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Computational Modeling of Mental

®
SPATIAL

Spatial Knowledge Processing COGNITION
R1-[ImageSpace]

Thomas Barkowsky, Christian Freksa, Holger Schultheis,
Sandra Budde, Ana-Maria Olteteanu, Jan-Frederik Sima, Rasmus Wienemann

The Architecture

Core Assumptions
- Spatio-analogical representations

« Representations are scalable (knowledge type,
type-specific rep., spatial-visual continuum)

Spatial Worklng Memory

Topological
Reasoning
« Clear Preferences
- Large individual
differences ®
- Variable Stability E -
in preferences

oning Example

Reas

-What gives rise to £
interindividual 4
variation? 1A

J‘J*‘f@‘«’f*’ *w"ﬁ"“f

Mental Models vs. Images
« Subjects solved three-term series problems

Condition 1 Condition 2
(Mental Model) (Mental Image)
Only solve the task ,magine the letters as

Instructions
cities on a map”

Significant eye 1 out of 25 10 out of 23
movements subjects subjects
Preferences equidistance Non-Eye: equidistance

Eye: cardinal direction

Spatial Language
- Spatial terms (e.g., above) are used to specify the
location of a target relative to a reference object

- Two crucial processes: Reference frame selection
(RFS) and computing goodness of fit (GOF)

Reference Frame Selection
. 3 candidate models for RFS | RFinp )
« LCA provides the best account ’ ’ ‘

=> importance of inhibition
=> selection on RF parameters Q:'Q/.C
RFS <-> GOF e

» Combining LCA and the attentiona!
vector sum (AVS, computing GOF)
model. :
=> RFS dependent on GOF
=> unegiuvocal selection

LCA LCACM LCAVS

Human

Function and GOF
- Talk by Thomas Kluth tomorrow

i Affective States during
Problem Solving

- New method for eliciting affective states
+ Empirical study employing the method
« Two main results:

- 1) valence of feedback modulates affect only for
good performers

- 2) no impact of motivation on affect

Strong Spatial Cognition

(see Talk and Publications)

@ Universitat Bremen DF
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Computational Cognitive Modeling

Methodology

Holger Schultheis

Available Methodology

- Cognitive modeling can be methodologically
challenging

- Surprisingly little guidance available on which
methods to use in which situations

- Aim: Facilitate computational cognitive modeling
by refining and extending existing methodology

Model Comparison and Selection

- Key criterion: How well models can account for
human behavior

« Hard to measure due to overfitting

- Existing methods that avoid overfitting difficult:
Properties unkown; no guidance on use

Comparing Comparison
Methods

- 5 widely applicable candidate methods: SHO, BS,
BSSE, PBCM, PED.

- Compared to each other and to two standard ap-
proaches (SR, AIC) on 3 pairs of memory models.

M1-M2 M1-M3

« PED has highest accuracy, but few decision. Can
only be applied to pairs of models

+ SHO accuracy close to PED, but none of its restric-
tions

+ SHO technically simple -> easy to use -> facili-
tated use of sophisticated methodology

@ Universitat Bremen DF

®
SPATIAL

COGNITION

Agof,; Distributions

Cross-Fitting
Use two GOF difference dis,
distributions to judge

which model provides
the better explanation.

Two issue:
- Classification method?
« Multi-model comparison?

gofiy

Classification

R1-[ImageSpace]

- Tested 8 easy-to-use classification methods: Binning,

boundary search, k-NN, etc.

- 6 artificial distribution pairs + distributions arising
from 7 pairs of actual cognitive models

+ k-NN constitutes the best general method choice

Multi-Model Comparison

- Instead of GOF
differences consider
GOF vectors
<GOF;, GOF,, ..., GOF,>
for k models

« k k-dimensional
distributions

+ Model recovery study corroborates validity of ap-

proach

2 Models DU 3 Models
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Outlook

« How many times to run a stochastic model?

