
ARMO: Adaptive Road Map Optimization for Large Robot Teams

Alexander Kleiner*, Dali Sun* and Daniel Meyer-Delius* ∗

Abstract
Autonomous robot teams that simultaneously dis-
patch transportation tasks are playing more and
more an important role in present logistic centers
and manufacturing plants. In this paper we consider
the problem of robot motion planning for large
robot teams in the industrial domain. We present
adaptive road map optimization (ARMO) that is ca-
pable of adapting the road map in real time when-
ever the environment has changed. Based on linear
programming, ARMO computes an optimal road
map according to current environmental constraints
(including human whereabouts) and the current de-
mand for transportation tasks from loading stations
in the plant. We show experimentally that ARMO
outperforms decoupled planning in terms of com-
putation time and time needed for task completion.

1 INTRODUCTION
Recent trends in logistics and manufacturing clearly indi-
cate an increasing demand for flexibility, modularity, and
re-configurability of material flow systems. Whereas in the
past plant installations have been used for decades without
change, nowadays product life cycles and the demand for
product variety rely on innovative technologies that allow to
flexibly reconfigure automation processes without reducing
their availability. Therefore, distributed and self-organized
systems, such as teams of robots that autonomously orga-
nize transportation tasks, are playing an increasingly impor-
tant role in present logistic centers and manufacturing plants.

Besides the task assignment problem, i.e., allocating robots
to different tasks [14], another challenge in this domain is
to efficiently coordinate the simultaneous navigation of large
robot teams in confined and cluttered environments. In gen-
eral, multiple robot motion planning can be solved by either
considering the joint configuration space of the robots [2] or
by deploying decoupled techniques that separate the prob-
lems of motion planning and coordination [10]. Whereas
the first approach is intractable for large robot teams since

∗* Department of Computer Science, University of
Freiburg, Georges-Koehler-Allee 52, 79110 Freiburg, Germany,
{kleiner,sun,meyerdel}@informatik.uni-freiburg.de

the dimension of the joint configuration space grows linearly
and thus the search space grows exponentially with increas-
ing number of robots, the second approach yields typically
sub-optimal solutions, for example, requiring the robots to
perform larger detours in order to avoid collisions. Road map
planners are a popular method for single robot planning in
static environments [9] that compute during a pre-processing
phase a connectivity graph in free configuration space that is
then used for efficient path planning during runtime. How-
ever, dynamic domains, such as industrial environments, are
more challenging due to permanent changes in the environ-
ment, e.g., due to the placement and removal of objects such
as pallets and boxes, and the co-location of human workers.

In this paper we present adaptive road map optimization
(ARMO) for large robot teams that is capable of adapting the
road map in real time whenever the environment has changed.
In short, the planner computes an optimal road map accord-
ing to current environmental constraints (including human
whereabouts) and the current demand for transportation tasks
from the loading stations. We describe the environment of
the robot with a spatial grid map in which a hidden Markov
model (HMM) is used to represent dynamic changes [11].
From the continuously updated grid map the computation of a
Voronoi Graph [4] is triggered whenever significant changes
have been detected. The Voronoi graph, representing free
space connectivity, is taken as a starting point to extract road
segments (as shown in Figure 1) for the final road map. We
use a Linear Programming (LP) approach for computing the
optimal configuration of these segments with respect to min-
imal travel costs and maximal compactness of the network.
Figure 1 depicts the re-arrangement of the road map after lo-
cal changes of the environment have been detected. We show
experimentally that ARMO outperforms decoupled planning
in terms of computation time and time needed for task com-
pletion.

Kallman et al. used dynamic roadmaps for online mo-
tion planning based on Rapidly-exploring Random Trees
(RRTs) [8]. Velagapudi et al. introduced a distributed ver-
sion of prioritized planning for large teams where each robot
plans simultaneously and re-plans in case a conflict has been
detected [18]. Berg et al. presented a method for road map
based motion planning in dynamic environments [16]. In con-
trast to our method, which learns changes of the environment
online, their approach discriminates between static and dy-

Figure 1: Motivating example: In industrial environments the
map can locally change due to replaced objects, such as pal-
lets, as well as gathering humans. Adaptive road map opti-
mization facilitates the simultaneous navigation planning of
large robot teams while respecting these changes.

namic objects, e.g. walls and robots, in advance, which might
fail when also portions of the map have to be considered as
dynamic. Bellingham et al. proposed a method for solving
the cooperative path planning for a fleet of UAVs [3]. They
formulate the task allocation problem as a mixed-integer lin-
ear program (MILP). Sud et al. developed an approach for
path planning of multiple virtual agents in complex dynamic
scenes [13]. They utilize first- and second-order Voronoi dia-
grams as a basis for computing individual agent paths. While
computational efficient, their method does not focus on opti-
mizing the global efficiency of the multi agent team.

