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Abstract
This paper defines a new distributed optimiza-
tion problem, called Holonic Constraint Optimiza-
tion Problem (HCOP). It is based on the concepts
of Distributed Constraint Optimization Problem
(DCOP) and Holonic Agents. We present the back-
ground theory and the formalization of a HCOP,
which rather than a mere generalization of a DCOP,
represents a distinct paradigm. We also propose a
meta-algorithm, called HCOMA, to solve this kind
of problem, where several available DCOP algo-
rithms, or even centralized algorithms, can be em-
bedded and integrated in such a way to obtain the
most fitting configuration for each case. In ad-
dition, a motivating application in the oil supply
chain domain is presented in order to illustrate the
new approach.

1 Introduction
Constraint satisfaction and optimization are powerful
paradigms that model a large range of tasks like scheduling,
planning, optimal process control, etc. Traditionally, such
problems were gathered into a single place, and a centralized
algorithm was applied in order to find a solution. However,
problems are sometimes naturally distributed, so Distributed
Constraint Satisfaction (DisCSP) was formalized by Yokoo
et al. in [Yokoo et al., 1992]. Here, the problem is divided
among a set of agents, which have to communicate with each
other to solve it. More recently this paradigm was extended
to constraint optimization by replacing the logical constraints
with valued ones, and it was formalized as a Distributed Con-
straint Optimization Problem (DCOP) [Modi et al., 2006]. In
general, an optimization problem is much harder to solve than
a DisCSP, as the goal is not just to find any solution, but the
best one.

If we analyze some real constraint optimization problems,
we can notice that they own a recursive nature, which is not
currently exploited by the available optimization frameworks
and their associated algorithms. An example of this kind of
problem is the supply chain management. Usually each entity
in the chain is likely to act in its best interests to optimize its
own profit. However, in general, that doesn’t meet the goal
of the optimization of the entire supply chain. On the other

hand, the complexity of the whole chain integration makes
the development of a single centralized system an unfeasible
task. In addition, even if it were possible, the frequent and un-
foreseeable changes in the business environment would make
the results of such a system obsolete and useless very fast.

This paper defines a Holonic Constraint Optimization
Problem (HCOP) as a new paradigm to model distributed op-
timization problems which meet those features. Its main mo-
tivation is modeling such problems through the integration
of solvable subproblems into which they may be naturally
partitioned. Sections 2 and 3 synthesizes the basic concepts
involved in the work, whereas section 4 introduces a prob-
lem of the oil supply chain industry, which was the original
motivation for the proposed model. Section 5 describes and
formalizes the HCOP, and suggests a meta-algorithm, called
HCOMA, for its solution. Section 6 characterizes the prob-
lem presented in section 4 as a HCOP, and shows the advan-
tage of this approach. Finally, the paper concludes with a
summary of the results, and an outlook on future research ac-
tivities.

2 Holonic Agents
MutiAgent System (MAS) has become a natural tool for mod-
eling and simulating complex systems. However, in those
systems there usually exist a great number of entities inter-
acting among themselves, and acting at different abstraction
levels. In this context, it seems unlikely that MAS will be
able to faithfully represent complex systems without multiple
granularities. That’s why holonic systems have attracted the
attention of researchers [Hilaire et al., 2008]. The term holon
was coined by Arthur Koestler [Koestler, 1967], based on the
Greek words holos for whole and on for part. Thus, a holon
is a self-similar or fractal structure that consists of several
holons as components, and is itself a part of a greater whole.
A holon (superholon) is composed of other holons (members
or subholons) and should meet three conditions: (i) to be sta-
ble, (ii) to be autonomous and (iii) to be able to cooperate.
Thus, according to Koestler [Koestler, 1967] a holarchy is a
hierarchy of self-regulating holons that function first as au-
tonomous wholes in supra-ordination to their parts, secondly
as dependent parts in sub-ordination to controls on higher lev-
els, called echelons, and thirdly in coordination with their lo-
cal environment.

Gerber et al. [Gerber et al., 1999] propose three types



of structures for holons, which vary with respect to the au-
tonomy of the members. The moderated group is the inter-
mediary structure, which was chosen for this work due to
its greater flexibility. According to [Hilaire et al., 2008] it
specifies a holonic organization with three main roles: head
role players are moderators of the holon, whereas represented
members have two possible roles: part, whose players be-
long to only one superholon, and multipart, where subholons
belong to more than one superholon. The head represents
the shared intentions of the holon and negotiates them with
agents outside the holon. The remainder of the holon, i.e. the
set of parts and multiparts, is called body.