- More comprehensive evaluation of comparison
methods

« Multi-model extension of comparison methods

Deutsche
Forschungsgemeinschaft
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Mental Imagery:

The Perceptual Instantiation Theorx

Jan Frederik Sima, Thomas Barkowsky

Phenomena of Mental Imagery

Mental Scanning

- time linearly correlated to distance

- time/distance relationship varies with circumstances
Mental Reinterpretation

- easy and hard ambiguous stimuli
- reinterpretation aided by hints

Eye Movements
- correspond to processed information
- functional for information recall

Problem

- Imagery debate remains
unsolved

- Contemporary theories lack
formal description of core
concepts

- Lack of formalization leads
to lack of (mechanical) ex-
planations and concrete
predictions

Solution

- Computational theory/model of mental imagery

« Implementing conceptions of grounded/embodied cogni-
tion (grounded symbols)

- Based on active and direct perception
(building on enactive theory of Thomas, 1999)

Result

- More concrete, in-depth explanations of phenomena
- Simpler and more parsimonious theory
- Explanations for phenomena not explained before

Visual Perception
(partly consistent with enactive theory)
- Active Perception, is realized by perceptual actions
- Object Recognition is the successful application of respec-
tive perceptual actions
- Different perceptual actions employed top-down for hypo-
thesis-testing to provide specific perceptual information

-A

‘tﬁaf

enactive theory (Thomas)

- perceptual actions: e.g., saccades, covert attention shifts,
adjusting lens, ...

- perceptual information: e.g., coordinates in space, exis-
tance of edges, orientation of edges, distance, ...

Descripive theory (Pylyshyn), plctonal theory (Kosslyn),

SPATIAL
COGNITION
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Perceptual Conceptual Result of Visual Perception;
Information Information Abstraction from Perceptual
Information
PA, > sk 4 lefiof close,
4 i west-of, ... house {ie¥aXss) o} house,
— W :’ 4 leftof k) —> left-of,
L PAD  square big / tree (a¥oXots) ol tree
(sl smofl, house, ,..
% -5 -
' Y Y U
Visual System Modality-Specific LTM of Interpretation  Short-Term Conceptual
Visual Perception (VS-LTM} Memary m

« Perceptual information mapped onto mental concepts
- mental concepts: e.g., spatial relations, shapes, objects, ...

Visuo-Spatial Mental Imagery
- Memory of a scene stored as conceptual description, i.e.,
set of mental concepts
- abstracted from perceptual information

- Mental concepts grounded in perceptual actions used for
their recognition, e.g., left of <=> sets of saccades, covert
attention shifts, hand movements, ...

- Mental concepts mapped onto one valid set of perceptual
actions considering current context

!mukml-muv Perceptusl Perceptual of

Infarmatan Mental Concepts Concepts snd the Mental image
[3)‘ PA, > (Kuy,), «—s left-of close, “]

west-of, 2

— B —
o PA, 9 square, big,
(LA AR small, house,
2)

1\

=y ——f ¥ B | 7 —
Visual System Modality-Specific LTM of Short-Ti [ | LT™
Visual Perception [VS-LTM) Memaory

Computational Model

- Perceptual actions (pa): attention shifts implemented as
vectors

» Mental concepts (mc): spatial relations and shapes
- Perceptual information (pi): coordinates in space

WNJJ’ Universitat Bremen

4

C-LTM STM V5-LTM
me() recognize(pif])
mel] / -> mel]
pif) Z sefect{me(],pil])
> pa
retrieve(task)
=> mel]
Mfﬂﬂm(mf-'ﬂ pifl)
Visual/Motor
System
Mental Image execute(po)
=>pil]
mef] pil]
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Human Use of Spatial information S
?CSPATIAL

in Problem Solving OGNITION
s R1-[ImageSpacel]

Rasmus Wienemann, Holger Schultheis

Problem Future Work

- What spatial information do humans represent Prominence of Spatial Information

when solving problems?
- RQ: What kind of information is used for classification
of abstract stimuli?

- Free classification; spatial vs non-spatial classification
- Adapted Wisconsin Card Sorting Test

Analogies

+ RQ: Do humans use implicit spatial information
when solving Problems?

- Analogies from a spatial domain |3 X ¥ ¥ ¥ ¥ @
to an ordered but non-spatial (00 HEEEY 0 T B)
domain. I:'O

- Three Term Series Problems: OP VD@

“B is west of P" “P is west of Y”

Y:P:B:():@:? W Ambiguous Progressive Matrices
® . i i Q D D - RQ: What information (spatial vs non-spatial) will be

used in ambiguous problem solving?

