Re-organization in Warehouse Management Systems

Huib Aldewereld, Frank Dignum, and Marcel Hiel
Utrecht University - Institute of Information and Computing Sciences
Utrecht, The Netherlands, {huib, dignum, hiel}@cs.uu.nl

Abstract

Warehouse Management Systems (WMS) are tradi-
tionally highly optimized to a specific situation and
do not provide the flexibility required in contem-
porary business environments. Agents have been
advocated for their flexible and adaptive nature, but
require organizational structure to ensure that the
system performs as required. Due to changes in the
environment a different organization may be more
productive making re-organization essential. In this
paper, we present an architecture and methodology
for easing the redesign of a WMS. The method
applied is based on heuristics for re-organization
given the environment, the main objectives of the
organization and the current situation.

1 Introduction

Warehouse Management Systems (WMS) are traditionally
centralized, monolithic software systems that are highly opti-
mized for a specific situation. These systems thus guarantee
very efficient operation given some fixed constraints. How-
ever, these systems usually have trouble to achieve flexibil-
ity (such as handling priority orders) and robustness (such as
machine failures). In modern WMS a good balance between
efficiency, flexibility and robustness is of utmost importance.

Agents were introduced to tackle the problem of flexibil-
ity (e.g., see [2; 7]). However, only introducing agents is not
sufficient. An argument against the usage of agents is that
the control is hard to guarantee and that therefore the require-
ments of robustness and efficiency cannot be guaranteed. The
main problem is that efficiency, flexibility and robustness are
aspects that pertain to the system as a whole. Moreover, we
cannot optimize all three at the same time, but have to bal-
ance the three aspects (e.g., more robustness usually means
less efficiency). Thus, when an agent approach is used it does
not mean that each agent has to manage the balance between
the three aspects. However, the distributed nature of this type
of solution makes it very hard to guarantee an overall bal-
ance between the three aspects. In order to prevent anarchy
and regulate the agents within such a system, we propose to
use agent organizations [6]. An agent organization is used
to specify exactly those aspects of the system that need to be
guaranteed by the agents together. Individual agents can have

their own goals and ways of interacting with other agents.
However, because they are designed to fit the agent organiza-
tion their autonomy is limited by the overall objectives of the
organization. E.g., suppose that we have 4 types of tasks oc-
curring equally frequent and four machines that can perform
all tasks. For efficiency sake we probably want each machine
to specialize in one type of task (which might avoid reset time
etc.). However, for robustness sake we want all machines to
perform all tasks. We could choose a balance of having two
machines perform two tasks such that if one fails the other
takes over and work on that task does not completely halt.
How the machines subsequently divide their tasks they might
decide themselves (using agent based solutions for this situa-
tion).

Unfortunately, although organizations provide structure
and stability for regulating a multi-agent system (MAS), the
environment might change in ways such that the organization
no longer guarantees the right performance. For example, af-
ter the introduction of new hardware or product changes, the
WMS may provide a suboptimal solution. In order to fully
use the flexibility provided by agents and maintain the robust-
ness of an organization, being able to re-organize is essential.

However, in order to perform a successful re-organization,
it should be done at the right moment and changing the or-
ganization in a way to perform better. In this paper we will
show how agent organizations can be used to implement a
WMS and how successful re-organizations can be carried out
in this environment.

The alternative to re-organization is to make the agents
themselves adaptive. The distinctive difference between
adaptive agents and re-organization is that in the organization
the knowledge concerning the global (organization-wide) ob-
jectives is explicit. The advantage of having this knowledge
explicit is that it is easier to adjust when modification is nec-
essary.

This paper is structured as follows: In Section 2 we first
introduce a motivating example. Subsequently we show how
agent organizations are used to control the warehouse in Sec-
tion 3 and which criteria are used to measure its success. In
Section 4 we show how re-organizations can be defined using
change patterns and illustrate how they are used to keep the
organization successful under changing circumstances. We
conclude in Section 5 with some observations on our use case
and future work.