The reminder of this paper is organized as follows. In Sec-
tion 2 the problem is formally described and in Section 3 a
description of the target system is provided. In Section 4 the
algorithm for adaptively recomputing the road map are de-
scribed, and in Section 5 results from experiments are pre-
sented. We finally conclude in Section 6.

2 PROBLEM FORMULATION
We consider the problem of coordinating the execution of de-
livery tasks by a team of autonomous robots, e.g., the trans-
portation of crates containing goods, between a set of fixed
stations S. For each delivery task dkl ∈ D(t) a robot has
to be assigned to finalize the delivery by transporting the
corresponding crate from station k ∈ S to station l ∈ S .
We assume that the assignment problem has been solved
(e.g. as shown in our previous work [14]), and hence re-
strict our attention to the problem of solving the multiple
robot motion planning problem as defined in the following.
Let R = {R1, R2, . . . , Rn} be the set of n robots navigat-
ing simultaneously on a two-dimensional grid map. During
planning, each robot has a start configuration si ∈ Cfree and
a goal configuration gi ∈ Cfree, where Cfree is the subset
of configurations robots can take on without colliding with
static obstacles. Note that in our case these configurations di-
rectly map to locations and orientations on the discrete grid
map which are collision free given the footprint of the robot.

Figure 2: The target system: Robots equipped with convoyer
and RFID reader for autonomously handling transportation
tasks: (a) approaching a station for loading. (b) safe naviga-
tion among humans.

The problem is to compute for each robot Ri ∈ R a path
πi : [0, Ti] → Cfree such that πi(0) = si and πi(Ti) = gi
which is free of collisions with the trajectory πj of any other
robot j 6= i. Note that Ti denotes the individual path length
of robot Ri.

We consider environments with dynamic obstacles such as
pallets and larger crates that might change their locations over
time. Therefore, Cfree is a function of time which we denote
by Cfree(t). Note that we assume that Cfree is static during
each planning cycle.

3 SYSTEM OVERVIEW
Our system is based on the KARIS (Kleinskalige Autonomes
Redundantes Intralogistiksystem) [7] platform developed by
a joint effort of several companies and universities of the “In-
tralogistic Network” in south Germany. The long-term goal
of this project is to deploy hundreds of these elements to solve
tasks in intra-logistics and production, such as autonomously
organizing the material flow between stations. The element
has a size of 50 × 50 cm, a payload of 60 kg, and is capable
to recharge its batteries via contact-less rechargers let into the
ground. Furthermore, it contains a high precision mechanism
for enabling automatic docking maneuvers, either with other
elements or a loading station. Each element is equipped with
a holonomic drive to facilitate docking behaviors and a con-
veyor for loading and unloading crates when docked with a
loading station. The convoyer has an integrated RFID reader
for directly reading from the crates their destination, e.g. the
target station ID, when they are placed on the conveyer.

For the purpose of autonomous navigation the element is
equipped with two SICK S300 laser range finders (LRFs)
mounted in two opposing corners, wheel odometry, and an
inertial measurement unit (IMU). Navigation is based on grid
maps, which are generated from data collected by once steer-
ing a single robot manually through the environment. We
use Monte-Carlo localization [6] with wheel odometry, IMU,
and range readings from the two LRFs for localizing robots
on the grid map. Furthermore, the typical hybrid architec-
ture is deployed consisting of two components, which are a
deliberative planning layer based on the grid map and a reac-
tive safety layer based on LRF data directly. Figure 2 depicts
the demonstration of the system during the Logimat fair in
Stuttgart 2010. At the current stage, the system is capable of

Server

Mehrere Seiten

Robot N

Dynamic
Occupancy Grid

Local Navigation

Local Planner

Road Map

Grid Map

Map
Inconsistencies

Adaptive Road Map
Planner

Localization

Grid
Map

Figure 3: System Overview

safe autonomous navigation in human workspaces for team
sizes of up to four robots.

