
Flexible routing combing Constraint Programming, Large Neighbourhood Search,
and Feature-based Insertion

Philip Kilby1,2 and Andrew Verden 1

1 NICTA, 2 Australian National University
Philip.Kilby@nicta.com.au, Andrew.Verden@nicta.com.au

Abstract
Vehicle Routing Problems in the Operations Re-
search and Artificial Intelligence literature often
allow only standard constraints plus (optionally)
one “side” constraint. However, in practice, every
problem has a number of side constraints, some of
which have never been seen in the literature. This
paper describes an architecture for handling such
arbitrary side constraints, based on Constraint Pro-
gramming, Large Neighbourhood Search, and so-
phisticated insertion methods. This architecture al-
lows many problems that arise in fleet logistics to
be solved efficiently.

1 Introduction
In the classical Vehicle Routing Problem (VRP), a set of cus-
tomers must be visited by a fleet of vehicles at minimum
cost. Typically, a constraint on the capacity of each vehicle
is observed. In the VRPTW, an additional constraint forcing
the visit time to fall within a given time window is also en-
forced. For surveys on methods for these classical problems,
see [Toth and Vigo, 2002; Marinakis and Migdalas, 2007].

However, in many problems in logistics, while the basic
structure of delivery by vehicles to locations is the same,
problems exhibit a wide variety of additional constraints.
These constraints can be fairly general - for example a con-
straint on vehicle re-use that allows a vehicle to perform sub-
sequent routes. Some constraints, however, are very spe-
cific to a particular workplace, and not likely to be see again
(for example overtime allowed only if no more than 5 days
worked in the last seven, and also 6 hours break between the
previous overtime shift and the last shift where a B-double
vehicle was driven).

In this paper we examine methods which allow a wide va-
riety of side constraints to be handled simultaneously. The
system uses a combination of Constraint Programming (CP)
and Operations Research (OR) techniques to achieve an effi-
cient and flexible solution technique.

We begin with a description of the types of problem we
wish to solve. We then describe an architecture that can
handle these types of problem efficiently. We then sug-
gest a solution technique based on Large Neighbourhood
Search ([Shaw, 1997]) and insertion methods [Solomon and

Desrosiers, 1988]. Insertion methods build a solution by in-
serting one visit at a time into an emerging route set. Al-
though some insertion methods can give good results over a
wide variety of problems, we show how bespoke insert meth-
ods offer a modular way of tailoring the solution method to
speed up solution of problems with particular side constraints.

2 Problem Description
We wish to supply goods to n customers. Each customer or-
der i specifies the location for service (li), and the quantity
of goods required (qi). A fleet of m vehicles is available to
perform deliveries. Vehicle k has capacity Qk. We are given
the cost of travel between each pair of customers (cij).

In the most basic form of the problem, we wish to find a set
of routes, one for each vehicle, such that customer requests
are satisfied at minimum total cost, subject to the constraint
that the total quantity of deliveries assigned to each truck does
not exceed the truck capacity.

In this paper we use the term route to mean the sequence
of customer visits performed by a truck.

This sort of formulation can represent problems where
goods are delivered, or all goods are picked up, or problems
where a service is provided.

Some additional problem variants and constraints have
been studied in the Operations Research and Artificial Intel-
ligence literature

• Time Windows, where the allowed times for the visit
(earliest start time, latest start time) are specified (See
[Bräysy and Gendreau, 2005] for a recent survey).

• Request/Request compatibility constraints specify that
some pairs of visits cannot be assigned to the same route,
or that they must be assigned to the same route. For ex-
ample, it may not be permitted to carry particular chem-
ical together on the same vehicle.

• Request/Vehicle compatibility constraints are similar,
but they specify that some requests must be carried by
a particular vehicle or must not be carried by a particular
vehicle. [Nakari et al., 2007] discusses problems with
compatibility constraints.

• Pickup and Deliver Problem (PDP) constraints. Prob-
lems where goods are picked up at one location, and
delivered to another. The PDP constraints ensure the



goods are picked up before they are delivered, and that
the same route picks up and delivers. See [Savelsbergh
and Sol, 1995] for a survey of PDP type problem and
solution methods.

