
Challenges in Maintaining Minimal, Decomposable
Disjunctive Temporal Problems

James C. Boerkoel Jr. and Edmund H. Durfee
Computer Science and Engineering, University of Michigan

Ann Arbor, MI
{boerkoel,durfee}@umich.edu

Abstract
In many scheduling applications, new scheduling
constraints can arise dynamically due to exoge-
nously determined events and preferences. In such
environments, maintaining a set of all possible re-
maining schedules can be much more robust than
selecting a single schedule. In this paper we dis-
cuss two properties, minimality and decomposabil-
ity, that are necessary for faithfully representing the
set of all remaining solutions to a Disjunctive Tem-
poral Problem (DTP). We prove minimal and decom-
posable representations always exist for a consistent
DTP. We also introduce metrics for comparing dif-
ferent minimal, decomposable DTP representations
in terms of space and time efficiency and propose
ideas for improving efficiency based on work from
dispatching disjunctive schedules.

1 Introduction
In many scheduling applications, the actual duration of a spe-
cific activity, such as the transportation time between two
locations, may be either uncertain, exogenously determined,
or subject to unexpressed preferences. As an example, con-
sider a truck that starts out at a depot and must make deliveries
to three different locations by a predetermined deadline. While
the truck can visit the three locations in any order, each order
may have different implications on travel and processing time
due to traffic congestion and the overhead involved in reshuf-
fling inventory on the truck. In such applications, calculating
a single plan with a specific schedule may be brittle to the
dynamics and preferences involved in the problem. A more
robust approach for dealing with uncertainty, dynamism, and
unexpressed preferences in logistics and scheduling applica-
tions is to instead calculate the set of all feasible schedules.
This approach efficiently supports queries of the form “When
can I perform delivery A?”, or “Can I make delivery X before
I make delivery Y ?”.

However, the set of all feasible schedules generally grows
exponentially in size as the number of events increases. Fortu-
nately, there exist constraint-based problem formulations that
are capable of compactly representing sets of feasible sched-
ules [Dechter et al., 1991; Stergiou and Koubarakis, 2000;
Shah and Williams, 2008]. The most general of these is called

the Disjunctive Temporal Problem (DTP), whose generality
is required for representing the example problem described
above. Faithfully representing the set of all feasible solu-
tions requires establishing properties called minimality and
decomposability. Minimality ensures that the complete set of
solutions is represented while decomposability ensures that
any consistent, partial schedule that respects constraints can
be soundly extended to a complete solution schedule.

In this paper, we will review three important constraint-
based scheduling problem formulations, including the Disjunc-
tive Temporal Problem (DTP) in Section 2. We will demon-
strate that the concepts of minimality and decomposability,
which are well defined for some problem formulations, ex-
tend naturally to the more general DTP. We will also prove
in Section 3 that despite fundamental differences from their
less-complex predecessors, minimal, decomposable represen-
tations for consistent DTPs always exist. In Section 4 we
explore the challenges associated with establishing minimal,
decomposable DTP representations that are more efficient in
terms of space (compactness) and the speed of reestablish-
ing minimality and decomposability after an update. Gaining
inspiration from important related work in dispatching disjunc-
tive scheduling, we will identify specific challenges to, and
propose ideas for, more efficient maintenance. Finally, we will
conclude with some discussion and future work in Section 5.

2 Background
In this section we provide definitions necessary for understand-
ing our contributions.

2.1 Simple Temporal Problem
We begin by adapting our description of the Simple Temporal
Problem (STP) [Boerkoel and Durfee, 2011]. As defined by
Dechter et al. [1991], the Simple Temporal Problem (STP),
S = 〈V,CSTP 〉, consists of a set of timepoint variables, V ,
and a set of temporal difference constraints, CSTP . Each
timepoint variable represents an event, and has an implicit,
continuous numeric domain. Each temporal difference con-
straint cij is of the form vj − vi ≤ bij , where vi and vj are
distinct timepoints, and bij ∈ R is a real number bound on the
difference between vj and vi.

To exploit extant graphical algorithms and efficiently reason
over the STP constraint network, each STP is associated with a
weighted, directed graph, G = 〈V,E〉, called a distance graph.

