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Abstract. Autonomous robots perceive their environment usually
through exteroceptive sensors which generate features in the spatial
domain. Finding the corresponding semantic or symbolic description
can be referred to as the anchoring or grounding problem. Some of
the latest research in robotics is dedicated to the generation of seman-
tic maps. This includes labeling of metric maps which are provided
by 3D point clouds. Usually, a model database has to be generated
beforehand in order to classify objects in the spatial domain. In our
approach, we propose a semantic classification based on object prim-
itives and their spatial 3D relationship. We introduce spatial feature
descriptors which can be mapped directly to a symbolic level. By
looking at the relationships in the spatial domain, we are able to de-
scribe and classify known objects without model learning. The spa-
tial entities can be defined directly using domain knowledge and on-
tologies. We apply our approach to a mobile dual-manipulator robot
with application to logistic scenarios. We propose an ontology-based
description of an indoor environment and a probabilistic reasoning
approach based on spatial feature descriptions. The paper will give
an overview of our current work on applying AI methods to logistics
scenarios.

1 INTRODUCTION
Mobile robots are usually moving in and interacting with a 3D en-
vironment, so 3D perception is mandatory for such systems. Besides
path-planning and map-building approaches, which have been thor-
oughly investigated over the last decade, robots need an understand-
ing about their environment.
As more processing power and more sophisticated 3D range sen-
sors become available, an increasing number of approaches is dealing
with the generation of coherent, metric 3D models. Nevertheless, it
becomes clear that simple metric information about the environment
is not sufficient to establish real autonomy in terms of interacting
with and reasoning about the robot’s environment. For intelligent be-
havior, it is preferable to send the robot high-level commands, like
“Move to the table in the office!” or “Take the box from the table in
the office!” instead of sending the robot to pure metric coordinates.
The problem is always to anchor the spatially detectable features to
a semantic level. A typical indoor environment is shown in Figure 1
which was generated by our robot in a logistic setup. The task of the
robot is to reach the shelf and grab a certain object. While in our ex-
periments the object detection is based on vision and SIFT-features,
the shelf itself is detected using a tilting 3D laser scanner. Learning
a geometric model of a shelf would include learning different types
of shelves, with different numbers of boards and with different sizes.
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Our key idea is to separate the model from the physical appearance
and include a divide and conquer strategy. On a semantic level a typ-
ical shelf can be described by the following description:

• All rectangular shapes have an elongation of less than two meters.
• The number of rectangular shapes is more than one.
• All rectangular shapes covered an area less than two square me-

ters.
• All rectangular shapes are parallel to each other and to the floor.
• All rectangular shapes have the same size.
• All rectangular shapes have the same vertical alignment.

This intuitive semantic description will hold for most of the shelves
which are used in our lab for experiments. An important feature
of the description above is that all semantic relationships and fea-
tures are measurable in the spatial domain. This means, by analyzing
the extracted shape information and their relationship to each other,
the bridging between the spatial and semantic representation can be
achieved for some shape primitives. In the remainder of this work we
will describe how objects can be detected using spatial/semantic fea-
ture descriptors. The process of analyzing the environment using 3D

Figure 1. A point cloud taken by the robot in our lab. It shows a shelf and
some objects which are contained in the shelf.

laser range finders is basically performed in two consecutive steps.
In a first step, laser data is acquired using a tilting laser setup or
3D LIDAR (light detection and ranging) system and matched to an
existing point cloud model. In a second step of the scene-recovery
process, geometric information is extracted from the merged point
cloud data. This can be achieved by using 2D plane extraction [16]
or the direct extraction of 3D primitives [13]. Some common surface
reconstruction methods include the ball pivoting algorithm [1] and