These basic constraints together also define the General
Vehicle Routing Problem [Goel and Gruhn, 2008]. However,
we wish to be able to solve problems with even more gen-
eral constraints. Constraints such as the following have been
investigated individually in the literature

• “Blood bank” constraint – a pickup and deliver where
the pickup can occur any time in the morning, but deliv-
ery must be within 20 minutes of pickup. Because the
delivery time window cannot be specified a-priori, this
type of constraint cannot be expressed by the usual time
window constraint.
• Multi-delivery (split-delivery) routing. Here, customer

quantities may exceed the size of the largest truck, and
so must be visited more than once. This type of prob-
lem is common in line-haul routing, where deliveries are
made from a production facility to distribution centres
(e.g. [Archetti et al., 2006]).
• Loading dock constraint – Vehicle dispatch is limited by

the number of docks available for loading. Alternatively,
in PDP problems where there are multiple deliveries to
a single customer, the number of deliveries that can be
performed simultaneously is limited by the number of
docks.
• Movable partition constraint. In this problem, multiple

commodities are carried simultaneously. While the total
capacity of the vehicle is fixed, each time it is loaded a
decision can be made as to how much capacity is given
to each commodity.
• Prize collecting problems, where visits have different

values, and we wish to maximise the value of visits as-
signed less travel cost. This may mean that some visits
are left unassigned ([Feillet et al., 2005] discusses the
case where there is a single vehicle).
• Route rendezvous constraints – that ensure different

routes rendezvous to transfer goods. The time of the
rendezvous may depend on the duration of individual
routes.

These constraints are usually examined individually – that
is, there is the usual vehicle routing problem plus one set of
extra constraints that are known a-priori.

Our aim is to solve problems with a variety of these extra
constraints applying simultaneously, while at the same time to
avoid making the solution method dependent on which con-
straints are actually present.

The NICTA Intelligent Fleet Logistics project has devel-
oped a system called Indigo that is able to handle a variety
of problems in logistics. Its architecture and methods are de-
scribed in the following sections.

3 Architecture
Constraint Programming is an obvious technique to express
the side constraints seen in practical Vehicle Routing prob-

lems, and to support solving instances of these more general
problems.

However, constraint programming can introduce an expen-
sive overhead to handle some constraints. For instance, if a
capacity constraint is tied to the variable which indicates the
route to which the visit is assigned, then each time that vari-
able is altered, or any time the load changes on any route
which is within the domain of that variable, then the capacity
constraint will be re-checked. This will ensure correct opera-
tion, but can lead to much redundant checking.

For this reason, the Indigo system has two “classes” of con-
straint.

The first class of constraints (called “native” in this con-
text) include all the constraints of the General Vehicle Rout-
ing Problem [Goel and Gruhn, 2008]:

• Capacity constraints (across multiple commodities but
with fixed capacity for each commodity)

• Usage constraints, that limit the total usage of resources
such as time and distance accumulated during each run.

• Time window constraints, specifying earliest and latest
start time.

• Pickup-and-Deliver constraints, enforcing precedence
and same-route constraints between a pair of visits.

• Request/Request and Request/Vehicle compatibility
constraints

Native constraints are handled very efficiently by the sys-
tem with minimal interaction with the Constraint Program-
ming system. Any decision made by the solver is guaranteed
to observe all of the native constraints.

However, additional side constraints can be specified and
handled using the CP system. In the long-term, we wish to
be able to use the Zinc language [Marriott et al., 2008] to
specify these constraints, and then solve the problem within
the G12 system [Wallace and the G12 Team, 2009]. In the
short term, however, propagators for each side-constraint are
hand coded, using a simple bespoke constraint programming
system.

Even with some hand-coding still required, the advantage
of using a CP paradigm is clear. The propagator for each con-
straint is a self-contained piece of code that is only “known”
to the CP system. The alternative in traditional OR systems
would require the main body of VRP solving code to be mod-
ified for each new constraint, which makes maintenance dif-
ficult, and unexpected interactions almost inevitable.