The work presented in this paper has the goal to extend
the planning system for the simultaneous navigation of large
robot teams in dynamically changing environments. Figure 3
depicts the overall system architecture and modules of the
considered extension. The localization module reports incon-
sistencies between sensor observations and the current grid
map to the Dynamic Occupancy Grid Module which com-
putes an updated version of the grid map [11]. The up-
dated grid map is published to the localization module of each
robot, and also to the Adaptive Road Map Planner (see Sec-
tion 4) that computes a new road map, which is then published
to the local planner of each robot. The local planner computes
then based on the road map a path that is executed by the nav-
igation module. The overview does not contain the mecha-
nism for task allocation, i.e., to assign robots to delivery taks.
In the current system this task is solved by the contract net
protocol [12], however, also more sophisticated approaches,
such as the one presented in our previous work [14] can be
deployed.

4 ADAPTIVE ROADMAP PLANNER
In this section we describe the procedure for computing the
adaptive road map given a dynamic occupancy grid map, a set
of stations s ∈ S, where loc(s) denotes the location (xs, ys)
of station s on the grid map, and a set of delivery tasks D,
where each dkl ∈ D requires the routing of packages from
station k ∈ S to station l ∈ S.

4.1 Computation of the connectivity network
Our goal is to compute a road map that is optimal in terms
of efficiency and compactness for the simultaneous routing
of robots executing delivery tasks. For this purpose we first
compute the Voronoi graph [4] from the dynamic grid map,
which then serves as a basis for computing the connectivity
network C = (V,E) consisting of nodes v ∈ V that cor-
respond either to station locations loc(s) or crossings, and
edges e ∈ E that connect all stations and crossings on the
map. The computation of C is carried out by three steps. First,
we determine for each tuple (i, j) ∈ S ∧ i 6= j the set of al-
ternative paths Aij connecting station i and j on the Voronoi
graph. Second, according to the method described in [5], we

replace each Aij by orthogonal straight lines (either horizon-
tal or vertical) under the constraint that they have to be within
a minimum safety distance to obstacles including the maxi-
mal extent of robots from their rotational center. Third, we
add all straight lines to E while merging parallel lines if they
exceed the double size of the robots. Besides station locations
loc(s), for each crossing line a node is created and added to
V . Finally, we compute for each eij ∈ E the maximal num-
ber of possible lanes wij for this connection according to the
distance to the nearest obstacle, and the time needed to travel
this segment cij according to its length.

4.2 Definition of the LP problem

Based on the connectivity network C, we define our logis-
tics problem similar to the minimum cost flow problem [1],
however, with the difference that the number of lanes in both
directions between two nodes and thus the capacities are vari-
able. The goal is to find a network structure by which pack-
ages are optimally routed between the stations in the network.
At each time there exists a set of simultaneous delivery tasks
dkl ∈ D(t) that require the routing of packages from station
k ∈ S to station l ∈ S . We denote by bkl = b(dkl) the
requested throughput rate, i.e., the amount of packages per
minute that have to be delivered from station k to station l.

Given the connectivity network C, we associate with each
edge a cost cij , the maximal number of lanes wij allowed
in the real world, and the capacity of a single lane connec-
tion uij . Whereas the cost cij expresses the time needed to
travel from i to j, capacity uij expresses the maximal num-
ber of robots that can travel on this connection via a single
lane at the same time without causing congestions. The num-
ber of lanes in both directions between two nodes i and j is
expressed by the decision variables yij and yji, respectively.
For example, yij = 2, yji = 1 denotes a single lane connec-
tion from node j to node i and a double lane from node i to
node j. The quantity wij constraints the set of possible as-
signments to yij and yji according to the space available in
the the real world. For example, if wij = 4, then some of the
possible assignments are (0, 0), (0, 1), (1, 0), (2, 1), (1, 2),
(2, 2), ... In general, it has to be assured that yij + yji ≤ wij .
Note that there exists the same limit in both directions and
thus wij = wji.

The decision variables xklij define the flow assigned to an
edge due to the delivery from k to l. The total flow xij has to
be bigger or equal to zero and below the maximal flow uijyij ,
where uij is the capacity of a single lane and yij the number
of activated lanes.

We associate for each delivery task dkl the requested
throughput b(i) with the respective station nodes i. For each
node i ∈ V , b(i) = bkl if i = k, i.e., vertex i is a source, and
b(i) = −bkl if i = l, i.e., vertex i is a sink. All other nodes
for which b(i) = 0 are functioning as transition nodes. The
problem formulation can then be stated as follows:

Minimize
∑
(i,j)

∑
k

∑
l

cijx
kl
ij +

∑
(i,j)

uijyij (1)

subject to:

∑
j:(j,i)

xklij −
∑
j:(i,j)

xklji =


−bkl(i) (i = k) ∀ i, k, l
bkl(i) (i = l) ∀ i, k, l
0 otherwise.