2 Motivating Example Scenario

A warehouse stores and collects products for customer orders.
These products are typically packed and/or placed in boxes
or containers, generally referred to as Transport and Stor-
age Units (TSU). Figure 1 illustrates our example hardware
configuration for a WMS. This figure contains three types of
components, namely miniloads, conveyorbelts and worksta-
tions. The miniloads are storage units where TSUs are kept,
the conveyorbelts are responsible for transporting TSUs be-
tween miniloads and workstations, and the workstations rep-
resent places where operators pick products from TSUs for
fulfilling the orders. TSUs are not kept at the workstations,
but requested from the miniloads when an order arrives and
returned immediately after picking the required amount of
products to fulfill the order. In our configuration, thus, we
have three miniloads, one conveyorbelt and two workstations.
The boxes on the conveyorbelt represent moving TSUs.! The
squares with arrows represent buffers where the direction of
the arrow indicates the direction of movement.

Miniloads Conveyerbelt Workstations

=
J
=
bl
c

Figure 1: Example warehouse configuration

Assume that this WMS performs adequately. However, due
to a successful marketing campaign one particular product
becomes very popular. At a certain point, all components
work at optimal efficiency, however, because of that popular
product the number of orders becomes larger than can be han-
dled per day and therefore the number of outstanding orders
becomes larger and larger. Moreover, because of this delay
customers become unsatisfied due to the long waiting time.

In order to deal with this situation management decides that
the warehouse should be extended, however due to limited
space only two workstations can be added but no miniloads.
As the average miniload is calculated to be able to support
one or two workstations (in processing time), expectations are
that number of orders handled will improve. After placing the
workstations the performance (throughput) increases but not
as much as expected and the number of outstanding orders
still increases.

In the next section we will first describe the basic set-up of
the agent organization that controls the warehouse logistics
and how this supports the balance between efficiency, robust-
ness and flexibility of the WMS. In the rest of the paper we
will show how the changing environment renders the organi-
zation inefficient. In order to determine whether the perfor-

"The color of the TSUs indicates the product family, which is
unimportant in the discussion in this paper.

M handle_order

Order_Manager Order_Picker
“In" “In"
N redisterService, f
getServiceProvider

N getServiceProvider

M replenished
Storage_Manager
i

N registerService

Broker
In

Figure 2: Organization for Planning

mance can be increased, re-organization is to be considered,
which is explained in the sections after that.

3 Agent-organizations in Warehouse
Management Systems

In [6] we showed how agent organizations are used to balance
flexibility, robustness and scalability. Here we only highlight
the most important aspects of this agent organization model.
In our architecture, we use agents to control every component
(thus miniload, conveyorbelt and workstation). Every agent
is responsible for, and optimizes the efficiency of, its compo-
nent. The agent organization structures the interactions be-
tween agents and provides answers to design questions, such
as: who talks to who?, what is the role of the agent within
the organization?, and what are the objectives that this agent
seeks to achieve?

In the remainder of this section, we describe our layered
approach for modeling agents after which we present perfor-
mance indicators that can be used to evaluate a warehouse
management system.

3.1 Layers

Warehouse management systems are typically thought of
in three layers of operation, namely the plant (execution),
scheduling and planning. This distinction in layers is made
to create a separation of concerns which makes it easier to
create a modular design and thereby support decoupling of
the different aspects of the WMS.

This separation is reflected in our model (for details see
[6]) based on the MASQ meta-model [8]. Each of the lay-
ers of the warehouse management system, that is, the plant,
scheduling and planning layers, correspond to a separate in-
teraction space which defines the particular protocols that the
agents use on that layer. Because each space incorporates
its own implemented business rules and interaction protocols
this improves modularity and maintainability.

Planning Space: “Planning is the process of generating
(possibly partial) representations of future behavior prior to
the use of such plans to constrain or control that behavior” [1].
In our domain this means that orders are assigned to be han-
dled by certain components (without an explicit timing). The
interaction necessary for the assignment of orders is mod-
eled as an agent organization using the OperA framework [3;
4].