Special, separate modules also convert different variants of
the problem into standard form. For multi-delivery routing,
for instance, a separate module breaks each order quantity
into smaller pieces that can be assigned efficiently to trucks
of various sizes.

The advantage of approach handling native constraints in-
ternally was demonstrated in [Kilby et al., 2010]. It was
shown that handling these constraints internally, rather than
as constraints in the CP system, decreases the CPU time by a
factor of about 2. It also slightly improves solution quality in
some cases.



4 Interaction with the CP System
The Indigo system is integrated with a CP system. The CP
system has a number of variables for each visit and route, in-
cluding: A successor variable indicating which visit should
follow the given visit. A predecessor variable indicating
which visit should precede the given visit. A route variable
indicating which route the visit is assigned to. If time is used,
then arrive time and service start time variables are used. For
each assigned visit, and for each commodity, there are vari-
ables specifying the cumulative load.

Constraints can be posted in the CP system to limit the
values these variables can take. For instance, in the case of the
blood donor constraint, as soon as the pickup visit is assigned,
then the delivery visit will have its service start time variable
constrained.

In operation, the Indigo system acts as a variable/value
choice heuristic for the underlying CP system. Indigo main-
tains an internal representation of an emerging route set, in-
cluding the list of partially built routes, plus the list of yet-to-
be assigned visits.

Each time Indigo is called, it chooses a visit to insert, and a
position in which to insert it. It can then propagate the effects
of this choice to the CP system.

As discussed in [Kilby and Shaw, 2006], chronological
backtracking in CP imposes limits on the amount of infor-
mation that can be propagated to the CP system. For instance
if the Indigo system decides to place visit 10 after visit 2, we
cannot bind the successor variable of visit 2 just yet. If we
were to make the assignment succ[2] = 10, then we would
not be able to insert any other visit after 2 for the rest of the
execution of the procedure. So instead, we make all propaga-
tions that can be inferred from the assignment. For instance,
we can remove 10 from the successor variable of every visit
except 2. We can also update the route variable for visit 10.
A number of other propagations are possible. For example,
let us say that visit v will follow visit p in route r

• All other assigned visits (except p) can be removed from
the predecessor variable of v. Similarly the successor
variable of v can be updated.
• If we assume the triangle inequality for time

(∀a, b, c, tac ≤ tab + tbc) then we know that we
cannot arrive at v any earlier than we currently do. We
can therefore update the bound on the arrival time to be
at most the current arrival time.
• The latest arrival time cannot be any later than the

current value (again assuming the triangle inequality).
Hence we can also update the upper bound on the arrive
time to be the current latest feasible arrival time.
• In pickup-up only problems, the load on any commodity

cannot be less than the current value. We may therefor
update the appropriate bound on the load variable.

If, during execution of the propagations following an as-
signment, a failure occurs (i.e. CP has identified an inconsis-
tency) then the internal data structure within Indigo must be
updated as part of the backtracking of the CP system. The CP
system will ensure that the same assignment is not attempted
again in the future.

When the Indigo system is subsequently called, changes to
the successor, predecessor or time variables must be noted,
and the next choices must be consistent with these values.

5 Solution method
Like many VRP solution methods, Indigo relies on local
search methods to improve an initial solution. Many local
search techniques for routing problems have been developed
(for example 2-opt, 3-opt, Or-opt). However, these methods
that move directly from one solution to another do not make
use of the full power of CP.

Again, local search methods are limited by the chronologi-
cal backtracking restrictions imposed by the CP architecture.
Hence, methods that build up a solution one piece at a time,
using CP search procedures, are preferable to local search
type methods such as those above that move directly from
solution to solution.

Large Neighbourhood Search (LNS) [Shaw, 1997] is a lo-
cal search procedure where part of a solution is destroyed,
and a then a new solution created by finding new values for
the freed variables. This method uses exactly the sort of incre-
mental solution building method that can exploit propagation
in CP to guide the solution towards good, feasible solutions.