the Delaunay triangulation [8].
Most of the described algorithms are aimed at reconstructing accu-
rate surfaces and finding their application in reverse engineering of
3D structures. The accuracy of these algorithms results in high com-
putational costs. They are thus not suited for robotic applications be-
cause the surface reconstruction can take up to several minutes.
The plane extraction algorithm described in [16] works well on
noisy sensor data and uses an iterative region-growing algorithm. The
drawback of this approach is that it needs organized point clouds (i.e.
the neighbor of each point is known). This is common for 3D LIDAR
systems but not true for merged or registered scans. The approach
we present in this paper will allow scene recovery from unorganized
point sets and will also extract features from the spatial domain. The
approach described in [9] provides a fuzzy clustering algorithm in
order to segment a 3D scenery into cluster subsets without model
learning. An approach of iterative triangulation of unorganized point
clouds is described in [10]. All the described algorithms above are
dealing with the spatial domain and are usable for identifying re-
gions in LIDAR generated 3D point cloud data.
Coming from the semantic side, [6] and [7] describe how semantic
maps are used for high-level planning and spatial reasoning. The au-
thors describe in their work the bridging between the spatial domain
and the semantic domain which they call S-Box (spatial box) and T-
Box (taxonomy box). The semantic interpretation of physical objects
is carried out by optical marker identification but not directly on spa-
tial interpretation of point cloud data.
In the work described in [11], a constraint network is chosen in order
to identify spatial entities such as wall, floor, and doors. That work
shows how an environment can be described efficiently by using only
the two constraints “parallel to” and “orthogonal to”. We will extend
this idea by adding additional spatial features which can be directly
extracted using shape recovery on segmented regions.

2 SHAPE RECONSTRUCTION

3D data of the scenery is generated using a tilting laser scanner.
From this, we generate a data set Ψ with vector elements ψi =
(xi, yi, zi)

T , representing points in space. We process the raw data
in two consecutive steps. First, we apply a fast region-growing al-
gorithm to segment the point cloud data into regions which belong
to a coherent plane. In a second step, the geometric data of the de-
tected planes are extracted. The shape of the planes are of major in-
terest. Therefore, the segmented point regions are polygonized us-
ing alpha shapes. Our region-growing approach follows partly the
algorithm described in [12], with the extension that our approach is
able to process unorganized point clouds by efficiently integrating
K-nearest neighbor (KNN) search into the growing process. Compu-
tationally, the most expensive function in the algorithm is the KNN
search which can be approximated with a runtime of O(n log(n))
[15]. Due to the requirement of being able to process unorganized
point clouds which occur in registered scans, composed by using ICP
[3], we have to optimize the KNN search during the region-growing
process.
Our key idea is to perform the cost-intensive KNN search at the be-
ginning and store each point separately with a pointer to its KNNs.
The growing plane keeps track of its growing frontier, i.e. each plane
has its assigned nearest neighbors which are the next candidate for
the growing process. During the region-growing process, the KNNs
of each point, which is grown into the plane, are merged with the
region frontier. We briefly summarize Rabbani’s approach in Algo-
rithm 1 and state our extension to this algorithm.

Figure 2. The semi-humanoid robot Aila, which was developed for dual
manipulation tasks in a logistic scenario. The robot uses a tilting 3D LIDAR
system for precise point cloud generation in 3D space. A second PMD LIDAR
is used for obstacle avoidance.

The problem concerning runtime in the base algorithm is that the

Algorithm 1 Region Growing Algorithm
1: Input : Pointset Ψ
2: Output : Subsets R1, ..., Rn of regions belonging to one plane
3: while Ψ not empty do
4: Select random seed point ψ from Ψ
5: Find nearest neighbor of ψ
6: if MeanSquareError(Ri ∪ ψ) < δ and
‖BestF ittingP lane(Ri)− ψ‖⊥ < γ then

7: Add new point ψ to Ri

8: end if
9: end while

nearest neighbor search has to be performed each time a new seed
point is selected. Searching the nearest neighbor can be done in con-
stant time if a single scan line is taken from a tilting laser or a 3D
LIDAR system. This does not hold for merged, registered or filtered
scans because the information of the nearest neighbor is lost.
In order to extend Rabbani’s algorithm to be efficient for unorganized
point clouds, we modify the algorithm by performing a KNN search
only once at the beginning.
Each KNN of each point is then stored using a priority queue, or-
dered according to the distance to the seed points. Whenever a new
point is added to the current region, the priority queue of the new
added point is merged into the current region-growing front. By us-
ing pointer arithmetic we reduce memory usage.
After the regions have been segmented using Algorithm 1, the shape
of each segmented point region is extracted. Because the appearance
of each shape is important for later scene analysis, we extract the
concave hull, i.e. the polygon which approximates the shape of the
original object.
We choose the alpha shape approach, which is described more de-
tailed in [14] and [2], in order to extract the concave polygon of the



detected regions. Figure 3 gives an idea of how alpha shapes are com-
puted. For the analytic description of shapes the reader is pointed to
[14]. The alpha shapes are a special case of a Delaunay triangulation
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Figure 3. Alpha shape example in 2D. Alpha shapes can be described as
the shape which is created if a disk (or a sphere in 3D) with the radius α is
rolled along the point cloud, starting with a border point. Each time a point
is hit by the disk, it becomes the new pivoting point and the previous and the
new pivoting point are connected.

