
Optimising Efficiency in Part-Load Transportation∗

Srinivasa Ragavan Devanatthan, Stefan Glaser and Klaus Dorer
Hochschule Offenburg, Offenburg, Germany

sdevanat@stud.hs-offenburg.de
{Stefan.Glaser, Klaus.Dorer}@hs-offenburg.de

Abstract
Existing approaches solving multi-vehicle pickup
and delivery problems with soft time windows typ-
ically use common benchmark sets to verify their
performance. However, there is a gap from these
benchmark sets to real world problems with respect
to instance size and problem complexity. In this
paper we show that a combination of existing ap-
proaches together with improved heuristics is able
to deal with the instance sizes and complexity of
real world problems. The cost savings potential
of the heuristics is compared to human dispatching
plans generated from the data of a European carrier.

1 Introduction
With an increase in transport business and many mergers be-
tween major logistics companies, it becomes increasingly dif-
ficult for the the dispatchers to have an overview of the orders
relevant to their business. Consequently, opportunities to load
orders together on the same vehicle are missed frequently, re-
sulting in increased costs.

Many optimisation algorithms fail to improve the situation
due to the size of the problem instances and the complex-
ity of the constraints involved. In this paper we show that a
combination of existing approaches together with improved
heuristics is able to deal with the instance sizes of real world
problems and reduce the costs of transport plans considerably.
To do so we have used real data of a major logistics carrier
and compared the results of our approach with the transport
plan that has been created by human dispatchers and has been
performed by the vehicle fleet.

The rest of the paper is organised as follows: Section 2
introduces the transport domain. Section 3 explains how real
world problem instances can be addressed with results shown
in section 4 before we conclude in Section 5.

2 Domain
The multi-vehicle pickup and delivery problem with soft time
windows (m-PDPSTW) [Psaraftis, 1995; Dorer and Calisti,

∗This work is supported by the IngenieurNachwuchs program of
the German BMBF grant number 17 N25 09.

2005] consists of finding optimal plans for serving transporta-
tion requests of customers. The problem is ‘single-vehicle’
if all transportation requests are served by a unique vehicle.
Here, we deal with a ‘multi-vehicle’ problem where multiple
vehicles can be used for transporting all orders. The vehicles
may be of different type and have different capacities. As
opposed to vehicle routing problems [Laporte and Osman,
1995], in pickup and delivery problems (PDP), vehicles do
not necessarily start or end in the same location. Transporta-
tion requests may have the same, but usually different, pickup
and delivery locations. The pickup and delivery of orders has
to occur within a specific time window, even though time con-
straints can be possibly violated up to some tolerated degree.
These kind of problems are called PDP with soft time win-
dows.

Table 1 presents different approaches from literature that
directly handle PDPTW problems. It is worthy of note, that
the approaches defined in the table dealt with benchmark in-
stances while we report on results on significantly larger in-
stance size from real world.

A rich overview on different versions of the problem as
well as a collection of solution methods and applied heuristics
can be found in [Parragh et al., 2008a; 2008b].

In the following, we specify the information and con-

Method Author(s) Characteristics
Insertion
heuristic

[Jaw et al.,
1983]

300 orders, 24 vehi-
cles

Clustering fol-
lowed by de-
composition

[Dumas et
al., 1991]

880 orders, 53 vehi-
cles

Reactive tabu
search

[Nanry and
Barnes,
2000]

100 orders, 10 ve-
hicles, based on
VRPTW instances of
[Solomon, 2005]

Branch and cut
algorithm

[Ropke et al.,
2007]

40 instances of
[Savelsbergh and
Solomon, 1998]

Insertion
heuristic with
k-opt

this paper 2137 orders with
1736 available
vehicles

Table 1: Methods for m-PDPTW

straints of the domain relevant for our work. The term node
is used to indicate the combination of a stop location and the
corresponding time (arrival and departure time) for a given
vehicle. A leg is the path between two nodes. A route is the
sequence of nodes a vehicle visits. The vehicle is assumed
to be empty at the beginning and at the end of a route. The
sum of all routes is called the delivery plan representing the
schedule of each vehicle. The quality of the solution is the
cost of the delivery plan (see Section 2.2).