The Role of Spatial Structure @ o me
in Problem Solving
- What is the Influence of the spatial representation of @ E) DO
a problem have on human performance?
Tic-Tac-Toe Isomorph @ @
000 OF e 000 vEle oD ol

OO @@ DO . . _
OO0 HOY OO Spatial Abstraction during

C1 Ordered C2 Random C3 Arranged Random M e n ta I Rotat i o n
Results with Adrew Lovett, Northwestern University
- Ordered condition (C1) facilitates recognizing - Development of a cogni- base  high-similary low-similaity
/ distractor distractor
gamess structure. y . tive model investigating
lean number of trials before strategy was found simple
Ratio of participants that found correct Strategy 50 abstraction Of Spatial in- shape

! 40 formation during mental

30 H
rotation complex 7

»*
»*

o
w

10
0.6 o
Ct c2 c3

Mean ratio of ties before the strategy
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02 Uil Ul

Loc | Or | Si| AR Or | Si| AR Si | AR
0.1
0 - M Low sim M High Sim
C1 c2 C3 0 Low Sim (2 Parts) High Sim (2 Parts)
C1 c2 C3
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Restructuring for

Creative Problem-Solving
I R1- [ImageSpace]

Ana-Maria Olteteanu, Christian Freksa

Scope

« Coghnitively inspired creative problem-solving that
integrates visuospatial ability and can be compared to
human performance

* To enable the Al-human comparison and Al assistance
with creative tasks

» To further elucidate the cognitive mechanisms for
creative problem solving (and the role of the visuospatial
apparatus)

The framework (Olteteanu 2014)

PT1 PT2 el
- ~
Problem template r EEEE | e
level - structural or LN 58]

Ea ]

Conceptual
level - symbolic

Subsymbolic
level, concept
anchoring

* subsymbolic level provides grounding and enables
search of objects with similar features as the ones
given, on various dimensions

» structured representation provides re-representation
and compositionality

Example mechanisms

[ .H AN /’0
RN /
[ N e
[ . /

/ .

[ .

[ N

[ ><

[ | N

[ ) .

[ | - N

| - N

o0 = @

Given: {e1, ¢z, s0la}
if (3PT; D e1) V (3PT; D ¢2)|PT; Nsoly # 0
Try: {er ez, 5003} = PT,

®@® °

Reassemble problen

@ Universitidt Bremen
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Compound Remote Associate lh‘}

Test Problem-solver
Remote Associate Test (Mednick 1971)
» 3-item problems
COTTAGE SWISS
¢ Find a 4t item, common to all
CHEESE

CAKE

3= {es ea}
PTy = Falling Star, PT, = Star Actor, PTy = Star Dust
¢y = Star
: L L 1 J a

Asswer fems known [| Oiems | 1iem | 2iems | 3iems | Yot

o
"
n

"
17

Comect 0
Plausde
Not scived
Toud
Acway

Plausible answers

French Car Shoe HORN COMPANY
Mill Tooth Dust SAW GOLD
Change Circuit Cake SHORT DESIGN
Cat Number Phone CALL HOUSE
Off Military First BASE PAY
Child Scan Wash BRAIN BODY
Home Sea Bed SICK WATER
Cry Front Ship BATTLE WAR

Object composition problems
Agent needs a certain object, but neither the
object nor a direct replacement can be found in
the environment
* Task: Compose object out of similar object
parts

* Object part encoding and re-representation
=] |
[

Y

Contact
amoodu@informatik.uni-bremen.de

Pendular
motion

Pendular
motion
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R3-[Q-Shape] Reasoning about SPATIAL

Paths, Shapes, and Configurations COGNITION
R3-[Q-Shape]

Phase | (2003-2006)

Foundations of QSR: Theoretical Background, Calculus Development, Reasoning Mechanisms
Cooperations

Pls : Christian Freksa, Reinhard Moratz ( X )
. . R4-[LogoSpace] )( 12-[MapSpace]
Researchers: F.Dylla, L. Frommberger, J.0. Wallgriin, D. Wolter CBishard | WISPN] )
Topics:
- Constraint-based inference engine (SparQ) - Hierarchical and structural representations of shape
+ Neighborhood-based reasoning - Spatial decomposition

- Roadmap representations

Dissertations:
- D. Wolter (2004) : Spatial Representation and Reasoning for Robot Mapping — A Shape-Based Approach

Phase 11 (2007-2010)
Compact Task-Specific Representations and Reasoning Mechanisms for Cognitive Agents

