced
in [4]. Two base relations of a spatial calculus are conceptually neighbored, if
they can be continuously transformed into each other without resulting in a
third relation in between. For instance, N is conceptually neighbored to NW but
not to W as one would have to pass through at least one other base relation (e.g.,
NW). The concrete conceptual neighborhood relation depends on the concrete
set of continuous transformations one considers [4, 3] which in turn need to be
grounded in spatial change over time [14]. For this work, it is sufficient to assume
that a suitable conceptual neighbor relation has been defined which is irreflexive
and symmetric. It can be represented by the so-called conceptual neighborhood
graph CNG as illustrated in Fig. 2.

As proposed in [5], we will later use the shortest path distance between two
base relations in the neighborhood graph to measure their similarity and extend
this idea to complete scenarios.

3 Merging Qualitative Information

In the following, we describe operators for merging n ¥ 1 QCNs Nk � pVk, Ckq
over the same qualitative spatial calculus C, representing information from dif-
ferent sources about a static arrangement of objects. Adopting a notation similar
to that used in [9], the input is an n-tuple N � pN1, N2, ...Nnq referred to as
the input set. We assume that the correct correspondences between the vari-
ables have already been established and—without loss of generality—that each
Nk has the same set of variables V � tv1, v2, ...vmu which can be achieved in a
preprocessing step. An exemplary merging problem could be to merge the QNCs
N1, N2, N3 from Fig. 1.

Two straightforward ways of combining QCNs are intergrating them conjunc-
tively or disjunctively. Combining the QCNs conjunctively means to construct
a new QCN by taking the intersection of the relations making up corresponding
constraints.

5
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Definition 2 (Intersection of QCNs) The intersection N1XN2 of two QCNs
N1 � pV,C1q and N2 � pV,C2q is a QCN N 1 � pV,C 1q with C 1pvi, vjq �
C1pvi, vjq X C2pvi, vjq for all 1 ¤ i, j ¤ |V |.

Obviously, when using the intersection to combine two or more QCNs, the re-
sulting QCN can be inconsistent, even when the input networks themselves are
all consistent. This is the case if the QCNs do not share a consistent scenario.
Hence, intersection in general is too strict to serve as a suitable merging operator.

On the other hand, combining networks disjunctively means to take the union
over corresponding relations.

Definition 3 (Union of QCNs) The union N1YN2 of two QCNs N1 � pV,C1q
and N2 � pV,C2q is a QCN N 1 � pV,C 1q with C 1pvi, vjq � C1pvi, vjqYC2pvi, vjq
for all 1 ¤ i, j ¤ |V |.

Using the union, consistent scenarios of the input networks are preserved but
new ones may appear and the result will often be very unspecific reducing its
usability. In addition, if all input networks are inconsistent, the resulting QCN
may still be inconsistent.

In this work, we are interested in merging operators that are guaranteed to
return a consistent result even when the input QCNs are not consistent (we only
assume that all Cij � H). Adopting the idea of distance-based merging [8, 7], we
want our solution to be based on those models (consistent scenario in our case)
that are as close as possible to all input networks simultaneously in a way that we
will explain below. A main difference to existing work on merging QCNs [9, 10]
is that we assume that all relations in the QCN can be considered independent
and equally reliable information pieces that can have an effect on the result of
the merging, while in the other approaches the result only depends on relations
belonging to consistent scenarios. Consequentially, we will refer to our approach
as relation-based in contrast to the model-based paradigm employed in the other
approaches. To make this difference more clear, consider the example shown in
Fig. 3. For convenience we introduce a compact notation for QCNs with three
variables: A QCN N � pV,Cq with variables v1, v2, and v3 is written as a triple
of constraints N � pC12, C13, C23q. The input set in the example consists of the
two QCNs N1 � ptSu, tSu, tS, SEuq and N2 � ptSW u, tSu, tSEuq. N1 has one
consistent scenario, namely ({S},{S},{S}), whileN2 itself is a consistent scenario.
As the model-based approach presented in [9] basically ignores relations that are
not part of a consistent scenario such as SE in C23 of N1, it would consider the
consistent scenarios ptSW u, tSu, tSEuq and ptSu, tSu, tSuq as equally plausible
resolutions of the conflicts between the two QCNs. However, while the former
scenario can be explained by a single small observation error in N1 (C12 should
have been SW instead of S), the latter would mean that there have been two
small observation errors in N2. In contrast to such model-based operators, the
merging operators we are going to define in Sec. 3.2 will treat the scenario
ptSW u, tSu, tSEuq as a more plausible explanation.