The set of vertices V is as defined before (each timepoint
variable acts as a vertex in the distance graph) and E is a set of
directed edges, where, for each constraint cij of the form vj −
vi ≤ bij , we construct a directed edge, eij from vi to vj with
an initial weight wij = bij . As a graphical short-hand, each
edge from vi to vj is assumed to be bi-directional, compactly
capturing both edge weights with a single label, [−wji, wij],
where vj − vi ∈ [−wji, wij] and a weight wxy is initialized
to∞ if there exists no corresponding constraint, cxy ∈ CSTP .
All times (e.g. ‘clock’ times) can be expressed relative to a
special zero timepoint variable, z ∈ V , that represents the
“start of time”. Bounds on the difference between vi and z can
be thought of as “unary” constraints specified over a timepoint
variable vi. Moreover, wzi and wiz then represent the earliest
and latest times, respectively, that can be assigned to vi, and
thus implicitly define vi’s domain. In this paper, we will
assume that z is always included in V and that, during the
construction of G, an edge ezi is added from z to every other
timepoint variable vi ∈ V . Examples of distance graphs that
correspond to solutions for the example problem introduced
in Section 1 (and formalized in Section 2.2) are in Figure 1.
An STP is consistent if it contains at least one solution, which
is an assignment of specific time values to timepoint variables
that respects all constraints to form a schedule. Approaches
for efficiently finding and representing the set of all solutions
is presented in Section 2.4.

2.2 Disjunctive Temporal Problem
In order to represent a scheduling problem as an STP, the
relative, partial order of all involved timepoints must be pre-
determined. However, many scheduling problems require
making decisions over the relative order in which to execute
activities. For example, capturing the fact that the truck can
visit locations in any order requires disjunctive constraints.
In comparison to the STP, the Disjunctive Temporal Problem
(DTP), D = 〈V,CDTP 〉, specifies a more general set of dis-
junctive constraints, CDTP , where c ∈ CDTP represents a
disjunction over a set of any temporal difference constraints.
A constraint c takes the form d1 ∨ d2 ∨ · · · ∨ dk for some
k ≥ 1, where each disjunct d represents a typical temporal
difference constraint over (possibly different) pairs of time-
points, vj − vi ≤ bij . Note that an STP is a special case of
a DTP where k = 1 for all constraints (CSTP ⊆ CDTP and
subsequently, STP ⊆ DTP).

Equipped with the more general DTP representation, we
now formally illustrate how to faithfully capture the constraints
and other aspects of a more detailed version of the example
logistics problem introduced in Section 1. We summarize this
representation in Table 1. The problem involves a single truck
that needs to make deliveries to three locations, A,B, and C.
In addition to the zero timepoint z (where z = 0 represents
the start time of the journey), there are timepoint variables
representing the arrival XIN and departure XOUT of the truck
to location X , for each of the three locations. The truck starts
its day at a relatively centrally-located depot, and must make
each delivery by various deadlines (XOUT − z ≤ bDL(X)

∀X where bDL(X) is delivery X’s deadline). Each location
requires at least 30 minutes duration for unloading (XIN −
XOUT ≤ −30 ∀X). Note that constraints over transition

Trans. from Depot Deadline Min. Duration
z − AIN ≤ −60; AOUT − z ≤ 300; AIN − AOUT ≤ −30;
z − BIN ≤ −75; BOUT − z ≤ 360; BIN − BOUT ≤ −30;
z − CIN ≤ −90; COUT − z ≤ 420; CIN − COUT ≤ −30;

Location to Location Transition (disjunctive)
AOUT − BIN ≤ −60 ∨ BOUT − AIN ≤ −90;
BOUT − CIN ≤ −90 ∨ COUT − BIN ≤ −120;
AOUT − CIN ≤ −120 ∨ COUT − AIN ≤ −150

Table 1: Summary of the example logistics problem.

𝐴𝐼𝑁 𝐴𝑂𝑈𝑇 𝐵𝐼𝑁 𝐵𝑂𝑈𝑇 𝐶𝐼𝑁 𝐶𝑂𝑈𝑇

𝑧

[30,150]

[300,420] [270,390] [180,300] [150,270] [90,210] [60,180]

[60,180] [30,150] [90,210] [30,150]

𝐵𝐼𝑁 𝐵𝑂𝑈𝑇 𝐴𝐼𝑁 𝐴𝑂𝑈𝑇 𝐶𝐼𝑁 𝐶𝑂𝑈𝑇

𝑧

[30,75]

[375,420] [345,390] [225,270] [195,240] [105,150] [75,120]