3 Distributed Constraint Optimization
Problem (DCOP)

DCOP is a formalism that can model optimization problems
distributed due to their nature. These are problems where
agents try to find assignments to a set of variables that are
subject to constraints. It is assumed that agents optimize their
cumulated satisfaction by the chosen solution. This is dif-
ferent from other related formalisms involving self-interested
agents, which try to maximize their own utility individu-
ally. Thus, the agents can optimize a global function in
a distributed fashion communicating only with neighboring
agents, and even in a asynchronous way.

3.1 Formalization
According to [Petcu et al., 2007], a DCOP can be defined as
a tuple (A, V, D, F ) where :

• A = {a1, . . . , an} is a set of n agents,
• V = {v1, . . . , vn} is a set of n variables, one per agent,
• D = {D1, . . . , Dn} is a set of finite and discrete domains

each one associated with the corresponding variable,
• F = {f1, . . . , fm} is a set of valued constraintsfi, where

fi : Dα1
× . . .×Dαk → R, αk ∈ {1 . . . n}

The goal is to find a complete instantiation V ∗ for all the
variables vithat maximizes the objective function defined as

F =
∑
i

fi

3.2 Available Algorithms
The main complete algorithms developed for DCOP are:

ADOPT It is a backtracking based bound propagation
mechanism [Modi et al., 2006], which operates completely
decentralized, and asynchronously. Its drawback is that it
may require a very large number of small messages, thus pro-
ducing considerable communication overhead.

OptAPO It is a hybrid between decentralized and central-
ized methods [Mailler and Lesser, 2004]. It operates as a co-
operative mediation process, where agents designated as me-
diators centralize parts of the problem in dynamic and asyn-
chronous mediation sessions. Message complexity is signifi-
cantly smaller than ADOPT’s. However, it may be inefficient
with some mediators solving overlapping problems. Further-
more, the dynamic nature of the mediation sessions make it

impossible to predict which part of the problem will be cen-
tralized.

DPOP It is an algorithm based on dynamic programming
[Petcu and Faltings, 2005] as an evolution of the DTREE al-
gorithm [Petcu and Faltings, 2004] for arbitrary topologies
even with cyclic graphs. It generates only a linear number
of messages, which, however, may be large and require large
amounts of memory, up to space exponential. Therefore it
was extended later, and a new hybrid algorithm called PC-
DPOP was developed [Petcu et al., 2007], that uses a cus-
tomizable message size and amount of memory.

4 Motivating Scenario
As discussed in the introduction, an example of actual dis-
tributed optimization problem with a recursive organization
is the supply chain management. Let us consider an oil com-
pany, which may be a single verticalized petroleum enterprise
or a set of cooperating companies of the oil business. That
enterprise system can purchase from the spot market (SM),
which satisfies any extra demands of crude oil and its deriva-
tives at higher prices. In the same way, SM can buy any ex-
ceeding inventories of those items at lower prices. A holonic
model can be built according to geographical criteria, taking
into account the transport integration. Thus there is a global
holon, which comprises several continent holons, which are
in their turn made up of region holons. These last holons may
contain subholons like refineries, which are responsible for
the production of oil derivative products, distribution termi-
nals, which store those products, and oil extraction platforms,
that yield crude oil (raw material). All the areas are connected
by transportation modals, like ships and pipelines, and each
area owns a specific logistic entity, which is responsible for
planning the transportation of products.

In general, the refineries own their specific centralized op-
timization system for production planning, whereas the logis-
tics of each echelon also has its respective optimization sys-
tem for the corresponding transport planning. However, the
different systems are not conveniently integrated to allow a
global optimization. Figure 1 depicts the holonic echelons of
this problem [Marcellino and Sichman, 2010].

5 Holonic Constraint Optimization Problem
(HCOP)

Some distributed constraint optimization problems have a hi-
erarchical and recursive structure, which is called holarchy.
That organization is characterized by entities with great co-
hesion with respect to their fellows, but only a coupling re-
lationship with their parents and childs along the hierarchy.
Therefore, that kind of modeling allows that the optmization
problem may be partitioned into a set of smaller optimiza-
tion problems, which, although not independent from each
other, present such a low coupling level that enable some par-
allelism. In addition it makes it easier to tackle the complex-
ity of the whole system, which is modeled through a simpler
model that repeats itself recursively throughout the complete
model.