Before we introduce the operators themselves, we start by formulating ra-
tionality criteria for relation-based QCN merging operators. As mentioned in
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Fig. 3. Merging example: Input QCNs N1 and N2.

the introduction, one particularity of the QCN merging scenario distinguishing
it, for instance, from merging problems in propositional logic is that it is not
always possible to combine models (or here consistent scenarios) into a single
representation without obtaining additional models. Unfortunately, in many sit-
uations (e.g., merging databases) maintaining multiple hypotheses is undesirable
or infeasible because of the additional complexity of tracking multiple hypothe-
ses about the state of the world simultaneously. Hence, we define relation-based
merging operators ∆pN q with N � tN1, ...Nnu that take an input set and re-
turn a single QCN and investigate how this requirement and the established
rationality criteria fit together.

3.1 Rationality Criteria

To define the rationality criteria for our merging scenario, we follow criteria
developed for information merging in a propositional setting (criteria (A1)–(A6)
in [15] and (IC1)–(IC6) in [7]). Due to the special properties of QCNs and the
fact that we are aiming at merging operators which are relation-based instead of
model-based, we have to adapt the criteria leading to criteria (Q1)–(Q6) below.
The resulting set of criteria turns out to be a specialization of the generic criteria
for QCN merging (N1)–(N6) described in [10] but without assuming consistency
of the input QCNs. We will point out where we make stronger demands tailored
towards our particular merging approach.

The most basic requirement is that the merging result is a consistent QCN.
Therefore we demand that ∆pN q always has to be consistent. In contrast, in-
stantiating (N1) in [10] for our case would only demand that a QCN is returned
but not necessarily a consistent one.

(Q1) consistentp∆pN qq

If the intersection of the input QCNs already is consistent, ∆ should yield
exactly this intersection. Again, the corresponding criterion (N2) in [10] would
only make a weaker demand allowing the merging result to be inconsistent.

7



3. MERGING QUALITATIVE INFORMATION

(Q2) if consistentp
�
Niq then ∆pN q �

�
Ni

The third criterion defined in [15] formalizes the ’irrelevance of syntax’. Con-
cerned with defining criteria for model-based merging operators, they demand
that the result of merging should only depend on the models of the input knowl-
edge bases. In our relation-based case, it only makes sense to demand a signif-
icantly weakened version of the third criterion which basically claims that the
order of input networks should not affect the result. For this, we define when
two input sets are equivalent.

Definition 4 (Equivalence (�) of input sets) Two input sets of QCNs N �
pN1, ..., Nnq and N 1 � pN 1

1, ..., N
1
nq are equivalent (N � N 1) iff there exists a

bijection f between N and N 1 such that xxNkyy � xxfpNkqyy for 1 ¤ k ¤ n.

(Q3) if N1 � N2 then ∆pN1q � ∆pN2q

The fourth criterion is concerned with fairness of the merging operator stating
that it must not give preference to one of the input knowledge bases. When
merging two QCNs N1 and N2 and there is a scenario s part of the merging
result which is also a scenario of N1, the same must hold for a scenario t of N2.

(Q4) Ds : s P xx∆ppN1, N2qqyy ^ s P xxN1yy ô Dt : t P xx∆ppN1, N2qqyy ^ t P xxN2yy

With the fifth property we demand that if we merge two input sets N1 and N2

individually and there is a scenario s part of both merging results, this scenario
must also be part of the result of merging the input set resulting from combining
the QCNs from N1 and N2 into a single set (written as N1 \N2).

(Q5) if s P xx∆pN1qyy and s P xx∆pN2qyy then s P xx∆pN1 \N2qyy

Finally, in (Q6) we demand that if ∆pN1q and ∆pN2q have a common sce-
nario, the reverse direction of (Q5) is also true. Taken together (Q5) and (Q6)
state that if for two input sets the merging agrees on certain scenarios, these
scenarios should be exactly the scenarios of the resulting QCN of the combined
input set.

(Q6) if a t exists with t P xx∆pN1qyy and t P xx∆pN2qyy
then ps P xx∆pN1 \N2qyy ñ s P xx∆pN1qyy ^ s P xx∆pN2qyyq

We now proceed by defining our relation-based merging operators for QCNs
and will later discuss to what extent they satisfy the rationality criteria defined
here.