(2)
yij + yji ≤ wij ∀ (i, j), (3)

xklij ≥ 0 ∀ (i, j), k, l, (4)∑
k

∑
l

xklij ≤ uijyji ∀ (i, j), k, l (5)∑
j:(i,j)

xklji ≤ Cmax (i 6= k ∧ i 6= l) ∀ i, k, l (6)

Equation 1 minimizes over the total travel costs and the phys-
ical space occupied by the road network. Equation 2 enforces
the flow conservation in the network, i.e., the summed flow
from all incoming edges j : (j, i) and all outgoing edges
j : (i, j) has to be equal −bkl if i is a sink, bkl if i is a source,
and zero otherwise. Equation 3, Equation 4, and Equation 5
are constraining the maximal number of lanes, minimal and
maximal flow, respectively. Finally, Equation 6 ensures that
the total flow through crossings does not exceed the maximal
crossing capacity Cmax which depends on the spacial size of
crossings, i.e., how many robots can be located there at the
same time. Note that delivery tasks for which the node oper-
ates as source or sink have no influence on the capacity.

The above formulation can efficiently be solved by linear
programming solvers, such as CPLEX, when defining the de-
cision variables xij , yij by continuous values and rounding
up the yij from which then the road map can directly be con-
structed. Furthermore, we yield for each delivery task dkl

a subset of edges from the road map having positive flow
assignments xklij > 0. These quantities are directly utilized
by the local planner (see Section 3) for extracting individual
robot plans by finding the shortest path on the road map by
the following successor state expansion: For each node i, we
perform random sampling over all outgoing edges weighted
according to their normalized flow values xklij . If there ex-
ists only one edge with xklij > 0 for node i, the edge is ex-
panded directly. Finally, the local navigation module follows
this plan while coordinating locally at crossings with other
robots when needed.

5 EXPERIMENTAL RESULTS
The system has been tested in several different environments.
Figure 4 depicts some of these environments that were used
for the results presented in this paper. The PLANT map has a
size of 51m× 56m, the ASE map a size of 94m× 82m, and
the KNO map a size of 88m×43m. On each map we defined
locations of loading stations: 8 on PLANT, 16 on ASE, and 8
on KNO.

The robot platform shown in Figure 2 has been presented
during the Logimat fair in Stuttgart, 2010, where the task of

(a) (b)

(c)

Figure 4: Grid maps utilized for experiments: (a) the PLANT
map generated from a simulated environment, (b) the ASE
map generated in a real logistic center, (c) the KNO map gen-
erated in a large distribution center.

the robot team was to deliver freshly prepared coffee cups
to visitors waiting at the delivery stations, and to return used
cups back to the coffee kitchen. During this demonstration up
to four robots were continuously running for three days with-
out any interruption. The robots were driving in average four
kilometers per day without causing collisions or deadlocks.
Due to the small team size we utilized for this demonstration a
decoupled planning technique together with the local naviga-
tion module. In the following a comparison with large robot
teams between ARMO and the decoupled technique based
on prioritized planning from Berg and colleagues [15] will
be presented. In prioritized planning, robot trajectories are
planned iteratively after a pre-defined priority scheme. When
planning for the i’th robot trajectories of the i-1 robots that
were planned previously are considered as dynamic obstacles.
Berg and colleagues define the query distance as the distance
for each robot to reach its goal configuration on the shortest
path when ignoring the other robots. In order to minimize
the maximum of arrival times, priorities are assigned accord-
ing to this distance: the longer the query distance the higher
the priority assigned to a robot. The planner is complete un-
der the assumption that start and goal locations of each robot
are so called garage configurations, i.e., configurations that
are not part of Cfree of any other robot. The method effi-
ciently avoids the intractable computation of n! possible pri-
ority schemes, however, requires at least |R| sequential calls
of the motion planner.