2.1 Initial Information
The information required to solve transport optimisation is,
a set of transport requests or orders and the set of vehicles
that are available. Also information for the distance and drive
time required for driving any possible leg has to be available.

Every order specifies: order type, capacity demand (load-
ing meters), weight, pickup location, pickup time window,
pickup service time, delivery location, delivery time window,
delivery service time and the time at which the order is known
to the system.

The vehicle definitions include: vehicle type, capacity (in
loading meters and weight), availability location and time. A
mathematical analysis of the specific data used is presented
in chapter 4.

2.2 Cost Model
Cost reduction is a main driving factor for logistics compa-
nies. Cost is therefore used as the objective function for op-
timisation. The cost model has to make sure that solutions
are preferred by the optimisation algorithm that are cheaper
to perform in practice. It has therefore to reflect the real costs
of the companies as close as possible.

Two types of cost models are typically distinguished: fix-
variable for own vehicles and matrix-based for subcontracted
vehicles. Costs for own vehicles of the fleet are calculated as

cfv = cfix + cvar (1)

with cfix = kfix ∗ t and cvar = dempty ∗ kempty + dloaded ∗
kloaded. kfix is a constant representing the fix costs per day.
It may depend on the vehicle type in general, but did not in the
context data of this paper. t is the number of days the route
covers. dempty is the sum of distance of all legs driven empty
including a possible empty leg to the first pickup location and
a possible empty leg to drive home at the end of the route.
dloaded is the sum of distance of all legs where at least one
order is loaded. kempty and kloaded are costs per kilometre
for empty or loaded legs respectively.

Costs for subcontracted or spot market vehicles are typi-
cally based on distance and load matrices.

cma =

n∑
i=1

di ∗ li ∗ kma(d, l) (2)

where n is the number of legs, di is the distance of leg i, li
is the load on leg i in loading meters and kma(d, l) is a func-
tion defining the costs per kilometre and loading meter. The
function is represented by a matrix defining different distance
and load classes with linear interpolation between the speci-
fied values. It is usually retrieved from historic data. Note

that this cost model does not account for fixed costs nor does
it take empty legs to the first pickup or after the last delivery
into account. Comparable entries of the cost constants in the
matrix are therefore typically much higher than kempty and
kloaded. In the context of this paper, two distance classes and
thirteen load classes have been used.

2.3 Constraints
The optimisation heuristics have to obey certain constraints
in order to create solutions that are drivable in reality.
• Load constraints:

– Precedence (pickup has to be before delivery);
– Pairing (pickup and delivery have to be done by the

same vehicle);
– Capacity limitation of a vehicle;
– Weight limitation of a vehicle;

• Time constraints:
– Earliest pickup and delivery;
– Latest pickup and delivery;
– Legal driving time regulations for drivers.
– Service times at pickup/delivery locations

In practice pickup and delivery times are typically treated
as soft constraints. This means that short delays are accepted
if they allow for better delivery plans. A soft constraint is de-
fined by a tuple< s, e, cf , cv > where s is a start value above
(below) which the condition is soft violated, e is an end value
above (below) which the constraint is considered hard vio-
lated, cf are the fix violation costs assigned if the constraint
is (soft) violated and cv are variable violation costs that grow
proportional to the amount of soft violation. The fixed vio-
lation costs can be used to control the number of violations.
The variable violation costs ensure that the amount of con-
straint violation is kept low and only accepted if the violation
cost is less than the benefit of violating the constraint.

3 Implementation Strategies
The classification of the problem as NP-Hard and the size of
the problem in reality, thousands of orders to be served with a
fleet of hundreds of vehicles, impairs the application of exact
methods. Most exact methods, which work well for small
specific problem instances in the absence of many constraints,
fail to work acceptably fast in practice. Heuristics find good
solutions in reasonably short time, which is the major concern
in the real world.

A straight-forward method to apply insertion heuristic to
build an initial solution, followed by a tour improvement
heuristics seems the first best tentative approach towards a
problem of the size we have handled.