The Indigo system draws on the work of Ropke and
Pisinger [Ropke and Pisinger, 2006] (R&Phere). Like that
work, it uses insertion methods to create an initial solution,
and then again to repair the solution in each iteration of LNS.
The LNS algorithm can be given as follows:

1 Create initial solution S

2 Choose a “destroy” method d

3 Create S′ by removing customers from S according to
method d

4 Choose an insert method i

5 Create solution S′′ from S′ by inserting customers ac-
cording to method i

6 If the acceptance method accepts solution S′′

7 Replace S with S′′

8 If iterations remain, return to line 2

This method is characterised by
• The destroy methods available at line 2
• The insert methods available at line 4
• The acceptance methods available at line 6
• The number of iterations available at line 8.
In this paper, we look only at enhancements to the insert

methods available at line 4 that allow for some of the more
general instances to be solved effectively. These methods are
described in the next section.

6 Insert methods
Insertion methods proceed by repeating two stages:

First, amongst all unassigned visits, the best position to in-
sert each is selected. Then, the visit which is to be inserted is
chosen. The visit is then inserted in its best position. Solomon



[Solomon, 1987] seems to be the first to suggest this two-
score system.

The best insert position for each still-unassigned visit is
then updated. The method can then iterate until all visits have
been assigned a position.

In much previous work, only a limited number of features
are considered when making these two choices. In some
work, only minimum cost insertion is considered – i.e. vis-
its are always inserted in the position which gives rise to the
smallest increase in cost, and the visit with the smallest in-
crease is inserted first.

R&Pshow that using a combination of insertion methods
gives better results than a single method, as it allows different
methods to be used at different times. Running on benchmark
problems with limited constraints (PDP, time window and ca-
pacity constraints), R&Pidentified a set of insert methods that
gave good performance.

We wish to extend this idea, and use a variety of insertion
criteria when making these choices. We will show below how
this can be advantageous in real-world problems.

We will describe several criteria, or “features” which can
be used in either choosing where to insert a visit, or choosing
the visit to insert. Each criteria is described below. The de-
gree to which a particular feature is present is rated on a score
of 0 to 1, with 0 meaning “not present”, and 1, “present”.
Along with each feature, the “base” value which is used to
normalise the value (as described in Section 6.1) is also given.
If reversed is specified, then (1 - val) is returned, rather than
val. Two types of normalisation are also possible, as dis-
cussed in Section 6.2

The following symbols are used in the description below.
The visit v is to be inserted between p and s on vehicle k. The
cost of insertion is c′ = c(p, v) + c(v, s)− c(p, s).

Route domain Favour visits with few feasible routes. Val is
number of routes v can be feasibly inserted into. Base is
total number of routes. Reversed.

Num ins pos Favour visits with few feasible insert positions.
Val is the number of feasible insert positions. Base is
number of assigned visits. Reversed

Distance to depot Favour visits far from a depot. Val is dis-
tance to the closest route start or end. Base is max dist
to route start or end.

Value For use in prize-collecting problems, favours inserting
high-value visits first. Value is prize-value of the visit.
Base is max prize-value over all visits.

Load Favour largest load first. Value is load. Base is max
vehicle capacity

Nearest neighbour Encourages v to be inserted near its
neighbours. Val is min (c(p, v), c(v, s). Base is distance
to v’s 10th-nearest neighbour. Reversed. Normalised
with method 2.

Min insert cost Cheapest insert first. Value is c′. Base is
twice the average insert cost. Ave insert cost is (Total
cost of inserted visits) / (number of inserted visits). Re-
versed. Normalised by method 2.

Max insert cost Reverse of above. Calculated same way, but
not reversed.

Regret, 3-Regret, 4-Regret See below. Base is same as
Minimum insert cost. Normalise by method 2.

Rand Randomise slightly. Val is a uniform-random number
in [0,1).

Time Window width Encourages smallest time window to
be inserted first. Val is width of v’s time window. Base
is max of time window widths. Reversed.

Time Window end Encourages visit with latest time win-
dow to be inserted first. Val is the end time of the last
time window. Base is max time window end.

Wait time Encourages vehicles not to arrive at a location be-
fore the start time window (as the vehicle must then wait
for the time window to open). Val is the time the vehicle
must wait at v before service starts. Base is (Last time
window) / 10. Reversed.