3.2 The Merging Operators

Above, we introduced the conceptual neighborhood graph as a way to measure
the distance or similarity of the base relations of a calculus, assuming that varia-
tions are caused by imperfect observations. Seeing the conceptual neighborhood

8
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graph CNGC of a calculus C as an undirected graph (cmp. Sec. 2.3), we now de-
fine the distance dBØB between the two base relations bi, bj P BC as the shortest
path distance between the corresponding nodes in the graph:

dBØBpbi, bjq � shortest path distance between

bi and bj in CNGC (1)

The next step is to define the distance between two atomic qualitative con-
straint networks s � pV,Cq and s1 � pV,C 1q over the same set of m variables and
the same calculus. For this we need an aggregation operator that determines how
the distances between constraints in si, sj given by dBØBpbi, bjq are combined.
Candidates for this aggregation operator which we will denote as o are the sum
or the max operator. The distance itself is defined as:

doSØSps, s
1q � o

1¤i j¤m
dBØBpCij , C

1
ijq (2)

The notion behind our merging operators ∆pN q is that the resulting QCN
is built from the consistent scenarios that are closest to the input networks
together with all inconsistent scenarios that are at most as distant as these
consistent scenarios. Therefore, we further need to define the distance between
a scenario and a general constraint network and based on that the distance
between a scenario and the set of input networks (N ).

For determining how close a scenario s is to a constraint network N we
consider all scenarios of N and take the distance to the closest one. The resulting
distance doSØN ps,Nq is then given by

doSØN ps,Nq � min
s1PxxNyy

doSØSps, s
1q (3)

To measure the distance between a scenario s and the set N of all input
networks Ni, we need to aggregate over the individual distances doSØN ps,Niq.
To do this, we introduce another aggregation operator f. Again, sum and max
seem to be natural candidates for this aggregation operator. In the general case,
the resulting distance is given by

do,f
SØN ps,N q � f

1¤k¤n
doSØN ps,Nkq (4)

To construct the final merging result we take the set So,fpN q of all scenarios
that are closer or as close to N as the closest consistent scenarios wrt. do,f

SØN .

So,fpN q � ts P xxQCNyy | @s1 P JQCNK : do,f
SØN ps

1,N q ¥ do,f
SØN ps,N qu (5)

As the final step, the resulting QCN is constructed by taking the union of
all the scenarios in So,fpN q.

∆o,fpN q �
¤

sPSo,fpN q

s (6)

As discussed previously, the final union step, may lead to additional scenarios
in ∆o,fpN q that are not contained in So,fpN q which is the price one has to
pay to end up with a single QCN.

9
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3.3 Properties of the Operators

We now consider the rationality criteria defined in Sec. 3.1 and test whether
they are satisfied by ∆o,fpN q. If this is not the case, we investigate to what
degree this is due to the final union step, meaning that the criteria would at
least hold for the scenarios contained in So,fpN q. Unless stated otherwise, the
considerations in the following hold for all combinations of o,f P t

°
,maxu.

Theorem 1 ∆o,f satisfies (Q1).

Proof. xxQCNyy contains at least one consistent scenario for every qualitative
calculus (for example, with all constraints set to id). As a result, So,fpN q con-
tains at least one consistent scenario which is then also a consistent scenario of
∆o,fpN q. �

Theorem 2 ∆o,f satisfies (Q2).

Proof. (1) s is a scenario of
�
Ni iff s is a scenario of all Ni. (2) doSØN ps,Niq � 0

iff s P xxNiyy (for both o �
°

and o � max). Based on (1) and (2), s P xx
�
Niyy

iff do,f
SØN ps,N q � 0 (for both f �

°
and f � max). From this and the definition

of So,f it follows that if
�
Ni is consistent then s P xx

�
Niyy ô s P So,fpN q.

Taking the union of all scenarios in So,fpN q then only reconstructs
�
Ni from

its scenarios and hence ∆o,fpN q �
�
Ni. �

Theorem 3 ∆o,f satisfies (Q3).

Proof. All considered operators for f in Eq. 4 are commutative and associative
so that the order of the Ni has no effect on the result. �

Proving (Q4) is significantly more complex, mainly due to the final union
step. Therefore, we start by showing that So,f satisfies a corresponding version
of (Q4).