Figure 1: Diagram of an oil supply chain holonic model

5.1 Description

The HCOP consists of a set of agents that are called holons.
Those holons are distributed into different abstract levels
which are named echelons. By definition, a holon contains
other holons (its subholons) and is part of another holon
(its superholon). However, the most fundamental echelon
(η = 0) comprises only atomic holons, i.e., a conventional
agent that doesn’t contain any other. Each holon is respon-
sible for a variable. In the case of the atomic holon, it is
a decision variable, which is an independent variable in the
same sense of a DCOP variable. On the other hand, each
holon belonging to a higher echelon (η > 0) is associated
with an emergent variable, which is dependent on the inter-
nal variables of that holon, i.e., the variables associated with
its subholons. Such dependency is specified by an emergent
function.

The holonic organization adopted in this work classifies the
subholons into 2 roles : head, which is unique for each holon,
and part, which may be one or more. Here we don’t consider
the multipart role, as it will be seen later. It is also assumed
that the head holons are atomic in all the echelons, for the
sake of the model elegance, avoiding a recursive overload of
that kind of holon as η increases. Due to the distinctive be-
havior of the head holon, which is responsible for the com-
munication with the outside world, it is natural to set it apart
from the remainder of the holon, which comprises all the part
holons and is called body.

The internal strong cohesion of the holons, and the less
intense coupling between a holon and its superholon or sub-
holon, make it possible to view a HCOP as a partition of cou-
pled optimization problems (OPs). Basically each holon may
map to a corresponding OP.

5.2 Formalization
The HCOP is formalized as a tuple (H, R, V, D, E, F )
where :

• H = {H0, . . . , Hηmax}, where ηmax is the highest ech-
elon, Hη = {hη1, . . . , hηNη} is the set of holons of the
echelon η, H0 is the set of atomic agents h0i of the fun-
damental echelon, and Hηmax = {hηmax1} contains a
single holon (global holon);

• R = {r1, . . . , rR} is the set of relations between the
holons, where riis one of the two primal relations :

– headOfη : H ′η → Hη+1

– partOfη : H ′η → Hη+1

where η ∈ N, η < ηmax, H
′
η ⊂ Hη

Other important relations derived from these are :
– subholonOfη : Hη → Hη+1, η < ηmax, where
subholonOfη ≡ headOfη ∪ partOfη

– superholonOfη : Hη → Hη−1, η > 0, where
superholonOfη ≡ subholonOf−1η

• V = {V0, . . . , Vηmax}, where Vη = {vη1, . . . , vηNη} is
the set of variables of echelon η (a variable per holon);

• D = {D0, . . . , Dηmax}, where Dη = {Dη1, . . . , DηNη}
is the set of discrete and finite domains associated with
each variable of echelon η;

• E = {E1, . . . , Eηmax}, Eη = {Eη1, . . . , EηNη} is the
set of emergence functions of echelon η (one per holon,
but the atomic), Eηi : Dη−1α1 × . . . × Dη−1αBηi →
Dηi, where Bηi is the body size of the holon hηi, so that

vηi = Eηi

(
vη−1α1

, . . . , vη−1αBηi

)
, where the domain

is the cartesian product of the internal variables of holon
hηi, and vηi its emergent variable;

• F = {F0, . . . , Fηmax}, and Fη = {Fη1, . . . , FηNη},
Fηi = {fηi1, . . . , fηiMηi} is the set of Mηi val-
ued constraints between the members of holon hηi,
and fηij : Dη−1α1 × . . . × Dη−1αMηij → R,
whose domain is the cartesian product of the Mηij

variables{vη−1α1 , . . . , vη−1αMηij }, which is a subset of
the set of internal variables of holon hηi.

The goal is to find a complete instantiation V ∗ for all vari-
ables vηi that maximizes the objective function defined as

F =
ηmax∑
η=0

Nη∑
i=1

Mηi∑
j=1

fηij (1)

That definition reflects the holonic feature that there is no
direct constraint f between two part subholons belonging to
different superholons.