[90,135] [30,75] [120,165] [30,75]

a) The minimal, decomposable STP distance graph corresponding to labeling:
ℓ = {𝐴𝑂𝑈𝑇 − 𝐵𝐼𝑁 ≤ −60; 𝐵𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −90; 𝐴𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −120}

b) The minimal, decomposable STP distance graph corresponding to labeling:
 ℓ = {𝐵𝑂𝑈𝑇 − 𝐴𝐼𝑁 ≤ −90; 𝐵𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −90; 𝐴𝑂𝑈𝑇 − 𝐶𝐼𝑁 ≤ −120}

Figure 1: The distance graphs corresponding to minimal, de-
composable solutions to the example problem (Table 1) corre-
sponding to the three feasible labelings.

time (e.g., constraints of the form XOUT − YIN ≤ bY X ∨
YOUT −XIN ≤ bXY for some locations X and Y and bounds
bY X and bXY), which include transportation time, are neither
reflexive nor transitive due to traffic congestion and overhead
involved in reshuffling inventory on the truck.

The DTP is often solved using a meta-CSP formulation,
where each disjunctive temporal constraint c ∈ CDTP forms a
meta-variable with a domain of meta-values composed of the
set of possible disjuncts. Following the notation of Dechter
et al. [1991], a labeling, `, of a DTP, D, is an STP formed
by selecting one meta-value (disjunct) for each meta-variable
(disjunctive constraint). A schedule s, then, is a solution to
D if and only if it is a solution to one of D’s labelings. For
general DTPs, there are O(k|CDTP |) possible labelings, each
of which must be explored in the worst case, making the DTP
an NP-hard problem [Stergiou and Koubarakis, 2000]. In this
particular example problem, of the 23 = 8 possible labelings,
only two (A→ B → C and B → A→ C; which correspond
to the STPs in Figure 1 (a) and (b) respectively) satisfy all
scheduling constraints.

A singleton constraint, c ∈ Ck=1
DTP , is one that contains

only a single disjunct. Tsamardinos and Pollack [2003] note
that the subset Ck=1

DTP ⊆ CDTP can be used to form an STP〈
V,Ck=1

DTP

〉
. This STP can be used to compile new and tighter

singleton constraints that constrain which meta-values can
be assigned to which meta-variables. This forward-checking
procedure prunes any disjunct that is inconsistent with the
STP compilation, since it is guaranteed to be inconsistent with

the overall DTP. This pruning process may result in more
constraints being added to the set Ck=1

DTP , which further tight-
ens the STP compilation, possibly leading to more pruning.
In the extreme, this process could prune until all disjunctive
temporal constraints are singleton, eliminating the need for
combinatorial search in the meta-CSP.

More generally, the meta-CSP formulation leads to a search
algorithm that interleaves the STP forward-checking proce-
dure with an assignment of a meta-value to a meta-variable.
This has the effect of growing the set Ck=1

DTP and incrementally
tightening the corresponding STP compilation. If a particular
assignment of a meta-value di to a meta-variable ci leads to
an inconsistent STP instance, that assignment is backtracked.
Since at this point di is known to be inconsistent with the cur-
rent STP compilation, a procedure known as semantic branch-
ing allows the STP relaxation to be tightened by adding di’s
inverse implication. Expressing these otherwise implicit con-
straints further tightens the STP relaxation, which in turn can
lead to improved forward checking performance. Additionally,
Tsamardinos and Pollack [2003] describe how to incorporate
CSP techniques such as no-good recording and backjumping
into the meta-CSP search algorithm to further decrease DTP
solution algorithm runtime.

2.3 Temporal Constraint Satisfaction Problem
A Temporal Constraint Satisfaction Problem(TCSP), T =
〈V,CTCSP 〉, is a special case of a DTP (CSTP ⊆ CTCSP ⊆
CDTP and thus STP ⊆ TCSP ⊆ DTP) where each con-
straint c ∈ CTCSP takes the form vj−vi ∈ [−b1ji, b1ij]∨ . . .∨
[−bkji, bkij]. That is, all disjuncts specify bounds over the differ-
ence between the same two timepoints. Similarly to the DTP,
each of O(k|CTCSP |) possible labelings may need to be ex-
plored before finding a solution, making the TCSP an NP-hard
problem [Dechter et al., 1991]. While there exist procedures
for transforming a DTP to a TCSP [Planken, 2007], the TCSP
is more limited in the problems it can naturally represent. For
example, the disjunctive constraints from the simple running
example problem involve different pairs of variables (Table 1,
lower), which the TCSP is not directly able to represent.