Theorem 4 Ds : s P So,fppN1, N2qq ^ s P xxN1yy ô
Dt : t P So,fppN1, N2qq ^ t P xxN2yy holds.

Proof. All distance functions in Eqs. 1–4 are symmetric. Hence, for every sce-
nario s in So,fppN1, N2qq that is a scenario of N1 there has to be a scenario
t of N2 with the same distance do,f

SØN which therefore is also contained in
So,fppN1, N2qq. �

We now first look at the case that f �
°

and define two auxiliary theorems.
First we show that for two scenarios s, t, no scenario u exists with a smaller

distance d
o,
°

SØN to the input set ps, tq than the direct scenario distance between

s and t. We here introduce the notation ds,tij for the distance dBØB between the
base relation forming the constraint Cij in s and the corresponding base relation
in t.

Theorem 5 For arbitrary scenarios s, t, u, d
o,
°

SØN pu, ps, tqq ¥ doSØSps, tq.

10
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Proof. o �
°

(case 1): d
°
,
°

SØN pu, ps, tqq can be rewritten as
°

i,j d
s,u
ij � du,tij . As

dBØB satisfies the triangle inequation, this can never be smaller than d
°

SØSps, tq �°
i,j d

s,t
ij .

o � max (case 2): d
max,

°

SØN pu, ps, tqq � pmax
ij

ds,uij q�pmax
ij

du,tij q. Let us assume, that

the largest ds,tij over all i, j is k. In the best case, ds,uij � tk{2u and du,tij � rk{2s

(or vice versa) but taking the sum would again yield k so that d
max,

°

SØN pu, ps, tqq
can never be smaller than dmax

SØSps, tq. �

From this result, we get the interesting property that So,
°

ppN1, N2qq always
contains at least one scenario of N1 and of N2.

Theorem 6 If s P xxN1yy and t P xxN2yy and doSØSps, tq is minimal over all
scenarios of N1 and N2 then s, t P So,

°

ppN1, N2qq.

Proof. From Theorem 5 it follows that no scenario can have a smaller distance

d
o,
°

SØN to pN1, N2q than the smallest distance doSØSps, tq with s P xxN1yy and
t P xxN2yy. The fact that

d
o,
°

SØN ps, pN1, N2qq � d
o,
°

SØN pt, pN1, N2qq � doSØSps, tq

proves the theorem. �

From this theorem, it directly follows that:

Corollary 1 ∆o,
°

satisfies (Q4).

We now turn to the case f � max, starting with two auxiliary theorems.
In the following, we say that a scenario u lies between two other scenarios s
and t if each base relation in u is one from the shortest path connecting the
corresponding base relations in s and t. We show that for such a scenario there
exists a mirrored one with the same overall distance to ps, tq.

Theorem 7 For every scenario u lying between scenarios s and t, there exists a
scenario v with ds,vij � dt,uij and dt,vij � ds,uij and do,f

SØN pu, ps, tqq � do,f
SØN pv, ps, tqq.

Proof. v can be built by replacing each base relation in u by the mirrored one
along the connecting shortest path. Since both max and

°
are commutative the

distance do,f
SØN to ps, tq does not change. �

Theorem 8 For every scenario u P So,maxpps, tqq with ds,uij � 0 there exists a

scenario v P So,maxpps, tqq with dt,vij � 0.

Proof. Either u lies between s and t or there exists a scenario u1 P So,maxpps, tqq

with ds,u
1

ij � 0 lying between s and t because do,max
SØN pu1, ps, tqq ¤ do,max

SØN pu1, ps, tqq
for such a u1. According to Theorem 7, there also exists the mirrored scenario v
in So,maxpps, tqq which has dt,vij � 0. �

11



3. MERGING QUALITATIVE INFORMATION

In Theorem 4, we showed that So,f satisfies (Q4). From Theorem 8 it now
follows that the final union step preserves this property.

Theorem 9 ∆o,max satisfies (Q4).

Proof. The union step can only generate a scenario s of N1 if for every i, j
there exists at least one scenario x in So,maxppN1, N2qq with ds,xij � 0. However,
according to Theorem 8 for every such scenario there exists a scenario t in
So,maxppN1, N2qq with dt,yij � 0 to a scenario y of N2. Therefore, if the union
step generates a scenario of N1, it will also generate one of N2. �

Unfortunately, for (Q5), a simple counterexample shows that ∆o,f does not
satisfy the criterion.