The social structure of the agent-organization, which spec-
ifies the roles and the relations between these roles, is shown
in Figure 2. The arrows between the roles indicate depen-
dency relations. From the figure it is clear that there is a role
taking care of incoming orders and that the agents fulfilling
the “Order_Picker” role (in our case the workstations) will

Presence | Stock Manag t [Broker Communication

Keeping plant active \ Scheduling Transfer of TSUs \ For Planning

Order_Picker createReplenishCFP
createDeliveryProposal
createReplenishProposal

createDeliveryCFP

registerDeliveryService
requestReplenishProviders
registerReplenishService

requestDeliveryProviders

Storage_Manager
Order_Manager

getNextAction
processAction
isOutgoingTSUScheduled
handleIncomingTSU

handleIncomingMessage getLeadTime
sendTSUPlacementRequest scheduleTSU
sendTSUPlacementReply

Table 1: Planning Capabilities per Goal and Presence

provide the order. In order for the Order_Picker to get the
necessary products for the order they ask the agents fulfilling
the “Storage_Manager” role (in our case the miniloads) to
provide the products from storage. Finally the Broker main-
tains knowledge about which roles exist in the system and
which service(s) they can provide.

Through this organization structure we already convey that
the incoming orders determine the logistics (we did not in-
corporate a product reception role). We also do not connect
the customers directly with the storage manager. This means
that the order picker decides whether an order should be pro-
cessed and never the storage manager. The underlying reason
to model it this way is that the workstations are known to
form a bottleneck. We therefore want those to be in charge
of the workload. If they are optimally used the whole system
performs optimally.

Besides these basic points we can also get information from
the types of dependencies between the roles. There are dif-
ferent types of dependencies possible, each resulting in a
different type of interaction; bidding [Market], delegation
[Hierarchy], and request [Network]. The protocol that is
used between the agents depends on the kind of interaction
type specified in the organization model. In our case, mar-
ket relations are implemented using the Contract Net Proto-
col, and network relations are implemented as request/inform
messaging. The use of market relations and the Contract
Net Protocol as implementation for service requests means
that, given an appropriate bidding mechanism, balance of the
workload of the components is achieved automatically. Thus
we provide for robustness and flexibility within the organiza-
tion structure. Note that the efficiency of the resulting logistic
process depends on the decision mechanisms of the agents.
Another aspect that can not directly be seen from Figure 2 is
that all miniloads can communicate with all workstations, but
they do not communicate amongst each other. This makes
the configuration very robust and flexible, but potentially less
efficient. It also contributes to an quadratic growing amount
of communication.

The required capabilities of the agents on planning are
summarized in table 1.

Scheduling Space: In our domain scheduling encompasses
three goals, namely (1) supplying the hardware with actions
to perform, (2) transferring TSUs from one component to an-
other, and (3) provide information and the means for planning
such that plans can be created and executed. For each of these
objectives a number of capabilities are required. Table 2 lists
the capabilities that we distinguish.

As can be seen from the above, in our (simple) scenario
scheduling has little independence from planning and thus
we do not provide the social structure for this part as it is

Table 2: Scheduling Capabilities per Goal

completely in line and enforcing the objectives of the plan-
ning. Mainly, scheduling ensures that the hardware, at all
times, knows what to do next. After the plant gives a notifica-
tion that the current action is finished, the scheduling compo-
nent of the appropriate agent supplies it with the next action
(getNextAction). Furthermore, scheduling maintains a list of
TSUs in the component, as well as those that are planned for
movement (handleIncomingTSU and isOutgoingTSUSched-
uled). Maintaining this list after executing an action is done
by the processAction capability.

As planning is dependent on information from scheduling,
for example in calculating the time it would cost to process a
TSU (leadTime), scheduling components provide capabilities
to get this information, such as the getlLeadTime capability.
Furthermore, the scheduling components present the capabil-
ities for scheduling a TSU to be processed by the plant.