2.4 Minimality and Decomposability
Dechter et al. [1991] define both minimality and decompos-
ability in terms of temporal constraint networks such as the
STP and the TCSP. These definitions extend quite naturally
to the DTP. A minimal constraint cij is one whose interval(s)
correctly specify the set of all feasible values for the difference
vj − vi. Similarly, a variable with a minimal domain is one
whose constraints with the zero timepoint are minimal. A DTP
is minimal if and only if all of its constraints and timepoint
domains are minimal. A DTP is decomposable if any locally
consistent assignment of a set of timepoint variables can be
extended to a solution. Each of the STPs presented in Figure 1
are both minimal and decomposable.

In short, a minimal and decomposable DTP faithfully repre-
sents the complete and sound set of solutions by establishing
the tightest bounds on timepoint variables such that: (1) no
solutions are eliminated and (2) any assignment of a specific
time to a timepoint variable (or bound to a constraint) that
respects these bounds can be extended to a solution using a

backtrack-free search. Establishing minimality and decompos-
ability allows efficient processing of queries such as “at what
time can activity X be performed” and “what are the poten-
tial relationships between activity X and Y ”. Unfortunately,
establishing minimality and decomposability for general, dis-
junctive scheduling problems, such as the TCSP and DTP, is
NP-hard [Dechter et al., 1991].

The STP presents a special case where minimality and de-
composability can be established efficiently (in O(|V |3)) by
applying an all-pairs-shortest-path algorithm, such as Floyd-
Warshall [1962], to the distance graph to find the tightest pos-
sible path between every pair of timepoints, vi and vj , forming
a fully-connected graph, where ∀i, j, k, wij ≤ wik+wkj . The
resulting graph is then checked for consistency by validating
that there are no negative cycles, that is, ∀i 6= j, ensuring
wij + wji ≥ 0 [Dechter et al., 1991]. Recent work exploits
sparsity in the constraint network to establish minimality and
decomposability more efficiently [Xu and Choueiry, 2003;
Shah and Williams, 2007; Planken et al., 2008].

Since establishing minimality and decomposability in dis-
junctive temporal problems is NP-hard, much work has fo-
cused on efficient, polynomial-time methods to increase
the level of consistency [Dechter et al., 1991; Stergiou
and Koubarakis, 2000; Tsamardinos and Pollack, 2003;
Choueiry and Xu, 2004]. These consistency improvements
are a partial step towards establishing minimal and decom-
posable representations and can be used as a preprocessing or
constraint propagation technique during a meta-CSP search
to find a component STP solution. Next we will prove that
minimal, decomposable representations for consistent DTPs
always exist.

3 The Existence of Minimal, Decomposable
DTP Representations

In this section, we prove that the definitions of minimality and
decomposability do indeed extend to DTPs by proving that
a minimal and decomposable representation for a consistent
DTP always exists. Despite the similarities between the TCSP
and the DTP, there are challenges to extending the concepts
of minimality and decomposability to the DTP. The heart of
these challenges stem from the fact that DTP constraints can
be specified over arbitrarily many different pairs of timepoint
variables. While in a TCSP, it is well-defined whether or not
there is a constraint that must necessarily be enforced between
a pair of timepoint variables, this is not the case in DTPs.
From the running example problem, the temporal difference
constraint between AIN and BOUT only needs to be enforced
if the temporal difference constraint between BIN and AOUT

is not enforced, and vice-versa. That is, the structure of a
minimal, decomposable temporal constraint network for a
TCSP is obvious a priori (since disjunctive choices are always
still between the same pair of timepoints), while the structure
of a minimal, decomposable temporal constraint network for
the more general DTP is not.