Since each holon hηi is responsible for an emergent vari-
able vηi via its head agent, if it is taken into account the emer-
gence function Eηi, it is possible to say that the agent head is
connected by an n-ary constraint cηi with all the members of
its holon, so that the following equation must be true :

vηi = Eηi

(
vη−1α1

, . . . , vη−1αBηi

)
(2)



5.3 Holonic Constraint Optimization
Meta-Algorithm (HCOMA)

As already said, a HCOP can be seen as a holarchy whose
holons may map to corresponding OPs. Each of these prob-
lems may be represented by a DCOP, or a centralized OP
in the case of a holon with greater internal cohesion. Thus
HCOP is a distributed OP, which may be modeled as a hybrid
network of distributed and centralized optimization subprob-
lems. Therefore, to take advantage of that feature, it is more
appropriate a meta-algorithm for a HCOP, rather than a single
algorithm. Thus, it is possible to embed into the more abstract
framework different DCOP algorithms, or centralized opti-
mization algorithms, in such a way to obtain the most fitting
possibility for each case.

Since the holonic organization which was considered in
this work does not include multipart holons, the macro graph
made up of the several holons has a tree structure. In fact,
its a connected graph without cycles. Therefore, it was de-
veloped a meta-algorithm, which was based on the DTREE
algorithm [Petcu and Faltings, 2004]. Such a choice was
due to the nature of that algorithm, which is free of back-
tracking, and hence evolves ininterruptedly upwards and then
downwards, in a way compliant with the necessary indepen-
dence between the optimization subproblems of the HCOP.
On the other hand, algorithms like Adopt [Modi et al., 2006]
present a behavior which would interweave the holarchy ech-
elons during the solving process and make that decoupling
very hard.

At a first glance the exclusion of multipart holons seems an
oversimplification, which aims at the reduction to a tree struc-
ture. However, in the same way DTREE evolved to DPOP
(vide subsection 3.2) by arranging the relevant graph as a
pseudotree, what is possible for any graph, it is straightfor-
ward to adapt HCOMA accordingly. Thus that enhancement
would include multipart holons and support a general topol-
ogy, keeping the backtracking free trait.

The proposed meta-algorithm has 3 phases, which are de-
scribed in Algorithm 1. It is assumed that a generic and trust-
worthy optimization algorithm, distributed or centralized, is
available in the scope of each pertinent holon. However, it
must respect the protocol specified in Algorithm 2. For the
sake of simplicity and readability, it was used another derived
relation, as well as the predicate head, which are defined as :

headOfPartη ≡ headOfη(superholonOfη) : H ′η → H ′′η

head(hηi) := ∃hη+1 k ∈ Hη+1|hηi = headOf(hη+1 k),
where η ∈ N, η < ηmax, H

′
η ⊂ Hη, Hη = H ′η ∪H ′′η

The phase 1 is a bottom-up process, which starts from the
atomic holons and propagates upwards up to the global holon.
In phase 2 the global holon owns the maximum utilities asso-
ciated with each value of its emerging variable. That means
it has the maximum values of the global objective function
for each value of its variable. Then it will choose the highest
value, which will represent the optimum value of the global
objective function, whereas the associated value of its vari-
able is the first assignment of the solution. Finally, in phase 3
the global holon will send the index of that solution, regard-

Algorithm 1 HCOMA - Holonic Constraint Optimization
Meta-Algorithm

1: HCOMA(H, R, V, D, E, F )
2: Phase 1: Utility Computation
3: for all h0i ∈ H0 and not head(h0i) do
4: for all ind ∈ {1, . . . , | D0i |} do
5: BestUtil0i[ind]← 0
6: end for
7: send READY_msg(BestUtil0i, i) to

headOfPart0(h0i)
8: end for
9: return

10:
11: READY_msg_handler(BestUtil, j){by holon hη−1 k}
12: hη i ← superholonOfη−1(hη−1k)
13: for all ind ∈ {1, . . . , | Dη−1j |} do
14: BestUtilBodyη i[j][ind]← BestUtil[ind]
15: end for
16: if READY_msg received from hη−1 l,∀l, hη−1 l =

partOfη(hηi) then {received from all its parts}
17: for all I ∈ {1, . . . , | Dηi |} do
18: c←constraint(dηiI = Eηi(vη−1α)){dηiI ∈ Dηi}
19: call OptAlgthηi(c,BestUtilBodyηi, I)
20: end for
21: end if
22: return
23:
24: UTIL_msg_handler(BestUtil, ind){by holon hη−1 k}
25: hη i ← superholonOfη−1(hη−1k)
26: BestUtilηi[ind]← BestUtil
27: if UTIL_msg received for all ind ∈ {1, . . . , | Dηi |}

then
28: if η < ηmax then
29: send READY_msg(BestUtilηi i) to

headOfPart(hηi) {to its head}
30: else {Global Holon}
31: Phase 2: Global Optimization
32: ind∗ ← argmaxind(BestUtilηi[ind])
33: OptimumUtil← BestUtilηi[ind