3.2 Performance

Organizations have to try to achieve three global objectives,
namely efficiency, robustness and flexibility. An organiza-
tional structure maintains a certain balance of these objectives
with respect to its environment. However, if the environment
changes the balance might shift into an unfavorable direction.
The questions are then: what criteria should be measured in
an organization in order to decide to re-organize and when to
change? In general, efficiency can be linked to throughput
(i.e., the amount of orders processed per day). Robustness is
more difficult to measure. It should be measured by resilience
to failure of machines. One can compare the throughput of
the warehouse when one machine fails with the throughput
of the warehouse where it is configured optimally without
that machine. Finally flexibility depends on environment pa-
rameters. In this case one compares the performance of the
warehouse in case all events were known on forehand with
the case where some events happen unexpectedly.

It is clear that the measurements get more and more diffi-
cult when going from efficiency to robustness to flexibility.
E.g., a warehouse might be very robust with respect to failing
miniloads but very sensitive to failing workstations. In prac-
tice one looks at one or more bottlenecks in the warehouse
and checks the robustness with respect to their failure. The
same holds for flexibility. A warehouse might be very good at
handling priority orders as long as the orders required ‘stan-
dard’ products. However, it may perform poorly when the
priority orders require combinations of products that are rare.
Again, in practice one only measures those cases that are ex-
pected.

Because in our scenario overall efficiency of the warehouse
is the most important objective we use simple throughput as
the performance criterium. Figure 3 illustrates a graph of the
throughput for our running example. The figure contains four

160

140

120

100 - A

60 T

T
) Ry
Q
>
{r
Y
*

X

40

Throughput (#TSUs sent)
8
I

20 1

%
NS P PP PO
SR S I SR ST S S

Seconds

Figure 3: TSU Throughput for four workstations

lines, one for each workstation. One of these four lines climbs
in the beginning, but then quickly drops to zero. After plac-
ing the two additional workstation the miniloads are not quick
enough to handle all the requests on time, therefore the fourth
workstation is without work most of the time. It is clear that
the organization is not performing optimally in the new con-
figuration. In the next section we will investigate what type of
changes we can make to the organization in order to improve
the performance.

4 Developing Change Patterns for
Re-organization

It is impossible to know all the changes that may affect a
warehouse in advance. Therefore an exhaustive overview of
changes and corresponding action for adaptation is hard to
provide. However, we can provide some general heuristics for
each of the main warehouse objectives: efficiency, robustness
and flexibility. We will first give these general heuristics and
subsequently describe in more detail how the re-organization
of our scenario is realized.

Efficiency When throughput should be increased first one
finds the bottleneck components. Basically the agents indi-
cate their performance as a percentage of their maximal per-
formance. The agents with the highest percentage will be
the bottleneck. The next step is to add more components of
that type (e.g., in our scenario we will add more worksta-
tions). Now two steps should be taken with respect to com-
munication. First it should be checked whether the compo-
nents fulfilling the same role were communicating amongst
each other already. If not, it should be checked whether they
should start such communication now. This communication
is added when the products leaving one component might be
interesting for another component and thus a kind of “side-
way” logistic step is added.

Finally, it should be checked whether a new role should be
added in between other roles for communication efficiency.
In our case all miniloads communicate with all workstations.
If there are too many of each type each component is all the
time communicating and processing information about possi-
ble work, most of which would be useless. In that case a new
intermediary can be created that makes the decision on divi-
sion of work based on communication with both sides (we

reduce the amount of communication channels from n * m to
n+m).

Robustness When robustness has to be increased we have
to create alternative potential workflows. There are two ways
to create alternative workflows. The first is by adding more
components of a certain type. This is handled in the same
way as indicated above for increasing efficiency. The sec-
ond way to create alternative workflows is to connect more
agents fulfilling different roles. In the extreme case every
agent and associated component is connected to every other
agent/component. Of course many connections are useless,
because the associated components cannot exchange their
products (in a meaningful way), but it guarantees that every
possible workflow is indeed covered by the organization. Our
example warehouse looks very robust, because all miniloads
are connected with all workstations. However, they all use the
same conveyorbelt. To make things more robust separate con-
nections could be used for every pair of miniload and work-
station. The decision to create such alternative paths is made
on the basis of the expected rate of failure of each component
and the costs to create and maintain an alternative path.