We utilized the Stage software library [17] for simulating
large robot teams. In our experiments we used the same navi-
gation software that is used on the real robots together with a
model of our real platform, including the simulation of laser
beams and odometry. One advantage of Stage is that it allows

Map #Rob. Method # C (m/s) CTime (s)
A

SE
20 ARMO 1432 0.47 969

PRIO 2142 0.43 926

50 ARMO 5040 0.37 545
PRIO 10625 0.28 631

100 ARMO 8307 0.3 369
PRIO 16983 0.2 496

PL
A

N
T

20 ARMO 1471 0.42 628
PRIO 1346 0.38 610

50 ARMO 5563 0.34 426
PRIO 11601 0.25 481

100 ARMO 15145 0.22 383
PRIO 107700 0.21 874

K
N

O

20 ARMO 506 0.38 1383
PRIO 5638 0.35 1346

50 ARMO 2951 0.31 815
PRIO 70799 0.16 1371

100 ARMO 7729 0.29 513
PRIO 102836 0.11 1167

Table 1: Comparing prioritized planning (PRIO) with adap-
tive road map optimization (ARMO).

to build simulation worlds directly from grid maps that were
generated from real environments. For the following experi-
ment we used the grid maps shown in Figure 4.

We generated 100 delivery tasks for each map that were
handled by 20, 50, and 100 robots during different runs. Ta-
ble 1 provides the results from comparing prioritized plan-
ning (PRIO) with adaptive road map optimization (ARMO)
on different maps with different numbers of robots. We mea-
sured the number of conflicts (C) of the optimal path in Cfree
with trajectories of the other robots. In the case of ARMO
these were the situations in which a robot had to wait for
other robots before entering a segment, and in the case of
prioritized planning these were the situations were robots had
to plan around a conflicting path of a higher prioritized robot.
Furthermore, we measured the average velocity of all robots
(avg. v) and the total time needed by all robots to complete
the task (CTime). As can be seen from Table 1 and Fig-
ure 5, while leading to slightly longer completion times for
small robot teams, ARMO notably reduces this time when
the team size increases. This is also reflected by the num-
ber of conflicts and the average velocities of the robots. Pri-
oritized planning minimizes the final completion time after
a heuristically determined order, whereas LP-based planning
in ARMO minimizes the global flow of robots, leading to a
more efficient distribution of the vehicles over time.

The computation times of both methods were measured
in seconds on an Intel DualCore running at 2.13 GHz. We
measured for prioritized planning with 50 robots an average
computation time of 0.03± 0.03 on PLANT, 0.05± 0.04 on
ASE, and 0.1±0.17 on KNO, and with 100 robots 0.1±0.08
on PLANT, 0.13 ± 0.08 on ASE, and 1.1 ± 0.7 on KNO.
ARMO required for the road map computation 0.9 + 0.6 on
PLANT, 0.82+0.84 on ASE, and 1.2+10.3 on KNO, where
the first number denotes the time for extracting the fully con-
nected graph, and the second number the time for solving the

ASE KNO

C
o

m
p

le
ti

o
n

 T
im

e
[s

]

20 PRIO

20 ARMO

50 PRIO

50 ARMO

100 PRIO

100 ARMO

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

PLANT

Figure 5: Comparing the CTime of prioritized planning
(PRIO) and adaptive road map optimization (ARMO).

LP problem. Within each planning cycle ARMO needed in
average only 0.002 on PLANT, 0.004 on ASE, and 0.01 on
KNO for any number of robots. In summary, the number of
robots has nearly no effect on the computation time needed
by ARMO, however, we measured a significant growth of the
time needed by prioritized planning. On the contrary, ARMO
requires much more time for computing the road map when
the environment is very large and complex, such as the KNO
map, which however needs only to be performed at low fre-
quency, i.e., when the environment was significantly changed.

We also evaluated ARMO with respect to dynamic changes
of the grid map. For this purpose we modified the ASE map
step wise by adding successively obstacles that were updated
in the map by the dynamic occupancy grid approach. Figure 6
depicts two snapshots taken at successive points in time. As
can be seen, the road map adjusts to the changes at the cost of
higher completion times. For 100 robots the completion time
increased from 378s (no modifications) to 410s (first modifi-
cation) and 420s (second modification). We performed sev-
eral more experiments for evaluating the adaptivity of our ap-
proach. Also after changing the distribution of delivery tasks
between the stations, the road map dynamically adjusted by
removing or adding links between the stations. Note that in
this case only the LP solver is restarted without re-computing
the connectivity network C.