Theorem 10 (Q5) does not hold for ∆o,f.

Proof. For f �
°

and o �
°

, the following is a counter example: QCNs

N1 � ptSu, tSW u, tSuq,

N2 � ptSW u, tSW u, tSEuq, and

N3 � ptSW u, tSW u, tSW uq

are given. With N1 � pN1q and N2 � pN2, N3q, the scenario ptSW u, tSW u, tSW uq
is contained in ∆

°
,
°

pN1q (result of the union of other scenarios in So,fpN1q)
and in ∆

°
,
°

pN2q but not in ∆
°
,
°

pN1 \N2q. �

As we see, the counterexample makes use of the union step to generate a
scenario which breaks the criterion. Indeed, in Theorem 11 we show that So,f

does satisfy a corresponding version of (Q5).

Theorem 11 s P So,fpN1q ^ s P So,fpN2q ñ s P So,fpN1 \N2q holds.

Proof. For f P t
°
,maxu, do,f

SØN ps,N1 \ N2q � do,f
SØN ps,N1qf d

o,f
SØN ps,N2q

holds. Let us assume that s is a consistent scenario (case 1) with s P So,fpN1q
and s P So,fpN2q. Then for every other consistent scenario t,

do,f
SØN pt,N1q ¥ do,f

SØN ps,N1q

and
do,f
SØN pt,N2q ¥ do,f

SØN ps,N2q

has to hold and as a result also

do,f
SØN pt,N1 \N2q ¥ do,f

SØN ps,N1 \N2q.

Hence, s has to be contained in So,fpN1 \N2q. If s is an inconsistent scenario
(case 2), we know from the definition of So,f that for every consistent scenario
t in So,fpN1 \N2q,

do,f
SØN ps,N1q ¤ do,f

SØN pt,N1q

12
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and

do,f
SØN ps,N2q ¤ do,f

SØN pt,N2q

and as a result also

do,f
SØN ps,N1 \N2q ¤ do,f

SØN pt,N1 \N2q

holds. Hence, s in this case also has to be contained in So,fpN1 \N2q. �

As a result, the loss of this property is a direct consequence of the demand
that the merging result has to be a single QCN implemented by the final union
step.

For (Q6), however, it can be shown that not only ∆o,f does not satisfy the
criterion but that this is also the case for So,f and, hence, not a result of the
final union step. It currently seems possible that it is rather the result of in-
cluding inconsistent scenarios with a distance smaller than the closest consistent
scenario. While it would be counterintuitive not to include these scenarios when
inconsistent scenarios with a larger distance are included, the properties of such
alternatives need to be investigated in more detail as part of future research.

Theorem 12 (Q6) does not hold for ∆o,f (and also not for So,f).

Proof. For both f P t
°
,maxu (with o �

°
), the following is a counter example:

N1, N2, N3, N4 are QCNs over three variables and

N1 � ptSW u, tSW u, tSuq,

N2 � ptSW u, tSW u, tSW uq,

N3 � ptSu, tSW u, tSW uq,

N4 � ptSu, tSu, tSuq.

With N1 � pN1, N2, N3q and N2 � pN4q, the scenario ptSu, tSW u, tSuq is con-
tained in S

°
,fpN1 \ N2q (and ∆

°
,fpN1 \ N2q) but not in S

°
,fpN2q (nor in

∆
°
,fpN2q). �

Overall, we have one criterion (Q6) that our merging operators do not satisfy
in general and an additional one (Q5) where this is a consequence of the demand
of getting a single QCN as result. While for the first problem alternatives may
exist, it seems questionable whether suitable operators can be found which do
not suffer from similar problems caused by the final union step.

Merging operators are often classified into majority or arbitration operators.
We briefly state here without proof that ∆o,max satisfies the notion of an arbi-
tration operator (see (A7) in [15]), while ∆o,

°

is preferable if a majority-based
resolution is desired (see (M7) in [15]).
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4. AN ALGORITHM TO COMPUTE ∆o,fpN q
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Fig. 4. The solution of ∆
°
,
°

pN q according to Alg.1.