Flexibility To increase flexibility the general approach is to

create components with more capabilities. In this way each
component is better capable to handle more situations. In
the warehouse domain a relatively cheap way to increase the
capability of a component is to create an input and output
buffer. This creates the possibility for the component to have
more flexibility on deciding what task to perform next (of
course this is a limited form of flexibility, but an often occur-
ring need). Once components get more capabilities it is also
possible to create more alternative workflows, thus increasing
the robustness of the system.
When components have more capabilities, of course, they
also need to have the decision mechanism on how and when
to use the capabilities. Besides that they need the right infor-
mation to make the right decisions. In general this means that
new communication channels have to be created to get the
information to all the components that need it. In the most
extreme case all components can perform all tasks and ex-
change all possible information with all other components.
This is clearly not very cost efficient, but extremely flexible
and robust also.

In general the organization should balance efficiency, ro-
bustness and flexibility and all the required levels should be
attained at a minimum cost (in terms of resources, communi-
cation, and complexity). A re-organization makes sense if the
added expected gain in performance of the system is higher
than the additional costs. Here “performance” is meant in
a wider sense than just throughput, but rather behaviour of
the system with respect to all criteria over a period of time.
Crudely stated: if the gain in profit by the re-organization
is higher than the costs (calculated over a certain period of
time), re-organization makes sense.

Given these general heuristics for re-organization, we now
turn to the concrete example. We describe how to capture the
experiences of redesign such that they can assist developers
in future projects. In particular, we focus on change patterns.
Change patterns, and design patterns in general, provide for
a structured documentation thereby making the transference

[Concept] Operator I
Role addRole(r;) add role r;
removeRole(name) remove role r;
Dependency — addDependency(d;, 7 jrom,Tt0) ~ add dependency d; between
role 7 fyom and role ¢,

Description

g
-g removeDependency(d;) remove dependency d;
S Objective addObjective(o;, d;) add objective o; to dependency d;
S removeObjective(o;, d;) remove objective o; from dependency d;
Player addPlayer(p;, ;) add player p; to perform role 7;
removePlayer(p,) remove player p;
Agent addAgent(a;) add agent a;
removeAgent(a; remove agent a;
E Presence addPresence(p;, a;, ;) add presence p; to agent a; for layer I;
fﬂ" removePresence(p;, a;) remove presence p; from agent a;
Capability addCapability(cy, pi, a;) add capability ¢, to presence p; of agent a;

removeCapability(cy,) remove capability ¢, from presence p;

Table 3: Change Operators

of knowledge between developers easier. Making this knowl-
edge explicit thereby reduces the time required for (re-)design
and (re-)implementation.

4.1 How to re-organize?

Following a model-based approach, we use models to get
an overview of what can be done. More specific, we use a
model-management approach that was used to describe the
evolution of services [5]. In this model-management ap-
proach, with a model, a complex structure is meant that rep-
resents a design artifact. The usage of models implies manip-
ulation and transformation of one model to another model.
The key idea behind model-management is to develop a set
of algebraic operators that generalizes the transformation op-
erations. In our framework, these operators consist of adding
and removing concepts (and relations) in a model. Opera-
tors are commonly stored in a script. A script is a sequence
of operations that (automatically) transforms one model into
another.

In our approach, we have two types of models, namely the
organizational model, and a model which represents the im-
plementation of the agents. We list the operators for each of
these models in Table 3. These change operators represent all
the possibilities for changing the organization and the agents.
For example, if the organization grows substantially by incor-
porating many more agents, a manager role can be introduced
through the addRole operator. As the organizational model is
a specification, the operators used for this model can be au-
tomated. In other words, a new organizational model can be
automatically derived by applying these operators to the old
model.