3.1 Insertion Heuristic
The insertion heuristic builds a set of routes by inserting one
order at a time. The number of routes is freely determined
while inserting. It is not expected that it produces the optimal
set of routes for transporting the orders. The main idea is
to build an initial feasible solution which is then optimised
for the objective function. The quality of this initial solution

depends on the sequence in which the orders are inserted. In
our case orders have been sorted by earliest delivery time.

A new order is inserted at the best feasible insertion place
over every route. It considers the objective function of the
problem as the insertion cost. For TSP problems, the objec-
tive function is distance and an example would be the smallest
detour in distance [Azi et al., 2010], which may not find the
optimal tour, but would certainly produce an acceptably short
route.

For the m-PDPSTW that we handle, each route in the so-
lution is a TSP but with constraints which impose precedence
of the pickup node before the delivery node. This is referred
to as the pickup and delivery-TSP or PDTSP, where the ob-
jective function is the total cost.Here, we require a simple
permutation heuristic which would find the cheapest point of
insertion of a new order on the route. This heuristic, cheapest
permutation, is described below.

Let (i0, . . . in) be the nodes on the route r. Let ip and id
be the pickup and delivery nodes of a new order that has to
be inserted on the route. The pickup node ip is inserted as
(ik−1, ip, ik), 1 ≤ k ≤ n, i0 is the start node and ik−1 and
ik are two adjacent pickup or delivery nodes on the route.
For each partially inserted route, (i0, . . . , ip, ik, . . . , in), the
delivery node id is inserted as (il−1, id, il), k ≤ l ≤ n. If the
pickup-insert fails, the following permutations of delivery-
inserts are not made.

For each order, the insertion heuristic is run on every route
and the cheapest route is chosen. If no existing vehicle is
able to transport the order, a new vehicle with a new route is
created to handle this order. The set of all routes serviced by
individual vehicles constitutes a delivery plan and is an initial
solution.

The way in which precedence constraints are incorporated
during the solution process is of particular importance to the
effectiveness of this heuristic for this problem. It implic-
itly eliminates some of the infeasible PDTSP solutions. The
heuristic is fairly quick mainly because it does not permute
the existing nodes on a route when an insertion is made. The
constraints are enforced at different levels of the heuristic.

• It is possible that the load constraints of the vehicle are
hard violated at node ip. These are physical restrictions
of the vehicle and cannot be soft violated. In such cases,
the corresponding permutations of delivery-inserts are
not made, reducing the feasible states.

• A pickup-insert could alter the time parameters of the
subsequent nodes after ip, which may produce a viola-
tion of the time constraints up to a certain limit. In these
cases, the subsequent nodes are one of the permutations
of the delivery-inserts. The heuristic first constructs the
route and then schedules. If scheduling fails, the route is
thrown away.

Soft constraint violations produce costs which are included
in the objective function of the problem. This ensures that an
order is allocated on a route with a soft violation only when
allocating the same order on all other routes is impossible or
produces a higher cost.

The driving plan may either be improved by applying re-
strictive constraints which enforce route quality at the time

of construction or by using tour improvement heuristics. Im-
provement may be achieved by a re-arrangement of existing
nodes in a route or the re-assignment of an order to another
route.

3.2 Tour Improvement Heuristic
The tour improvement heuristic aims to improve the quality
of the entire delivery plan by employing a local search with
k-change neighbourhood, simply referred as k-opt [Papadim-
itriou and Steiglitz, 1982; Helsgaun, 2006]. It has been ap-
plied for the travelling salesman problem and has been shown
to produce high quality solutions in polynomial time [Lawler
et al., 1985]. As far as we have seen, the k-opt has not been
applied for the m-PDPSTW. In this Section, we define a sin-
gle “change” for the m-PDPSTW and brief on the k-opt.

A new feasible solution can be obtained by performing a
single change to an existing solution. If k′ number of changes
are applied to the current solution, the new solution is then
described to be in the k′-neighbourhood. Depending on the
type of the problem, the parameter of change can be varied.
This is explained as follows.