Pickup Late, Deliver early Encourages vehicle to do deliv-
eries at a location before doing pickups.

Lost slack Encourages spare time to be preserved. Val is
how much “spare time” (difference between arrival time
and time window end) is lost at s. Base is max time
window width. Reversed. Normalised using method 2

Fill vehicle Used when problem has a bin-packing flavour,
and favours inserts that fill the vehicle. Value is spare
capacity after insert. Base is max capacity. Reversed.

Balance routes Encourages routes to have similar length, as
measured by difference between shortest and longest
route. Penalise adding to longest route, and reward
adding to shortest.

6.1 Base values
Base values are used to normalise the feature values into the
range [0,1] by diving val by base. Since we wish the values
to be comparable, we must be careful in the base value cho-
sen. For example, for nearest neighbour, the “safe” base is
the length of the longest arc in the problem. However, this is
likely to be very large, and not ever used in a solution. We
therefor use a base value which is the distance to the 10th-
nearest neighbour, as the neighbour of most visits is likely to
come from this set.

6.2 Normalisation
The basic method of normalisation is to simply divide by the
base. This is done whenever the base is a guaranteed maxi-
mum for the feature value (e.g. maximum time window width
as base for the time window width feature)

However, for reasons outlined above, some base values are
“optimistic” or heuristic values, and can be exceeded. Since
we still wish to rank values that are greater than the base
value, an alternative, non-linear normalisation is used. To
normalise a value v with a base b, the normalised value is
calculated as follows

tmp = max(v/b, 0); return tmp/(0.5 + tmp);



This normalisation always falls in the range [0,1]. The values
0 to 1 map to normalised values 0 to 0.6667, with 0.5 mapping
to 0.5. The value of 0.6667 makes values normalised using
this method approximately comparable to values normalised
with the first method.

6.3 Regret
Regret is based on the difference between the best and next-
best insert positions for a visit. If there is a big difference (a
large regret), then if the visit does not get its favoured posi-
tion, the effect on the objective is high. The method therefore
chooses the visit with maximum regret to insert first.

More formally, if the minimum cost to insert visit i in route
k is cik, and the permutation o(k) permutes the routes into
increasing order; i.e. ci,o(1) ≤ ci,o(2) ≤ ... ≤ ci,o(m). Then
regret(i) is

ci,o(2) − ci,o(1)

3-Regret allows slightly more look-ahead, taking the first
three positions into account: Then 3regret(i) is

((ci,o(2) − ci,o(1)) + (ci,o(3) − ci,o(1)))/2

4-regret is defined analogously, over the cost of the four
cheapest routes.

6.4 Implementation
All of these methods (except the regret methods) can be cal-
culated using just the visit to be inserted and the predecessor
in the route. In the Indigo system, features are defined us-
ing a base class. New features can be incorporated easily by
specialising the base class to calculate the required value.

7 Use of features
Features are combined using weights. Two separate weight
sets are used – weight set 1 is used to decide which visit to
insert; weight set 2 is used to decide where to insert it. Each
score is simply the scalar product of the weights and the fea-
ture values.

For example, selecting the visit to insert using 3regret with
a small amount of randomness; and position to insert using
min-insert-cost, the following could be used
Feature set 1: { 3regret, rand }. Weight set 1: { 0.95, 0.05 }.
Feature set 2: { min-insert-cost }. Weight set 2: { 1.0 }.

For efficiency, only those features with a non-zero weight
need to be evaluated. Weight sets can be general-purpose, or
specific for a a portfolio of instances.

The new insert features allow flexibility in non-standard
problems. For instance, in a multi-delivery pickup-and-
delivery problem there may be multiple pick-ups and deliv-
eries at a single location. While this type of problem is seen
relatively often in practice (it is one way of modelling a vehi-
cle leaving and returning to the depot multiple times) it does
not appear in benchmarks. There is nothing in a standard
VRP heuristic which makes us deliver before we pick up at
the same location. The “pickup-early, deliver-late” ensures
this sequence. However, in standard benchmarks, there is no
call to use such a feature. It is only in the more flexible rout-
ing that it is useful – but there it is indispensable.