Next to the organization model, the agent(s) implementa-
tion should also be changed to reflect the new organization.
However, this might imply giving agents new goals, new pro-
tocols, etc. Because we do not desire to restrict the agent
implementation we only require the agents to incorporate the
concepts in Table 3. Here we provide only guidelines and re-
quirements for how to structure the implementation such that
these operators can be used to precisely determine where to
update the implementation.

Following our model of an agent, we can either add or
remove presences for agents in the different spaces. Fur-
thermore, capabilities can be added to or removed from the
different presences at both planning and scheduling. Note

Name Communication Between Pickers

Change Type Re-organization of planning layer

Trigger A popular product &

nr orders received > nr orders handled (per day)
//Organizational model
addDependency(d6,order_picker,order_picker);
addDependencyObjective(replenish,d6);

//Planning Implementation (for all players p)

Change Template | //to PickerPlannerPresence
addCapability(registerReplenishService,getPlanBody(p).p);
addCapability(createReplenishProposal,getPlanBody(p).p);

//Scheduling Implementation
addCapability(scheduleTSU,getScheduleBody(s),s);

Table 4: Change Pattern Communication Between Pickers

that these capabilities provide only the skeleton functionali-
ties and that they still have to be programmed.

In order to enhance reusability of existing code and thereby
reduce the time to implement the new WMS, the addition of
new capabilities should be done mainly based on the existing
capabilities. That is, the operators that are specified should
preferably exist in other presences, such that the developer
already has an idea of what the capability should do and what
decisions are important for this capability.

4.2 Example Scenario: Communication Between
Pickers

We return to our running example scenario. With the addi-
tional workstations the number of orders handled becomes
larger but the new configuration did not solve the complete
problem. The solution found by the warehouse manufacturer
is that TSUs containing the popular product need not be re-
turned to the miniload but can be send directly between work-
stations if needed. This cuts the traveling time back to the
miniload as well the processing time of the miniload for get-
ting the TSU out of the rack.

This change requires a re-organization where workstations
do not only communicate with the miniloads, but also com-
municate with other workstations in order to request and pro-
pose replenishments. The pattern for this situation is shown
in Table 4. The change template shows the operators needed
for creating the new WMS. The first two operators apply to
the organizational model and can be automatically applied.
The other operators affect the implementation and cannot
be automatically applied. These operators add capabilities
to presences of agents on both the scheduling and planning
space. On the planning space the capability should be added
that pickers register themselves as replenish service providers
at the broker. This causes them to be contacted if compo-
nents (pickers) require replenishment. Furthermore, the cre-
ateReplenishProposal should be added such that pickers can
create proposals to answer to the call-for-proposal (cfp) of
the Contract Net Protocol. In the scheduling space the TSU
should be scheduled to go to a picker instead of back to the
miniload. Therefore the capability should be added to sched-
ule the TSU.

In our change pattern, the capabilities can be reused from
other components. For example, the createReplenishProposal
is already a capability of the miniloads, however, the reason-

160

140

§ 120

§ 100 ‘bf ay—24 *727‘*
e ~ p

% 80 17 #QT/—— Vs \\é¢* o3

a)

é? 60+ \‘/’)\\ / = o =

S 40 /X’ N7 SN = JO o masl Ne

F V4 ~

20

0 L

S S R R DS S S
S & O O & & O LSO
S L LR R S

N

Seconds

Figure 4: TSU Throughput with picker communication

ing to decide whether a TSU is available differs whether it is
in the miniload or in a picker.

The result of applying this change pattern is shown in Fig-
ure 4. As can be seen when comparing Figures 3 and 4,
the fourth workstation increased its throughput by roughly
40 percent, due to the communication between pickers. This
shows that the problem has been solved using the heuristic
mentioned in the beginning of this section. First the manage-
ment located the bottleneck of the old warehouse (the work-
stations) and added more components of that type. This in-
creased performance slightly. Second, the flow of product
TSUs was improved by enabling horizontal communication
between the pickers. Note also that the robustness of the
warehouse went up as well (but only with respect to situa-
tions where workstations fail).