Let R = {r1, r2, . . . rn} be the set of all routes. Each
route is serviced by a single unique vehicle. Let Oi =
{o1, o2, . . . ok} be the orders transported by route ri. It
should be noted that Oall =

∑n
i=1 | Oi | and Oi ∩ Oj = φ

for distinct i, j ∈ {1, . . . n}. As can be seen, here we assume
that each order is transported on a unique route. Additionally,
each route is assumed to be serviced by a unique vehicle.

A single change, k′ = 1, is then, removing an order from
the route it is transported on and inserting the order on an-
other route. This remove-insert pair is together considered as
a single change. Therefore, a removal is always followed by
an insert. It is possible that a route in the current solution
might violate constraints beyond their hard limit, either at the
time of removal or at the time of insertion of the order. In ei-
ther case, the new solution is not accepted as an improvement.
This ensures that all the orders transported in the current so-
lution are also transported in the successor solution.

In the case of TSP, a k-opt move changes a tour by replac-
ing k edges between existing nodes, with k other edges such
that a shorter tour can be obtained. For the problem instance
handled in this paper, a m-PDPSTW, k orders transported on
one route is replaced with k other orders from a different
route, such that the total cost is reduced. These k-changes
can be sequential as well as non-sequential. If a k-change
produces a better solution in terms of the objective function,
then this new solution is accepted as the current solution for
further improvement.

The pseudo-code for tour improvement is shown in Algo-
rithm 1. Picking routes in lines 4 and 5 is done in a brute
force approach iterating over all routes. As stop-criterion a
time limit as well as a maximal number of iterations was used.
Lines 7 to 13 perform a hill-climbing in the k′-neighbourhood
(not including the k′ − 1 neighbourhood).

In cases where the neighbourhood does not have feasible
and cheaper solutions, the neighbourhood is enlarged i.e.,
k′ = k′ + 1 changes are made to search for an improvement
(line 6). A k-opt heuristic checks all k′ neighbourhoods be-
fore termination. Here, 1 ≤ k′ ≤ k. It can be observed

Algorithm 1 tour improvement
1: procedure IMPROVE(s, k) . initial solution, max

neighbourhood size
2: while true do
3: d← dimensionOfSearchSpace(s)
4: pick route1 from d
5: pick route2 from d
6: for k′ ← 1, k do
7: o← neighbourhood(route1, route2, k′)
8: for all o′ ∈ o do
9: s′ ← getNeighbour(o′)

10: if f(s′) < f(sbest) then
11: sbest ← s′

12: end if
13: end for
14: if stop-criterion met then
15: return sbest
16: end if
17: s← sbest
18: if improvement then
19: break . repeat with k = 1
20: end if
21: end for
22: end while
23: end procedure

that the k-opt may take exponential number of iterations to
evaluate all possible k′-changes. The performance is hence
sensitive to the number of orders on a route.

A similar k-opt algorithm for the TSP was studied for the-
oretical performance guarantee and results have been shown
for the proof of quality of the 2-opt as a heuristic for random
TSP instances in unit square [Chandra et al., 1994]. The ad-
vantage of the k-opt heuristic is its scalability in the choice of
the neighbourhood size. We show the results obtained from
using the 2-opt as the tour improvement heuristic. Though k
can take any integer value less than | Oi | for that route ri in-
volved in the change, we applied k = 2. The restriction was
not just to simplify implementation, but to see the first results
of performance of the 2-opt algorithm on real world data for
the m-PDPSTW, on an inexpensive hardware. The results are
discussed in the following Section.

4 Results

The heuristics described in the previous section were evalu-
ated on real world data of an international carrier. The avail-
ability of the human delivery plan allows us to compare the
performance of the heuristics and demonstrate their applica-
bility on real world problems. However, to have an idea on the
gap of the used heuristics to optimal solutions, we ran them
on the biggest available benchmark problems listed in [Lim,
2010]. In the following we start with a discussion of the
benchmark problem data sets and the differences to real world
scenarios, before we characterize the specific real world data
set followed by a comparison of our results to the human de-
livery plan.