∗]
34: v∗ηi ← dηi ind∗
35: Phase 3: Termination
36: for all hη−1 k = partOfη(hηi) do
37: send VALUE_msg(ind∗) to hη−1 k
38: end for
39: end if
40: end if
41: return
42:
43: SOLUTION_msg_handler(SolInd, UpperInd){by

holon hηi}
44: SolIndηi[UpperInd]← SolInd
45: return
46:
47: VALUE_msg_handler(UpperInd∗){by holon hηi}
48: ind∗ ← SolIndηi[UpperInd

∗]
49: v∗ηi ← dηi ind∗{dηi ind∗ ∈ Dηi}
50: if η > 0 then
51: for all hη−1k = partOfη(hηi) do
52: send VALUE_msg(ind∗) to hη−1 k
53: end for
54: end if
55: return



Algorithm 2 Optimization Algorithm of holon hη i
1: OptAlgthη i(ctrη i ind, BestUtilBodyη i, ind)

Require: - n-ary constraint ctrη i ind
-BestUtilBodyη i[k][l] corresponding to each dη−1k l ∈
Dη−1 k associated with each subholon hη−1 k of hη i

Ensure: - the maximum BestUtil correspond-
ing to value dη i ind ∈ Dη i such that

BestUtil ← argmaxl(
Mηi∑
j=1

fηij(dη−1 k l) +

+
∑
k

BestUtilBodyηi[k][l])

- the index SolIndη−1 k of each variable vη−1 k of the
subholons of hη i, corresponding to the solution.

2: executes the optimization algorithm of holon hη i
3: send UTIL_msg(BestUtil, ind) to headOfη(hη i)
4: for all hη−1 k = partOf(hη i) do
5: send SOLUTION_msg(SolIndη−1 k, ind) to hη−1 k
6: end for
7: return

ing its variable domain, to all its parts via a VALUE mes-
sage. By using that index, each part subholon will determine
its own solution value, and recursively will send its respec-
tive index to its parts by VALUE messages. This phase is
a top-down process, which is initiated by the global holon,
propagates downwards down to all the atomic agents, when
the meta-algorithm terminates. Figure 2 outlines HCOMA.
The proof that it is sound and complete can be obtained in a
straightforward way, as it will be shown next.

Figure 2: Outline of HCOMA

Proof of Correctness and Complexity
In any holon of any echelon, its head receives a UTIL mes-
sage for each value of its variable domain. Each of these
utility values is obtained from the execution of the optimiza-
tion algorithm of the superholon, which uses the best utilities
assigned to the domain values of the variables of each part.
Since it is assumed that the distributed or centralized opti-
mization algorithm is correct and terminates properly, if the
best utilities associated with the parts domain values are cor-
rect, it can be concluded that the head will receive the best
utilities for each value of its variable domain. But the atomic

holons of echelon η = 0 own the best utilities for each value
of their domains, for they depend only on themselves or inter-
nal optimization algorithms that are correct. Hence, by induc-
tion, it can be infered that any holon of any echelon will re-
ceive the best utilities for each value of its domain, since there
is no multipart agent, i.e., there are no cycles in the graph
made up of the holons and the constraints between them, and
therefore the utility associated with each holon is considered
only once. Thus, the global holon will choose the best util-
ity for the entire holarchy, and then all the subholons will be
informed and choose its respective domain values associated
with that solution.

Due to its tree structure HCOMA has polynomial time
complexity. As to the number of messages, it inherits the
behavior of DTREE algorithm, which is linear in the number
of agents (here holons) [Petcu and Faltings, 2004].

6 Modeling Example
As mentioned in section 4, the oil supply chain management
is a real candidate problem to be modeled as a HCOP. In
[Marcellino and Sichman, 2010] this problem was modeled
as a DCOP, where the objective function is the total profit in
the whole chain; it is also used a holonic approach: some
holons, like the Transport Planners and the Derivative Pro-
ducers, wrapped centralized optimizers.