Notice that the set of solutions to both the DTP and TCSP
can be represented as a set of minimal, decomposable STPs.
To generate this set, we can naı̈vely enumerate each of the
DTP’s (exponentially many) feasible labelings, ` and then

−195, −150
∨

[60,180]

𝐴𝐼𝑁 𝐴𝑂𝑈𝑇 𝐵𝐼𝑁 𝐵𝑂𝑈𝑇 𝐶𝐼𝑁 𝐶𝑂𝑈𝑇

𝑧

[30,150]

[300,420] [270,390]

105,150
∨

180,300

75,120
∨

[150,270]

90,210
∨

[225,270]

60,180
∨

[195,240]

[30,150] 90,210
∨

[240,285]

[30,150]

−135, −90
∨

[120,240]

120,165
∨

[180,300]

Figure 2: A TCSP representing the minimal network associ-
ated with the problem in Table 1.

calculate the minimal, decomposable STP associated with
each `. We exploit this observation in our proof that minimal
representations of DTPs always exist, which follows as a series
of corollaries to Dechter et al.’s proof (omitted for brevity) of
Theorem 1:

Theorem 1. [Dechter et al., 1991] The minimal network,M,
of a given TCSP, T , satisfiesM = ∪`M`, where M` is the
minimal network of the STP defined by labeling `, and the
union is over all possible labelings.

Corollary 1. The minimal network,M, of a given DTP, D,
satisfiesM = ∪`M`, where M` is the minimal network of the
STP defined by labeling `, and the union is over all possible
labelings.

Proof. Follows mutatis mutandis from Theorem 1.

Corollary 2. A minimal representation of a consistent DTP
always exists.

Proof. The minimal network,M, of a DTP, D = 〈V,C〉, can
always be formulated as the TCSP, T = 〈V,CM〉, where the
set of constraints, CM, is composed of constraints cij ∈ CM
defined as vj − vi ∈ ∪`(M`)ij , where (M`)ij corresponds
to the bound interval on the difference between vj and vi in
the minimal network of the STP corresponding to label `.

Figure 2 represents the TCSP that forms the minimal net-
work for the example problem presented in Table 1. Notice that
we include every edge that shows up in either of the solution
STPs. For example, the edge between AIN and BOUT is in-
cluded with both a negative and positive interval, capturing the
cases where A occurs before B and vice-versa, respectively.
Note that in general an algorithm that assigns timepoints using
the minimal network alone does is not guaranteed decompos-
ability. For example, if we assign the duration of any of the
activities represented in Figure 2 to 80, our future assignments
should be limited according to selecting the STP in Figure 1
(a); however, the propagation of constraints in the minimal
network alone does not guarantee that this would occur.

While the original definition of the decomposability prop-
erty — a temporal network where any locally consistent as-
signment of a set of timepoint variables can be extended to
a solution — extends naturally to the DTP, it is immediately
not obvious whether or not decomposability can always be
established for a DTP for a couple of reasons. First is that

a DTP involves constraints with high cardinality, which, in
general, can be much harder to decompose than a problem
exclusively containing binary constraints [Gent et al., 2000].
A second, related reason is that how the set of timepoint vari-
ables is assigned influences whether or not certain temporal
difference constraints need be enforced in the set’s comple-
ment. However, we again exploit our naı̈ve representation to
prove:

Theorem 2. A decomposable representation of a consistent
DTP always exists.

Proof. If a DTP is consistent, its set of solutions can be repre-
sented as a set of minimal, decomposable STPs corresponding
to each feasible labeling, `. Given this representation, any
assignment to a set of variables locally consistent with at least
one of these STPs, by definition of a decomposable STP, is
guaranteed to be extensible to a solution.

This theorem leads naturally to a procedure for assigning
variables in a locally consistent way. First, a variable can only
be assigned a value if it appears in its domain (or alternatively,
a constraint can only be assigned a bound within one of its
intervals of possible bounds) in at least one minimal, decom-
posable solution STP. Second, once an assignment is made,
all STPs that are inconsistent with this assignment are pruned,
thereby guaranteeing that subsequent assignments will be lo-
cally consistent within one or more minimal, decomposable
solution STPs.

In this section, we demonstrated that minimal, decompos-
able representations always exist for consistent DTPs. How-
ever, in general, enumerating every minimal, decomposable
STP for each of the exponentially-many consistent labelings is
neither compact nor efficient to reason over. In the next section
we explore the challenges for more efficiently representing
and establishing minimal, decomposable DTPs.