and are mathematically well defined. For each point in a segmented
region R, a vertex is created. Two vertices pi and pj are connected
if there exists a 3D sphere with radius α which has pi and pj on the
boundary and does not contain any other point in R. In our imple-
mentation, we use the alpha shape reconstruction provided by [4].
Every alpha shape is then projected to a 2D plane for later shape
analysis, e.g. eccentricity, size, shape, center of gravity. Note the de-
pendency of the recovered shape on the radius α. If α → 0, each
point in R forms a separate shape, if α → ∞ the convex hull is cal-
culated. Figure 4 shows our lab scenery and the segmented planes
and structures. For our approach we exploit the hypothesis that most
of man-made indoor structure is of a rectangular shape. Examples for
such structures are, for instance, tables, shelves, doors, walls, but also
usable common objects of every-day use, such as monitors, TV-sets,
microwave ovens, refrigerators, etc. In order to detect such objects, it
is important to detect rectangular shapes from the set of alpha shapes
calculated in the prior steps.
The detection of the rectangular shapes is done using Hough trans-
formation. The shapes are therefore projected in a discrete 2D bitmap
with fixed cell size. On this 2D image plane, the shapes can be an-
alyzed straight forward. Based on the line segmentation results, the
detected polygons are checked whether they intersect in four points
and their dihedral angle is around 90◦.
The detection of rectangular shapes is one of the important features
needed to form the spatial feature vector described in the next sec-
tion. In addition to the “rectangularness” of the shape, important fea-
tures like the area covered and the expansion can be extracted. Be-
fore we introduce the spatial feature descriptors in the next chapter,
we summarize the processing steps for unorganized point clouds.

• KNN search and storage in a priority queue for each point.
• Application of region-growing algorithm using the KNN-priority

queues as growing frontier.
• Extraction of concave polygons using alpha shape recovery
• Projection of alpha shapes into discrete 2D bitmap.
• Detection of lines using Hough transformation.
• Detection of rectangular shapes using line analysis.
• Extraction of form features from the 2D bitmap.

Figure 4. A lab scene and the corresponding segmentation steps. After the
point cloud has been segmented and after the generation of the alpha shapes,
some 2D planes are left for further feature analysis. As a human it is easy
to detect the floor, the table, and the chair based only on the knowledge of
spatial relationships between the objects.



3 SPATIAL FEATURE DESCRIPTION
Once the shapes have been recovered from the unorganized point
cloud, the goal is to classify the structure the robot perceives and to
label the structure with semantics. To make semantic labeling possi-
ble in indoor environments, we make use of some basic assumptions.
If we look around in a typical indoor environment like a household
environment or an office environment, it is clear that most structures
are of rectangular shape and mostly parallel or orthogonal to each
other.
We will explain our semantic labeling approach using a simple ex-
ample: Think of two persons who are able to communicate with each
other. One person is able to perceive his environment, the other is not
but has a perfect knowledge about the environment. One can think of
the first person being in the spatial domain (without any understand-
ing) and the other person being in the semantic domain.
Now think of how the person in the spatial domain would describe a
table without knowing what a table is. A few spatial features would
be sufficient until the person in the semantic domain can guess what
is meant by the description (e.g. rectangular shape, parallel to the
floor (or ceiling), height less than one meter from the floor, etc.).What
happens is that the person in the semantic domain matches the avail-
able information to its internal model. Similar to the processing in
a decision tree, every additional information given will increase the
likelihood for a certain entity in the semantic model space.
Similar to the example above, the robot has to extract a vector of
feature descriptors of the spatial entities in order to compare them
with the semantic knowledge database. In a first approach, we de-
fine a set of vectors which are able to describe spatial entities of an
environment. The feature vector Φ is defined as