4.1 Benchmarks
In order to run benchmark problems, a couple of changes to
the system are necessary. The expensive calculation of legal
drive time regulations could be switched off. In general the
drive time/distance lookup is much cheaper in the benchmark
case just calculating Euclidean distances instead of looking
up real road drive times. To avoid too heavy changes on the
system, distance and drive time calculation is done using in-
tegers (rounded, not truncated) which is precise enough in
real world. This is why the results marked with a * in Table 2
can not be counted as best known. Considering soft time win-
dows could be switched off making time windows shorter and
easier to prune. Having all trucks available in one depot and
having identical trucks simplifies the decision on which truck
to take. However some pruning is then not possible like not
assigning orders to trucks that are too heavy or too big.

Given this, the comparison to benchmarks can only be an
indicator. This is why we only added one instance for each
of the six classes available in [Lim, 2010]. Anyhow, the main
focus here is on optimizing real world data. As can be seen,
the optimization approach is highly sensitive to the amount
of orders on a single route as has been stated in Section 3.2.
The corresponding amount of orders per truck is 3.1 in the
optimized real world scenario.

4.2 Characterization of the real world data set
The real world problem data set consists of overall 1736 vehi-
cle definitions starting at 248 different locations, and 2137 or-
ders with pickup and delivery locations in six different coun-
tries across Europe. The orders define overall 921 different
locations. Since this statistic is not taking the corresponding
time windows into account, we decided to provide a more ac-
curate statistic by combining a location with its correspond-
ing date, to a so called location-date. The combination of all
pickup locations with their earliest pickup date and respec-
tively all delivery locations with their earliest delivery date
results in 2113 different location-dates. Real world data also
includes missing and/or implausible values, which have to be
handled by the system. For this reason, carrier specific pro-
cessing rules are used to clarify such situations most likely to
what a human dispatcher would do.

To get a general impression of the specific data set, the av-
erage and standard deviation to all significant attributes are
listed in Table 3. While the pickup time windows are often
defined more precise, most delivery time windows are either
missing one limit in data, or sometimes both, which leads to
a high average (towards the default value of one week) with
a relatively small standard deviation compared to the pickup
time windows. It also seems hard to find a good indicator
for reasonable pruning of the search space. According to the
average and standard deviation of the capacity demand of the
orders (loading meters and weight), in relation to the capacity
of the available vehicles, around 95% of the orders could be
served by any arbitrary vehicle. In fact 253 orders (11.8%)
have a bigger capacity demand than the smallest available ve-
hicle. But since the smallest vehicles contribute by just 0.12%
to the total vehicle fleet, this theoretical potential gets again
negligible. The orders cover a 20 day period (from the earliest
earliest-pickup to the latest latest-delivery).

Instance vehicles distance orders avg. orders per time (s)
own best off own best off vehicle (best)

lc1101 100 100 0% 42 460 42 488.66 -0.1%* 527 5.27 65
lr1101 95 100 -5%* 70 242 56 903.88 +19% 527 5.27 95
lrc1101 104 84 +24% 62 887 49 315.30 +27% 527 6.27 170
lc2101 39 30 +30% 34 282 16 879.24 +103% 507 16.8 589
lr2101 30 19 +58% 89 454 45 422.58 +97% 503 26.5 1 021
lrc2101 43 22 +95% 66 943 35 073.70 +91% 507 23.0 717

Table 2: Application to benchmark instances

Orders avg stddev
Distance (km) 666.52 334.45
Loading meters 5.65 5.45
Weight (kg) 7 428.26 8 196.43
Pickup time window (h) 102.30 81.70
Delivery time window (h) 155.35 43.46
Service time (min) 90.00 0.00
Vehicles
Loading meters 14.93 0.26
Weight (kg) 26 850.81 537.67

Table 3: Analysis of the real world data set

4.3 Optimization results

The availability of the human dispatcher’s delivery plan al-
lows a validation with respect to real world scenario. Table 4
shows the result statistics for insertion heuristic and tour im-
provement heuristic with respect to the human delivery plan.
While the insertion heuristic itself is just applicable on start
up to build an initial solution, the tour improvement heuris-
tic can be applied upon both plans. As mentioned before,
the objective function during optimisation was the total cost
(transportation and constraint costs). In a real world scenario,
apart from the total cost, other parameters like the average
utilisation of the vehicles, the overall driving km, the empty
km and the number of time window violations are addition-
ally used to measure the quality of a delivery plan. In Table 4
the average utilisation of a vehicle was calculated as capacity
utilisation per driven km. All results were computed single
threaded on an ordinary PC (Intel Core 2 Duo @ 2.8 GHz).
Runtime measurements correspond to this hardware.