4 An Efficient Minimal, Decomposable DTP
Representation

While we have shown that minimal, decomposable representa-
tions for consistent DTPs always exist, all representations are
not necessarily created equally. As discussed earlier, one of the
main advantages of a minimal, decomposable DTP representa-
tion is to support queries that ask “when can I perform activity
X” either in general, or relative to another timepoint. However,
presumably if one is interested in posing such queries, one is
also interested in both making informed scheduling decisions,
and perhaps performing additional queries in the future. So
in this sense, we are also interested in how efficiently a min-
imal, decomposable DTP can be updated. Finally, given the
exponential nature of the problem, in many scenarios, space
requirements of the representation may also be of concern.
In summary, we can compare representations in terms of (1)
query efficiency, (2) update efficiency, and (3) space efficiency.

While our construction of the minimal network related to a
DTP may support efficient queries, overall, using a possibly
exponential number of STPs to represent and maintain (e.g.
update) a decomposable DTP is likely to be quite inefficient
in general. These issues lead to a natural question: are there

better ways for establishing and representing minimal, decom-
posable DTPs than the naı̈ve approaches described in Section
3? We turn to some important related work in dispatching
disjunctive schedules for insights into answering this. While
not all goals of dispatchable execution align perfectly to those
of maintaining minimal, decomposable DTPs, a dispatch agent
must make fast recommendations (query efficiency, update
efficiency) and may also have limited space capabilities (space
efficiency).

4.1 Related Work: Fast Dispatch of Disjunctive
Schedules

A minimal, decomposable STP instance naturally lends itself
to dispatchable execution — an online approach whereby a
dispatcher efficiently adapts to scheduling upheavals by impos-
ing additional, restrictive constraints by scheduling timepoints
immediately prior to execution [Muscettola et al., 1998]. Shah
and Williams [2008] generalize this idea to disjunctive schedul-
ing problems by calculating a dispatchable representation of a
TCSP. While a previous approach for dispatching DTPs exists
[Tsamardinos et al., 2001], this approach is similar in spirit to
the naı̈ve approach described in Section 3 by calculating and
maintaining the set of all solution STPs. However, Shah and
Williams [2008] recognize that many of the solution schedules
contain significant redundancy, and so compactly represent the
set of decomposable STP solution instances in terms of just
their differences. This approach leads to not only a much more
compact representation, but also faster execution by avoiding
the need to simultaneously and separately update each dis-
parate STP. The algorithm propagates each disjunct using a
recursive, incremental constraint compilation technique, and
for each disjunct, a list of logical conclusions is kept. Ad-
ditionally, a list of conflicts is maintained as inconsistencies
arise. Their basic execution dispatch algorithm adds each time-
point without any predecessors to an event list, and then as
one of these timepoints becomes ‘live’ (when the current time
falls within timepoint’s domain), it is selected and updated to
occur at the current time, after which the update is propagated
throughout the remaining problem. They demonstrate empiri-
cally that their approach leads not only to orders of magnitude
more compact representations, but also to orders of magnitude
faster execution than the suggested naı̈ve approach.

4.2 Extending to the DTP
Since the set of solutions for both DTPs and TCSPs can be
represented by a set of minimal, decomposable STP solu-
tions, Shah and Williams’ approach for compactly represent-
ing the set of solutions by eliminating redundant informa-
tion is naturally extensible to the DTP. In fact, note that the
compact list of implied relationships (of the form vj − vi ∈
[−bji, bij] → vy − vx ∈ [−byx, bxy]) and conflicts (of the
form ¬vj − vi ∈ [−bji, bij] ∨ . . . ∨ ¬vy − vx ∈ [−byx, bxy])
output by Shah and Williams’ approach requires the generality
of a DTP constraint to represent (since they are constraints
involving different pairs of variables). This leads to a more
general observation:
Observation 1. Efficiently representing a set of minimal, de-
composable STPs in conjunctive normal form (CNF) requires
the representational power of a DTP.

Constraints for Figure 1 (a) Constraints for Figure 1 (b)
AOUT − BIN ≤ −60→ BOUT − AIN ≤ −90→
(BOUT − AIN ≤ −90∨) (AOUT − BIN ≤ −60∨)

AIN − z ≤ 180; z − AIN ≤ −195;
AOUT − z ≤ 210 z − AOUT ≤ −225;
z − BIN ≤ −150 BIN − z ≤ 120;
z − BOUT ≤ −180 BOUT − z ≤ 150;

AOUT − CIN ≤ 165; CIN − AOUT ≤ −180;
CIN − BOUT ≤ −240; BOUT − CIN ≤ 210;

AOUT − AIN ≤ 75;
BOUT − BIN ≤ 75;
COUT − CIN ≤ 75;
z − CIN ≤ −345;
z − COUT ≤ −375;

Table 2: A minimal, decomposable representation of the ex-
ample logistics problem.