Φ = (A,E,R,Θ)T ,

whereA ∈ R2 is the area covered by the shape, E ∈ R describes the
maximum extension of the detected entity, and R ∈ [0, 1] describes
the “rectangularness” of the entity, with R = 1 describing a perfect
rectangle. In our current approach, we only consider perfect rect-
angles as a binary decision. In later implementations, we also want
to consider similarities to rectangles in order to increase the robust-
ness of our approach. The reason to look for a rectangular structure
is given by the observation that most artificial objects have a rect-
angular plane in their structure (e.g. doors, shelves, closets, walls,
monitors, fridges).
Θ ∈ [0, 1] describes the relationship to other detected entities and is
given by

Θ = P (ω, σ)

where ω ∈ Ω is the target of the relationship and σ ∈ Σ is the
definition of spatial relationship. Ω is a set of targets, i.e. labels in the
semantic domain; Σ holds the attribute space which maps semantic
attributes to spatial attributes. The labels in the semantic domain are
defined in a model data base and include entities like desk, table,
door, etc.
The attributes describe the spatial relationship between the detected
entities (i.e. the parent of the relationship) and the target entity. An
example for an attribute is

σ → [0, 1] :
above → (Pos Zparent − Pos Ztarget) < 0,

which means that the target is below the parent entity. In our current
implementation, we again consider a likelihood function in order to
deal with uncertainties. For instance, two shapes can be parallel with

the certainty of 0.9 due to noise and rounding differences in the ex-
traction process.
P ∈ [0, 1] maps the relationship between the parent entities and the
target entity, where 1 is the maximum likelihood. Another advantage
of our approach is that it can be chained forward. For instance, an
object on the table can be identified as a monitor with likelihood 0.8.
Because the likelihood of the table is 0.5, the likelihood of being a
monitor for the object is reduced to 0.4
Mapping semantic attributes to spatial relationships is the main con-
tribution in our approach. A mapping between attribute A above B
and a geometric expression would include that the z-value of the spa-
tial entity A is higher than the z-value of B.
Simply speaking, we solve the semantic classification by recursively
calling the relationship function Θ until a spatial axiom is reached.
The spatial axioms are defined by entities which do not depend on
a relationship with other entities. They are defined as shapes having
the spatial feature vector

Φ = (A,E,R, 1)T ,

implying that there is no relationship needed in order to put semantic
labels on spatial axioms, so the likelihood is set to 1.
An example of a spatial axiom is, for instance, a floor which is the
lowest horizontal entity in reference to the robot coordinate system.
So the floor is not identified by a relationship to other entities.
From the spatial axioms, the relationships Θ are resolved until the
root of the classification tree is reached. The function Θ is a recursive
call to the semantic domain space. In order to define a match between
a model entity and an extracted spatial entity, we define the following
similarity equation. The spatial feature descriptor of a model Φmodel

and an extracted spatial entity Φentity are similar if

Φmodel � Φentity < δ,

where δ is the similarity threshold. The feature disparity function �
between Φmodel and Φentity is defined as:

Φmodel � Φentity := ‖Amodel −Aentity‖
+‖Emodel − Eentity‖
+‖Rmodel −Rentity‖
+‖Θmodel −Θentity‖

When classifying structures, we are not dealing with full 3D percep-
tion but with a projection of 2D shapes in 3D space which is typical
for a LIDAR recovered structure. Considering shape analysis, all de-
tected shapes are projected onto a 2D plane. In order to analyze the
recovered shapes (cf. Section 2), the planes are quantized by a pro-
jection in a 2D occupancy grid with a fixed grid of 1cm per pixel.
In our first approach, we focus on rectangular shapes, which will
cover most of the objects found in indoor environment. In order to
detect rectangular shapes in 2D, a Hough transformation is used [5].
To achieve this, all detected alpha shapes are projected into a discrete
2D bitmap. In order to detect a rectangular shape, all lines are ana-
lyzed with regard to their intersection in four points and whether the
angles between the lines are ∼ 90◦.
We now summarize our approach for the semantic labeling of spatial
entities.

• A spatial database with labels and spatial description is set
up. Each entity is represented by a spatial feature descriptor
SFDmodel. Each element is described by a spatial feature de-
scriptor Φmodel = (A,E,R,Θ)T . Some entities must be spatial
axioms and not depending on the relationship to any other entity
(i.e. Θ = 1).



• The parameters A,E,R of Φ are extracted from the detected shapes
in the spatial domain using the rectangle detection. Θ is evaluated
until a spatial axiom is found.

• The disparity function Φmodel�Φentity is evaluated. If the spatial
feature descriptors are similar, the detected entity is matched with
the model.