The insertion heuristics was able to save more than 25%
of the costs compared to the plan created by human dispatch-
ers. In more detail, since the transportation costs are directly
related to the load of a vehicle together with the driven dis-
tance, most of the cost savings have to be reached by a higher
utilisation. In this case, the insertion heuristic was able to rise
the average utilisation from initially 45.1% up to 76.2%. In
terms of costs of the matrix cost model we used, this results
in a cost difference around 25% to 30% - depending on the
driving distance. This and the reduction of overall kilome-
tres are the most significant cost reduction factors. The main
reason why human dispatchers fail to achieve the same result
quality is most likely that not all orders are visible to them.

Typically dispatchers are organised in regional business cen-
tres and have limited insight into orders of other regions to
keep the assignment problem tractable to humans.

The relatively low number of violations in the human plan
was reduced by another 50%. The reduction in number of
used vehicles is due to the higher utilisation as well as using
the same vehicles more often. A runtime of 18 minutes is
definitely acceptable to logistic companies.

The tour improvement heuristics was applied to the human
delivery plan, in order to see its potential upon a hand made
solution. As shown in Table 4 it was able to improve in all of
the previously listed comparison criteria.

The best results are achieved by running tour improvement
heuristics on the solution created with insertion heuristics
saving 26.9% of the costs. Three hours of runtime could be
problematic in dynamic situations, but the heuristics is incre-
mental and can be interrupted at any time.

5 Conclusions and Future Work
We were able to show, that our heuristics are able to deal with
the instance size and complexity of a real world m-PDPSTW.
The reported results indicate that the insertion heuristic is ef-
ficient in building initial solutions compared to the delivery
plan created by human dispatchers. It can be observed that
the sequential application of both heuristics significantly re-
duce the overall transportation cost.

It is our strong believe that it is of big value to compare
optimization results with human performance. It boils down
to the question if optimization should address theoretically
uninteresting but practically important issues like drive time
regulations or real street distances. Only by doing so, we
will practically benefit from work done in this area. In the
absence of exact methods to solve such instance sizes, the
first ones able to solve these problem instances to compare
with are human dispatchers.

The results presented in this paper are non-dynamic, i.e.
they do not take the time into account at which the data was
available to the system (see [Azi et al., 2010]). The opti-
mization algorithms used, however, can easily be adjusted to
deal with dynamic versions of the problem. The time calcu-
lation has to be adjusted to take the current time into account.
Nodes already in the past are skipped during calculation. Or-
ders have to be inserted by the date they are known to the
system. The insertion heuristics works unchanged and pro-
duces 985,756 cost on the data presented in Section 4 which
is 1.8% off the non-dynamic result and still more than 20%

Human plan Insertion heuristic Impr. heuristic on Human Impr. heuristic on Insertion
Transportation Cost 1 300 233 968 658 (-25.5%) 1 030 162 (-20.8%) 950 916 (-26.9%)
Driving km 1 246 771 885 063 (-29.0%) 951 390 (-23.7%) 873 027 (-30.0%)
Empty km 26 338 9 435 (-64.2%) 5 545 (-79.0%) 8 579 (-67.4%)

Utilisation (%) 45.1 76.2 61.2 76.1
Violations 47 23 (-51.1%) 7 (-85.1%) 19 (-60.0%)

Vehicles 1 736 699 (-59.7%) 1 111 (-36.0%) 697 (-59.9%)
Transported Orders 2 137 2 137 2 137 2 137

Runtime(min) - 18 180 180

Table 4: Comparison of human and optimised delivery plans

better than the human dispatchers. We are currently work-
ing on changing the high level workflows to include tour im-
provement heuristics. The main changes affect when tour im-
provement heuristics are triggered and what routes to select.