8 Computational testing
In order to test the effectiveness of the architecture, the sys-
tem was tested on some standard benchmarks. These do not
exhibit the flexibility of the system, but indicate the effective-
ness on standard problems.

The system was tested on the VRPTW benchmark prob-
lems of Solomon [Solomon and Desrosiers, 1988] with
100 customers, and the extended Solomon benchmarks of
Gehring and Homberger [Gehring and Homberger, 1999]
with between 200 and 1000 customers.

The experimental setup used “standard” parameters similar
to those used in R&P

• Accept function is Simulated with a temperature gradi-
ent of 0.99975, and an initial probability chosen so there
is a 50% chance of accepting an increase of 5%.

• Removal selection functions and Insertion functions as
per R&P.

• Adaptive learning of which selection and which inser-
tion method to use, using rewards similar to those used
by R&P

• 30,000 iterations of LNS

• 50 customers removed for size 100 and 200 problems.
100 customers removed for larger problems.

• 5 runs of each problem, best solution reported

Because the current Indigo system does not have a feature
to reduce the number of vehicles, the problems were mod-
ified so that only the number of vehicles in the best-known
solution were available to the system. This makes the com-
parison a little less fair, as most systems initially try to reduce
the number of vehicles. However, it is consistent with many
real-world problems where the vehicle fleet is fixed a-priori.

Because of limited space to report we give just the basic
results. We express performance as a ratio of the increase as
a ratio of best-known solution. E.g. 1.02 means the results
was 2% higher than the best-known solution.

All problems were solved with the best-known number of
vehicles. We produced new, best-known solutions to 83 of
the 300 benchmarks. Table 1 shows the results. Size gives the
number of customers in the problems; Best gives the number
of problems where a “new best” solution was found; Mean is
the mean increase; 80% gives the 80th percentile of increase
(i,e, 80% of values were less than this value); and Max gives
the maximum increase over best-known solution. CPU gives
mean time per run in CPU seconds. The tests used one CPU
of an 8-core 32 bit Intel Xeon running at 2GHz.

Source Size Best Mean 80% Max CPU
Solomon 100 0 1.01 1.01 1.05 53
G & H 200 11 1.01 1.02 1.05 120
G & H 400 13 1.01 1.03 1.06 487
G & H 600 19 1.02 1.04 1.10 766
G & H 800 18 1.02 1.05 1.11 1108
G & H 1000 22 1.03 1.06 1.14 1450

Table 1: Results on benchmark problems



For the smaller problems (100-200 customers) these results
are very good for relatively small CPU times. Since other sys-
tems often run for much longer than the maximum 30 min-
utes allowed this system, the results for larger problems are
reasonable, although some work is required to ensure the sys-
tem performs as well on the larger problems as it does on the
small.

9 Future work
With a large number of features, the space of possible weights
is very large. The task of finding effective feature weights can
be very difficult. We are currently looking a two methods for
choosing weights: static and dynamic. Static methods will
calculate a weight set a-priori, using a portfolio of similar
problems from a given user. Dynamic method we make use
of the fact that in LNS we are essentially solving the same
problem many thousands of times. We can dynamically adapt
the weight set, and test the effectiveness of the new set in
subsequent runs.

We are also looking at ways of increasing the search diver-
sity in larger problems, to improve the performance on some
of the larger problems reported in section 8.

10 Conclusions
We have described an architecture for solving a variety of
logistics problems, including, for instance, line-haul prob-
lems that are not well suited to traditional VRP methods.
This architecture has the advantage of handling many of the
most common constraints very efficiently, while allowing ad-
ditional side constraints to be specified and handled in a mod-
ular and flexible way by an underlying Constraint Program-
ming system.

We have argued that sophisticated insertion methods make
an ideal partner for Large Neighbourhood Search and Con-
straint Programming for solving real-world vehicle routing
problems. We have given a method of calculating and com-
bining a number of feature scores, that allows insertion meth-
ods to be tailored more easily to the characteristics of the
problem at hand.

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

References
[Archetti et al., 2006] C. Archetti, M. G. Speranza, and A. Hertz. A

tabu search algorithm for the split delivery vehicle routing prob-
lem. Transportation Science, 40(1):64–73, 2006.