4 An Algorithm to Compute ∆o,fpN q

In this section, we describe an algorithm to compute ∆o,fpN q. While the time
complexity is still exponential in the worst-case, the algorithm is based on the fol-
lowing two notions in order to significantly improve its performance in practice,
in particular when the input QCNs are rather close to each other: (1) candi-
date scenarios are considered in order of increasing distance to N as given by
do,f
SØN ps,N q, and (2) the expensive consistency checking is delayed as long as

possible and does not have to consider individual scenarios. The generation of
scenarios in order of increasing distance is based on a set of relax functions. The
function relaxCpC, dCq yields the relation consisting of all base relations which
have minimal distance dC for dC ¥ 0 to a base relation in constraint Cij .

relaxCpCij , dCq �

"
b P BC | min

b1PCij

dBØBpb, b
1q � dC

*
(7)

Based on it, the function relaxNopN, dN q yields a set of networks in which
constraints Cij have been changed using relaxC with parameter eij so that
aggregation with o over eij yields dN .

relaxNopN � pV,Cq, dN q � (8)"
N 1 � pV,C 1q | C 1ij � relaxCpCij , eijq ^ o

1¤i,j¤m
eij � dN

*

14
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Algorithm 1 Merging algorithm

procedure ∆o,fpN q
1: S Ð pV,Cq with all Cij � H
2: dN Ð 0; consistentÐ false
3: repeat
4: RÐ relaxNo,fpN , dN q
5: for all pN 1

1, ...N
1
nq P R do

6: I Ð
�n

i�1N
1
i

7: if @i, j : Cij � H holds for I then
8: S Ð S Y I
9: if consistentpIq then consistentÐ true end if

10: end if
11: end for
12: dN Ð dN � 1
13: until consistent
14: return S

Hence, each scenario s P xxQCNyy is a scenario of a network in relaxNopN, dN q
if and only if doSØN ps,Nq � dN .

The function relaxNo,fpN , dN q then yields a set of modified input sets
where each modified network Nk has been modified using relaxNopNk, ekq such
that the ek are aggregated with f to dN .

relaxNo,fpN � pN1, N2, ...Nnq, dN q � (9)"
pN 1

1, ..., N
1
nq | N

1
k � relaxNopNk, ekq ^ f

1¤k¤n
ek � dN

*

Given this set of relax functions the basic version of our algorithm proceeds as
follows (see Algorithm 1): The outer loop increases dN and considers scenarios s
with do,f

SØN ps,N q � dN . The algorithm stops when there is at least one consistent
scenario among these. All scenarios are collected in the QCN S which in the end
will contain the merging result. To find the scenarios with do,f

SØN ps,N q � dN , the
following happens inside the outer loop: Relaxed input sets are generated with
relaxNo,fpN , dN q for the given dN . For every element N 1 � pN 1

1, ...N
1
nq of the

resulting set, the algorithm takes the intersection over all N 1
k. It can be shown,

that do,f
SØN ps,N q � dN holds for a scenario s if and only if s is a scenario of one

of the networks I generated in this inner loop. Hence, when the intersection does
not contain empty constraints (which would mean it does not have scenarios at
all), we add all scenarios of I to S through the union operation in line 8. In
addition, it is checked whether I is consistent using standard QSR techniques.
If consistent, we know that we have found at least one consistent scenario and
the algorithm will stop after all remaining tuples in R have been processed (see
line 5).

Fig. 4(a) shows an example of employing Algorithm 1 to compute ∆
°
,
°

for
merging the QCNs N1 to N3 from Fig. 1. The resulting network contains 64
scenarios, six of them consistent (for comparison the input QCNs have 2187, 6,
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and 18 scenarios). The minimum distance is three (four inconsistent scenarios)
and the maximum distance is four. Two of the consistent scenarios (Figs. 4(b)
and 4(c)) have distance four, the other four consistent scenarios with distance
¡ 4 result from the final union step (e.g. Fig. 4(d)).

5 Conclusions

We have introduced a family of distance-based operators for merging qualitative
spatial information from different sources given in the form of qualitative con-
straint networks. The operators are relation-based in the sense that they treat
every relation as an independent piece of information that may affect the result
and can be applied to inconsistent input networks. We analyzed to which degree
the operators satisfy the previously established rationality criteria. Deviations
from the criteria are partially due to the fact that QCNs cannot express all
disjunctions of scenarios without leading to additional scenarios. Nevertheless,
alternatives need to be evaluated as part of future research. We also presented an
algorithm for computing the merging result by incrementally relaxing the input
networks and delaying expensive consistency checking as long as possible in or-
der to increase the average-case efficiency compared to a naive implementation.
The next step is to perform an experimental evaluation in which the algorithm
is applied to real integration problems.
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