In addition to the constraints displayed in Figure 2, the con-
straints presented in Table 2 guarantee both minimality and
decomposability for the example logistics problem. Following
the same principle as Shah and Williams, we capture these
implied relationships compactly by noting that the only dif-
ference in the labelings between the Figure 1 (a) and Figure
1 (b) are the labels AOUT −BIN ≤ −60 (which implies the
STP encoded by the temporal difference constraints in the first
column of Table 2) and BOUT −AIN ≤ −90 (which implies
the STP encoded by the temporal difference constraints in the
second column of Table 2). As a result, any update that is not
common to both solution STPs will result in the the correct
labeling being applied during forward-checking, which in turn
results in a decomposable, minimal network after propagat-
ing the constraints. Whereas our representation required a
linear (in the number of STP solution edges) number of ad-
ditional constraints, to generally represent the two solutions
encoded in Figure 1 in CNF form would require representing
a combinatorial number of additional disjunctive constraints.

4.3 Open Challenges
To this point, we have exploited the DTP’s similarity to the
TCSP to address many important challenges associated with
maintaining minimal, decomposable DTP representations. Par-
ticularly, we have shown that we can conceptually extend Shah
and Williams’ framework to calculate minimal, decomposable
DTP representations, but minimality and decomposability only
guarantee query efficiency. We now identify important differ-
ences between the DTP and TCSP that lead to unique chal-
lenges in efficiently establishing and maintaining minimality
and decomposability in DTPs.

At a high level, Shah and Williams’ approach is roughly
similar to the meta-CSP search described in Section 2.2, how-
ever there are many important key differences that pose unique
challenges for update efficiency. First, when propagating con-
straints in a TCSP, forward-checking only directly affects the
constraint that is currently being propagated. However, in a
DTP, pruning a meta-value during forward-checking could
lead to a unary meta-variable (disjunctive constraint with only
one remaining feasible temporal difference constraint) [Ster-
giou and Koubarakis, 2000]. This in turn could lead to a new
constraint being posted in a distant, non-neighboring portion
of the temporal network. That is, propagation jumps around
the temporal network rather than only following links through

the network. A second, related difference is that DTP search
decisions themselves also can fundamentally change the struc-
ture of the temporal constraint network by deciding to add
temporal difference constraint between one pair of timepoints
instead of some other, different pair. Both of these differences
pose challenges to update efficiency, since it is no longer possi-
ble to systematically propagate constraints using the temporal
network alone. Instead, updates must be simultaneously prop-
agated through both the low-level, minimal temporal network
and also the high-level, meta-level CSP. Incorporating support
for general, decomposability in the meta-CSP requires funda-
mental changes to Shah and Williams’ algorithm to efficiently
learn and maintain all implied relationships and no-good con-
straints at the meta-level.

Together, these two differences pose a third challenge: can
we encode the differences between two solution STPs as com-
pactly, when the differences between them are more system-
atic in nature? Recall that Shah and Williams’ basic approach
attempts to exploit redundant information. However, when
search decisions and constraint propagation lead to temporal
networks with significant differences in structure (e.g., STPs
that contain different constraints between different pairs of
timepoints), it is unclear how compact, in general, the repre-
sentation that this approach generates will be.

Finally, up to this point, when we discuss update efficiency,
we have largely meant returning a perturbed minimal, de-
composable DTP back to a minimal and decomposable state.
However, in many applications, the time it takes to estab-
lish the initial minimal, decomposable representation may be
critical. Shah and Williams’ approach is intended as a pre-
compilation approach, and so is never evaluated in terms of
initial compilation time. We conjecture that incorporating re-
cent CSP-based search techniques, such as forward-checking,
no-good learning, etc. [Tsamardinos and Pollack, 2003],
and also SAT-based techniques, such as unit-propagation
and a two-literal watching, etc. [Armando et al., 2004;
Nelson and Kumar, 2008] could speed the overall process
of establishing a decomposable by orders of magnitude, but
also poses significant algorithmic engineering challenges.