Currently we assume that every order is transported only
on one route serviced by only one vehicle. In reality, an order
on a certain vehicle might be exchanged with another vehi-
cle while in transit. The mode of transport could also differ.
In such cases, for example, it would be cheaper to transport
large number of orders by rail than individually transporting
them by road. The orders in the example would have to be
checked for partial transport on adjacent routes. We refer to
the problem as “inter-modal heterogeneous m-PDPSTW”. It
can be observed that the already large combinatorial space
enlarges further. The analysis of performance and behaviour
of known methods would allow us to understand the problem
space better and improve our techniques.

References
[Azi et al., 2010] Nabila Azi, Michel Gendreau, and Jean-

Yves Potvin. A dynamic vehicle routing problem with
multiple delivery routes. CIRRELT-2010-44, (44), 2010.

[Chandra et al., 1994] Barun Chandra, Howard karloff, and
Craig Tovey. New results on the old k-opt algorithm for the
tsp. 5th ACM-SIAM Symposium on Discrete Algorithms,
pages 150–159, 1994.

[Dorer and Calisti, 2005] K. Dorer and M. Calisti. An
adaptive solution to dynamic transport optimization. In
Michael Pechoucek, Donald Steiner, and Simon Thomp-
son, editors, AAMAS 2005 proceedings, Utrecht, 2005.

[Dumas et al., 1991] Y. Dumas, J. Desrosiers, and F. Soum-
nis. The pickup and delivery problem with time win-
dows. European Journal of Operational Research, 54:7–
22, 1991.

[Helsgaun, 2006] Keld Helsgaun. An effective implemen-
tation of k-opt moves for the lin-kernighan tsp heuristic.
Writings on Computer Science, (109), 2006.

[Jaw et al., 1983] J. Jaw, A. Odoni, H. Psaraftis, and N. Wil-
son. A heuristic algorithm for the multi-vehicle advance
request dial-a-ride problem with time windows. Trans-
portation Research B, 20B(3):243–257, 1983.

[Laporte and Osman, 1995] G. Laporte and I. H. Osman.
Routing problems: A bibliography. Annals of Operations
Research, 61:227–262, 1995.

[Lawler et al., 1985] E. L. Lawler, J. K. Lenstra, A. H.
G. Rinnooy Kan, and D. B. Shmoys. The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimiza-
tion. Wiley, New York, 1985.

[Lim, 2010] Li & Lim. Li & lim benchmark. Website,
2010. http://www.sintef.no/Projectweb/
TOP/Problems/PDPTW/Li--Lim-benchmark/.

[Nanry and Barnes, 2000] William P. Nanry and J. Wesley
Barnes. Solving the pickup and delivery problem with
time windows using reactive tabu search. Transportation
Research, Part B 34:107–121, 2000.

[Papadimitriou and Steiglitz, 1982] C. H. Papadimitriou and
K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[Parragh et al., 2008a] Sophie N. Parragh, Karl F. Doerner,
and Richard F. Hartl. A survey on pickup and delivery
problems: Part i: Transportation between customers and
depot. Journal für Betriebswirtschaft, 58(1):21–51, 2008.

[Parragh et al., 2008b] Sophie N. Parragh, Karl F. Doerner,
and Richard F. Hartl. A survey on pickup and delivery
problems: Part ii: Transportation between pickup and de-
livery locations. Journal für Betriebswirtschaft, 58(2):81–
117, 2008.

[Psaraftis, 1995] H. Psaraftis. Dynamic vehicle routing:
status and prospects. Annals of Operations Research,
61:143–164, 1995.

[Ropke et al., 2007] Stefan Ropke, Jean-Francois Cordeau,
and Gilbert Laporte. Models and branch-and-cut algo-
rithms for pickup and delivery problems with time win-
dows. Networks, 49(4):258–272, 2007.

[Savelsbergh and Solomon, 1998] MWP. Savelsbergh and
M. Solomon. Drive: Dynamic routing of independent ve-
hicles. Operations Research, 46:474–490, 1998.

[Solomon, 2005] M. Solomon. Vrptw benchmark prob-
lems. Website, 2005. http://w.cba.neu.edu/
˜msolomon/problems.htm.