[Bräysy and Gendreau, 2005] Olli Bräysy and Michel Gendreau.
Vehicle routing problem with time windows, part I: Route con-
struction and local search algorithms. Transportation Science,
39(1):104–118, 2005.

[Feillet et al., 2005] Dominique Feillet, Pierre Dejax, and Michel
Gendreau. Traveling salesman problems with profits. Trans-
portation Science, 39(2):188, 2005.

[Gehring and Homberger, 1999] H. Gehring and J. Homberger. A
parallel hybrid evolutionary metaheuristic for the vehicle routing
problem with time windows. In K. Miettinen, M. Makela, and
J. Toivanen, editors, Proceeding of EUROGEN99 - Short Course
on Evolutionary Algorithms in Engineering and Computer Sci-
ence,, pages 57–64. University of Jyväskylä, 1999.

[Goel and Gruhn, 2008] Asvin Goel and Volker Gruhn. A general
vehicle routing problem. European Journal Of Operational Re-
search, 191(3):650–660, 2008.

[Harvey and Ginsberg, 1995] William D. Harvey and Matthew L.
Ginsberg. Limited discrepancy search. In Chris S. Mellish, edi-
tor, Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95), volume 1, pages 607–615,
Montréal, Québec, Canada, 1995. Morgan Kaufmann.

[Kilby and Shaw, 2006] Philip Kilby and Paul Shaw. Vehicle rout-
ing. In F. Rossi, P. Van Beek, and T. Walsh, editors, Handbook of
Constraint Programming, Foundations of Artificial Intelligence,
chapter 23, pages 801–836. Elsevier, 2006.

[Kilby et al., 2010] Philip Kilby, Andrew Verden, and Lanbo
Zheng. The cost of flexible routing. In Proceedings of the Tri-
ennial Symposium on Transportation Analysis (TRISTAN) 2010,
2010. To appear.

[Marinakis and Migdalas, 2007] Yannis Marinakis and Athanasios
Migdalas. Annotated bibliography in vehicle routing. Opera-
tional Research, 7(1):27–46, 2007.

[Marriott et al., 2008] Kim Marriott, Nicholas Nethercote, Reza
Rafeh, Peter J. Stuckey, Marı́a Garcı́a de la Banda, and Mark
Wallace. The design of the Zinc modelling language. Con-
straints, 13(3):229–267, September 2008.

[Nakari et al., 2007] Pentti Nakari, Olli Bräysy, and Wout Dullaert.
Communal transportation: Challenges for large-scale routing
heuristics. Reports of the Department of Mathematical Informa-
tion Technology Series B. Scientific Computing B6/2007, Uni-
versity of Jyväskylä, 2007.

[Ropke and Pisinger, 2006] Stefan Ropke and David Pisinger. An
adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science,
40(4):455–472, 2006.

[Savelsbergh and Sol, 1995] M.W.P. Savelsbergh and M. Sol. The
general pickup and delivery problem. Transportation Science,
29(1):17–39, 1995.

[Shaw, 1997] Paul Shaw. A new local search algorithm providing
high quality solutions to vehicle routing problems. Working pa-
per, University of Strathclyde, Glasgow, Scotland, 1997.

[Solomon and Desrosiers, 1988] Marius M. Solomon and Jacques
Desrosiers. Time window constrained routing and scheduling
problems. Transportation Science, 22(1):1–12, February 1988.

[Solomon, 1987] M. Solomon. Algorithms for the vehicle routing
and scheduling problem with time window constraints. Opera-
tions Research, 35:254–265, 1987.

[Toth and Vigo, 2002] Paolo Toth and Daniele Vigo, editors. The
Vehicle Routing Problem, volume 9 of SIAM Monographs on Dis-
crete Mathematics and Applications. SIAM, Philadelphia, PA,
2002.

[Wallace and the G12 Team, 2009] Mark Wallace and the G12
Team. G12 – towards the separation of problem modelling and
problem solving. In Proc. CP-AI-OR’09, volume 5547 of Lecture
Notes in Computer Science, pages 8–10. Springer, 2009.