In all the levels (echelons) of the supply chain the logis-
tics is the head of each holon i.e., the internal logistics for
the holon refinery or terminal, the regional logistics for the
holon region, and so on, up to the global logistics for the
holon global. Each logistics is responsible for the balance of
products between the suppliers and the clients, and manages
the transportation planning. The supplier role refers to any
entity that provides products to other entity of the chain, such
as a refinery, whereas the client role is played by any entity
which needs these products, such as a terminal. The differ-
ence between availabilty and need of a product represents the
emergent variable of the corresponding holon.

A refinery can produce multiple derivatives, and it does so
according to different production plans, which are character-
ized by processing a definite quantity of a particular type of
crude oil and producing a certain quantity of each resulting
derivative. In addition, each refinery or terminal is respon-
sible for the management of its inventories of each product.
Thus, the decision variables of the model in the basic eche-
lon (η = 0) are the production plan adopted by each refinery
during each period of time, and the inventory level of each
product in each refinery or terminal at the end of each period
of time.

The higher the echelon, the larger the spatial scope of the
corresponding holons. Similarly the higher the echelon, the
longer the period of time considered by the head logistics in
its planning. Thus, the holons result from a spatial and tempo-
ral discretization along growing abstract levels. On the other
hand, the problem comprises different OPs: the production
optimization of each refinery, and the transport optimization
of the logistics in each holon. These latter are associated with
growing echelons, and gradually embody larger geographic
areas and longer planning periods of time. In fact, the inter-



Ref. 1 Ref. 2 Income Cost Profit
Local Optim. Plan B Plan B 5920 629 5291

Holonic Model Plan C Plan C 10080 4162 5918

Table 1: Integrated holonic X Conventional approach

nal logistics is responsible only for a refinery or terminal on
a day-by-day basis, the regional logistics takes care of an en-
tire region with the week as the time unit, and so on up to the
global logistics which focuses on the whole enterprise with a
planning horizon of semesters or even years.

Let us consider a case study, which is simple but represen-
tative. It includes all the relevant entities of the chain and
a significant set of products. It contains one continent with
three regions, and one overseas SM. The first two regions
comprise one refinery and one terminal, whereas the third re-
gion contains only one oil extraction area. Inside the regions,
entities are connected by pipelines, but regions and SM are
connected to each other by ships. The refineries produce three
derivatives (gasoline, diesel and naphtha) by processing three
types of crude oil (pet1, pet2 and pet3). The refineries can
operate according to three production plans, which are spe-
cific to each refinery: plan A, plan B, and plan C. Although it
is not a real situation, it is representative and fits for a proof-
of-concept, which is accomplished by comparing the holonic
model with a usual approach to manage the oil supply chain,
which is based only on local optimization. The results of ap-
plying both approaches are presented in Table 1.

The local optimization approach recommends plan B in re-
fineries 1 and 2, since it leads to the highest supposed profit
(5291). On the other hand, the holonic model presents as op-
timum choice to adopt production plan C in both refineries,
with a total profit of 5918. Such a discrepancy comes from
the myopia of the local approach, which is unable to consider
aspects of higher echelons, such as the additional profit re-
sulting from sales of surplus products to SM, or the penalties
incurred by not having product enough to supply all customer
demands. Therefore, the proposed model generates a global
gain of about 12 % on account of the whole chain integration.

7 Conclusions and Future Work
In this paper, we have defined a Holonic Constraint Optimiza-
tion Problem (HCOP), which combines the distributed opti-
mization constraint approach with the holonic multi-agent ap-
proach to take advantage of the best of both worlds. On one
hand, since the constraint model provides a tight integration
of the involved entities, it allows optimization. On the other
hand, the holonic approach makes it possible to represent the
intrinsic recursive nature of a category of optimization prob-
lems, such as the supply chain management. In addition, it
was developed the meta-algorithm HCOMA for the solution
of the HCOP. Since it is a meta-algorithm, it makes it possible
to integrate different optimization algorithms, which may be
chosen according to each specific problem.

In a future work the model will be extended to include
more complex holarchies with multipart agents. Furthermore,
it will be treated the environmental parameters and their influ-
ence on the stability of the holonic solution. In other words, it

will be studied how an environmental perturbation propagates
between echelons, and the possible advantages of the pro-
posed model to tackle such kind of changes. Another point to
be investigated is how the communication problems between
neighboring echelons may harm the quality of a HCOP so-
lution. Finally, it will be developed a prototype based on a
case study of the oil supply chain, where the HCOMA will
be implemented using as components centralized optimiza-
tion algorithms already available in the oil industry.
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