5 Conclusion

Although in Warehouse Management Systems efficiency is of
prime concern it is clear that this has to be balanced with ro-
bustness and flexibility of the system. We have shown how
agent organizations can be used to balance efficiency, robust-
ness and flexibility of a system. However, due to changing
circumstances in the environment an organization might not
keep the right balance over time. Thus re-organization of
agent-organizations is essential in an evolving environment.
In order for the re-organization to have a positive effect we
first have to check which criteria could be used to measure
the performance of the organization with respect to each of
the aspects. For efficiency this is reasonable unique and can
be captured by throughput given a set of resources. Robust-
ness and flexibility have to do with responses to resource and
communication failures and “unexpected” events. So, the cri-
teria should actually be detailed with respect to the kind of
failures and “unexpected” events. We have given some gen-
eral criteria and subsequently described some general heuris-
tics for re-organization scripts based on these criteria. In the
example scenario it is clear that when the throughput of some
of the newly added workstations is almost zero the organiza-
tion is performing badly.

The heuristics that were used to change the Warehouse or-
ganization had an effect on organization efficiencys; if a role
forms a bottleneck, additional players of that role can be
added to distribute the load. This change, however, shifted

the bottleneck to the miniloads, which did not perform op-
timally due to lack of coordination between them. Several
things could have been done to remedy the situation. The
first would be to add additional miniloads, but this is costly
(and not possible given the space limitations in our scenario).
Secondly, a manager role could have been added to the pick-
ers to streamline the distribution of work, and allow for the
reuse of replenishment TSUs among the pickers. This would,
however, add another layer in the organization (complicating
communication by adding an extra step in the chain) while
the decisions to be taken by that manager are relatively sim-
ple (and can be taken by the miniloads themselves). There-
fore the option we chose (which is less drastic and more flex-
ible) was to allow for horizontal communication between the
picker agents. We saw that this change could be captured
by change patters that guide the re-organization process. Of
course, the next steps will be to further investigate heuristics
that guarantee at least a certain amount of improvement in
efficiency, robustness, and/or flexibility while keeping a right
balance given the changing environment. And we will test our
heuristics systematically in many different types of scenarios.

Acknowledgment

This work has been carried out as part of the FALCON project
under the responsibility of the Embedded Systems Institute
with Vanderlande Industries as the industrial partner. This
project is partially supported by the Netherlands Ministry
of Economic Affairs under the Embedded Systems Institute
(BSIK03021) program.

References

[1] Austin Tate in the MIT Encyclopedia of Cognitive
Science. Planning. http://cognet.mit.edu/
library/erefs/mitecs/tate.html.

[2] R.S Chen, K.Y. Lu, and C. C. Chang. Intelligent ware-
housing management systems using multi-agent. Int. J.
Comput. Appl. Technol., 16(4):194-201, 2003.

[3] Virginia Dignum. A Model for Organizational Interac-
tion: based on Agents, founded in Logic. PhD thesis,
Universiteit Utrecht, 2004.

[4] Virginia Dignum and Huib Aldewereld. OperettA:
Organization-oriented development environment. In
LADS2010@MALLOW, 2010.

[5] Marcel Hiel. An Adaptive Service-Oriented Architecture
- Automatically solving Interoperability Problems. PhD
thesis, Tilburg University, September 2010.

[6] Marcel Hiel, Huib Aldewereld, and Frank Dignum. Mod-
eling warehouse logistics using agent organizations. In
CARE’ 10, LNCS. Springer-Verlag, to appear.

[7] Teruaki Ito and S. M. Mousavi Jahan Abadi. Agent-based
Material Handling and Inventory Planning in Warehouse.
Journal of Intelligent Manufacturing, 13:201-210, 2002.

[8] Tiberiu Stratulat, Jacques Ferber, and John Tranier.
MASQ: Towards an Integral Approach to Interaction. In
AAMAS ’09, pages 813-820, 2009.