6 CONCLUSION
We proposed an adaptive road map planner based on a lin-
ear programming formulation which can be used for motion
planning of large robot teams in dynamically changing en-
vironments. Experimental results have shown that ARMO
leads to more efficient multi-robot plans than decoupled tech-
niques while keeping the demand for computational resources
low. In fact, the computation time needed by ARMO depends
mainly on the complexity of the environment rather than on
the number of robots. We believe that the computation of the
road map could further be improved by splitting the map into
independent areas that are interconnected via fixed crossing
points similar to the stations. Then, only a part of the road
map would have to be recomputed after local changes have
been detected.

(a) (b)

(c) (d)

Figure 6: Adjustment of the road map according to dynamic
changes in the map (a,c) source of disturbance and (b,d) re-
sulting modifications reflected in the road map.

Furthermore, we have shown that ARMO is adaptive to dy-
namic changes in the map, i.e., the road map is reconstructed
accordingly, whereas changes in the map are detected by dy-
namic grid maps, an extension of conventional grid maps.

We conducted several more experiments and conclude that
our method is capable to efficiently solve a wide variety of
problems. One restriction of our current implementation is
the fact that our road map planner only returns a solution
when the overall throughput demanded by the stations can
be routed given the environmental constraints, i.e., does not
exceed the capacity of the network. One future extension will
be to introduce priorities for deliveries and to construct the
network from a subset of tasks sampled according to their
priority in case the requested throughput is higher than the
capacity of the network. Furthermore, when a larger num-
ber of real robots is available, ARMO will be used with the
real platform deployed in one of the logistic centers of our
partners.

References
[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Or-

lin. Network flows: theory, algorithms, and applications, vol-
ume 1. Englewood Cliffs, N.J.: Prentice Hall, 1993.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A
distributed representation approach. International journal of
robotics research, 10:628–649, 1991.

[3] J.S. Bellingham, M. Tillerson, M. Alighanbari, and J.P. How.
Cooperative path planning for multiple uavs in dynamic and
uncertain environments. In Decision and Control, 2002, Pro-
ceedings of the 41st IEEE Conference on, volume 3, pages
2816 – 2822 vol.3, 2002.

[4] H. Choset, , and Burdick J. Sensor-based exploration: The hi-
erarchical generalized voronoi graph. The International Jour-
nal of Robotics Research, 19(2), 2000.

[5] Xavier Décoret and François X. Sillion. Street Generation for
City Modelling. In Architectural and Urban Ambient Environ-
ment, Nantes France, 2002.

[6] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo
localization for mobile robots. In Proc. of the IEEE Int. Conf.
on Robotics & Automation (ICRA), 1998.

[7] H. Hippenmeyer, K. Furmans, T. Stoll, and F. Schönung.
Ein neuartiges Element für zukünftige Materialflusssysteme.
Hebezeuge Fördermittel: Fachzeitschrift für Technische Lo-
gistik, (6), 2009.

[8] M. Kallman and M. Mataric. Motion planning using dynamic
roadmaps. In Proc. of the IEEE Int. Conf. on Robotics & Au-
tomation (ICRA), volume 5, pages 4399–4404, 2004.

[9] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars.
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. Robotics and Automation, IEEE Trans-
actions on, 12(4):566 –580, August 1996.

[10] S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/.

[11] D. Meyer-Delius, J. Hess, G. Grisetti, and W. Burgard. Tempo-
rary maps for robust localization in semi-static environments.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS), Taipei, Taiwan, 2010.

[12] Reid G. Smith. The contract net protocol: High-level com-
munication and control in a distributed problem solver. IEEE
Transactions on Computers, C-29(12):1104–1113, 1981.

[13] A. Sud, E. Andersen, S. Curtis, M.C. Lin, and D. Manocha.
Real-time path planning in dynamic virtual environments us-
ing multiagent navigation graphs. Visualization and Computer
Graphics, IEEE Transactions on, 14(3):526 –538, 2008.

[14] D. Sun, A. Kleiner, and C. Schindelhauer. Decentralized hash
tables for mobile robot teams solving intra-logistics tasks. In
Proc. of the 9th Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), pages 923–930, Toronto,
Canada, 2010.

[15] J.P. van den Berg and M.H. Overmars. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS),
pages 430–435, 2005.

[16] J.P. van den Berg and M.H. Overmars. Roadmap-based motion
planning in dynamic environments. Robotics, IEEE Transac-
tions on, 21(5):885–897, 2005.

[17] R. Vaughan. Massively multi-robot simulation in stage. Swarm
Intelligence, 2(2):189–208, 2008.

[18] P. Velagapudi, K. Sycara, and P. Scerri. Decentralized priori-
tized planning in large multirobot teams. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 4603–4609. IEEE.