4 PRELIMINARY RESULTS
We tested our algorithm in a typical indoor environment using the
robot setup pictured in Figure 5. For the scan, we chose 100.000
points at an opening angle of 180◦ horizontally and 90◦ vertically.
The segmentation results are shown in Figure 6.
It is obvious that important spatial entities are segmented correctly

Figure 5. A point cloud of an office environment including 100.000 points

and the shape is recovered correctly. Besides the correct outer shape,
important spatial information can be derived from the shapes, e.g.
their appearance, the plane normal, and the metric extension. By this
means, the 3D scene can be interpreted using constraints based on
pre-knowledge about the environment. In a typical office environ-
ment, a table can be described as a rectangular shape parallel to the
floor. The floor itself may be identified as being the largest horizon-
tal plane with the lowest z-value, while the perpendicular, rectangular
shape above the desk may be classified as flat screen monitors. Figure
7 shows an example in order to extract the features A,E,R from the
shape polygons. In order to classify the shapes recursively, we de-
fine three semantic entities, i.e. desk, screen, floor with their spatial
relationships.

Φdesk = (1.28, 1.60, 1,Θ(floor, parallel))T

Φscreen = (0.24, 0.57, 1,Θ(desk, orthogonal)
∧Θ(desk, above))T

Φfloor = (2.0, 2, 0, 1)T

(1)

The relationships parallel, orthogonal, and above map the corre-
sponding entities to the spatial relationships

σ → [0, 1] :
parallel → (Nparent ·Ntarget)

−(|Nparent| · |Ntarget|) < ε
orthogonal → Nparent ·Ntarget < ε
above → (Pos Zparent − Pos Ztarget) > 0

(2)

In the relations above, N denotes the normal vector of the extracted
regions belonging to the regarded shape (cf. Section 2). Pos Z de-
notes the position of the shape (represented by the center of mass
of the corresponding shape) in the vertical direction. Note that alpha

windows

window frames

desk and flat screens

Figure 6. The results of our segmentation algorithm. The planes in the point
cloud are segmented correctly and assigned to different colors. Some selected
alpha shapes are presented. The window shapes, the shape of the window
frame, and the shape of the flat screens on the desk are clearly recognizable
after the polygonization.



Extracted Alpha Shapes of the Screens

Rectangular Shape Extraction of the Screens
using Hough Transformation

Figure 7. The two flat screen monitors from our scenery in Figure 6. First,
the alpha shapes are extracted. Using our rectangle detection algorithm, the
shape is clearly defined as rectangular. From the shape, the parameters A
(area) and E (extension) can be easily extracted. The rectangularness (R) is
set to 1 for each of the shapes. The relation function Θ is omitted in this
example because no other entities are related to the shapes.

shape or Hough transformed structures do not contain any relation-
ship to each other. The extracted relationship features are processed
during the region-growing process, e.g. center of gravity, or normal
vector.
Currently, we are able to extract all the spatial features mentioned
in this paper and chain the extraction of the relationship function Θ.
What is still missing to finally prove our concept is the implementa-
tion of the search algorithm that is able to match the spatial feature
descriptors of detected entities to existing model feature descriptors.
First experiments are promising considering only three simple enti-
ties, such as floor, table and monitor standing on the table. The next
step is to match the features described in this paper to a semantic
database of objects.

5 CONCLUSION

In this paper, we combined a method for recovering structure from
unorganized 3D point clouds in the robotics domain. We presented
two algorithms: The first transforms the point cloud into independent
plane segments. The planes are then processed by computing the
concave hull using an alpha-shape algorithm. By this means, the
shapes of objects can be recovered efficiently. We showed how
rectangular structures can be detected from the extracted shapes
after the polygonization and which features can be extracted in order
to apply semantic labeling to spatial entities. We introduced a spatial
feature description together with a spatial relationship mapping,
allowing to find labels for detected entities. We finally provided first
results of the geometrical extraction process.
Future work focuses on the implicit mapping between semantic and
spatial entities. For the time being, we are able to fill the feature
vectors for known entities and define a similarity function. The last
step, i.e., the automatic classification of detected objects is still to be
realized. Another research problem is to build a descriptive ontology

of the semantic space, allowing spatial reasoning in the semantic
space and using our approach for bridging the gap between the
semantic and the spatial domain. Our main research goal is to have
a descriptive language for spatial entities which can be searched for
object classification based on similarities in the feature space.
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