5 Discussion
In this paper, we demonstrated how the concepts of minimality
and decomposability, which had previously been formally de-
fined for only the STP and TCSP, can naturally be extended to
the more general DTP formulation to represent the complete,
sound set of solutions. We contributed proofs that minimal and
decomposable representations of consistent DTP always exist,
though not necessarily in an efficient, compact form. We intro-
duced metrics for comparing different minimal, decomposable
DTP representations in terms of efficiency, including com-
pactness (space) and query and update speed. We then both
discussed the challenges of and offered insights for extend-
ing an approach for incrementally compiling TCSPs for fast
schedule dispatching to the more general DTP. An interesting
extension of this work would be an algorithm that can compute
and maintain minimal and decomposable DTP representations
in a more incremental or anytime manner for applications that
cannot afford to wait for costly precompilation algorithms to

complete. Our vision is that the insights of this work can lead
to online algorithms that effectively and efficiently adapt to
scheduling eventualities that arise in real time and do so with
minimal space requirements. These algorithms would have
significant implications for logistics applications where the
pace of scheduling perturbations may outstrip a scheduler’s
ability to replan or reschedule, while also granting more auton-
omy for practitioners to, on-the-fly, select the schedules and
plans that best suit their immediate needs and preferences.

References
[Armando et al., 2004] A. Armando, C. Castellini, E. Giunchiglia,

and M. Maratea. A SAT-based Decision Procedure for the Boolean
Combination of Difference Constraints. In Proc. of SAT’04, pages
166–173, 2004.

[Boerkoel and Durfee, 2011] J.C. Boerkoel and E.H. Durfee. Dis-
tributed Algorithms for Solving the Multiagent Temporal Decou-
pling Problem. In Proc. of AAMAS 2011, pages 141–148, 2011.

[Choueiry and Xu, 2004] B.Y. Choueiry and L. Xu. An efficient con-
sistency algorithm for the temporal constraint satisfaction problem.
AI Communications, 17(4):213–221, 2004.

[Dechter et al., 1991] R. Dechter, I. Meiri, and J. Pearl. Temporal
constraint networks. In Knowledge representation, volume 49,
pages 61–95. The MIT Press, 1991.

[Floyd, 1962] R.W. Floyd. Shortest path. Communications of the
ACM, 5(6):345, 1962.

[Gent et al., 2000] I. Gent, K. Stergiou, and T. Walsh. Decompos-
able Constraints. Artificial Intelligence, 123(1-2):133–156, 2000.

[Muscettola et al., 1998] N. Muscettola, P. Morris, and I. Tsamardi-
nos. Reformulating temporal plans for efficient execution. In Proc.
of KR’98, pages 444–452, 1998.

[Nelson and Kumar, 2008] Blaine Nelson and T. K. Satish Kumar.
CircuitTSAT: A solver for large instances of the disjunctive tem-
poral problem. In Proc. of ICAPS-08, pages 232–239, 2008.

[Planken et al., 2008] L. Planken, M. de Weerdt, and R. van der
Krogt. P3C: A new algorithm for the simple temporal problem.
In Proc. of ICAPS-08, pages 256–263, 2008.

[Planken, 2007] Leon R. Planken. Temporal reasoning problems
and algorithms for solving them (literature survey). Literature
survey, Delft University of Technology, October 2007.

[Shah and Williams, 2007] J.A. Shah and B.C. Williams. A Fast In-
cremental Algorithm for Maintaining Dispatchability of Partially
Controllable Plans. In Proc. of ICAPS-07, 2007.

[Shah and Williams, 2008] J.A. Shah and B.C. Williams. Fast Dy-
namic Scheduling of Disjunctive Temporal Constraint Networks
through Incremental Compilation. In Proc. of ICAPS-08, 2008.

[Stergiou and Koubarakis, 2000] K. Stergiou and M. Koubarakis.
Backtracking algorithms for disjunctions of temporal constraints.
Artificial Intelligence, 120(1):81–117, 2000.

[Tsamardinos and Pollack, 2003] I. Tsamardinos and M.E. Pollack.
Efficient solution techniques for disjunctive temporal reasoning
problems. Artificial Intelligence, 151(1-2):43–89, 2003.

[Tsamardinos et al., 2001] I. Tsamardinos, M.E. Pollack, and
Ganchev P. Flexible Dispatch of Disjunctive Plans. In Proc.
of ECP-06, pages 417–422, 2001.

[Xu and Choueiry, 2003] L. Xu and B Choueiry. A new effcient
algorithm for solving the simple temporal problem. In Proc. of
TIME-ICTL-03, pages 210–220, 2003.