Abstraction: Aspectualization, Coarsening, Conceptual Classification Cooperations
<R4-[LogoSpace]>< 12-[MapSpace] >

Pls : Christian Freksa, Diedrich Wolter ; ” S
. .. R6-[ObjectSpace] 14-[SPIN]

Researchers: F.Dylla, L. Frommberger, J.O. Wallgriin ‘1 {OntoSpace]

Topics:

- Conceptual neighborhood structures: automatic deduction, task adaptivity, complex configurations
« Maps: efficient place recognition, map-based communication, and map merging
« Autonomous learning by means of abstraction

Dissertations:
- J.O0. Wallgriin (2008) : Hierarchical Route Graph Representations for Mobile Robots based on Generalized Voronoi Graphs

- F. Dylla (2008) : An Agent Control Perspective on Qualitative Spatial Reasoning
- L. Frommberger (2009) :Qualitative Spatial Abstraction for Reinforcement Learning

Phase lll (2011-2014)

Reasoning for Intelligent Agents in Real-World Scenarios Cooperations
<R4-[LogoSpace]>< [DesignSpace] >

Pls : Diedrich Wolter, Christian Freksa, Frank Dylla ‘
Researchers: |. Colonius, L. Frommberger (Capacity Lab), J.H. Lee, A. Kreutzmann (12-(MapSpace] (N1-ISocialSpace]

Topics:
- Realization, Real Algebraic Geometry for deciding consistency
- Behavior formalization (QLTL/CNL): representation, configuration-based planning, recognition, presentation

Dissertations:

«JH.Lee (2013) : Qualitative Reasoning about Relative Directions: Computational Complexity and Practical Algorithm
« A. Kreutzmann (2014) : Qualitative Spatial and Temporal Reasoning based on And/Or Linear Programming (submitted)
«|. Colonius (2014) : Qualitative Process Analysis — A Case Study in the Naval Domain (in preparation)

SparQ: A Toolbox for Qualitative Spatial Reasoning in Applications (2003 - 2014)
- Reference implementations of calculi & methods « Off-the-shelf integration (text based TCP/IP interface)
- Downlodable (v0.7.4, Linux/Mac) - Extendability / Calculus development
« Applied worldwide

‘Reviewed Publications (Phase | / Phase Il / Phase IlI):
\Journals: (2/5/=5); Conferences: (15/ 10/ =15); Book Contributions (2 / 6 / >3); Workshops & Symposia (8 / 8 / >13)

I
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Advancing Qualitative Spatial

Reasoning Technigues

SPATIAL
COGNITION
R3-[Q-Shapel

Dynamic QSR

From static to dynamic
scenarios

Recognition

Presentation

QSR + Actions QSR+ DL

Real Algebraic
Geometry

New algorithms for
consistency checking
based on multivariate
polynoms

High-level agent con-
trol based on Qualitative
Spatial Reasoning

Not fruitfull” but pro-
ductive discussions with
T.Schneider and C. Lutz

—<I1-[OntoSpace]>—< R. Moller

Reasoning about actions

Model Checking

Sequences of CSPs

Conceptual
Neighborhood

11-[OntoSpace] H.Hong
Combining Realization Relative
Various Calculi (Quantification) Directions
I I

Actions need more than | | Generate instances

one spatial aspect

Real Algebraic Geometry

can decide consistenc
RAG generates realiza- y

tions < 5 enitities

ER-complete (NP < ER)

Combinations of calculi

basicall
are basically a new Double Exp. complexity

Recognition v/ calculus
- R4-[LogoSpace] [DesignSpace]
Topological Configuration-Based Control StarVars
Mode Spaces (Approximates Relative Directions)
B
extends Action + QSR worsen the Discretize global 0,
Conceptual qualification problem orientations .S,
Neighborhood | | configurations can be NP-complete . X 57 5
transfered . ‘
Calculates a realization R
by A. Galton Probabilistic planning
Linear Temporal And/Or Linear Programming
Logic
I

Snapshot or
qualitative change
based

Full QSR X

Unknown shapes X r

Ine

Combine calculi v

*******

Realization v/

|
PrQ), e peF Q)

Scales to large number Partially grounded v Arbritrary orientationsX | YoEres :

of states NP-complete v/ |
QLTL and CNL
o

Recognition v/ Visualization v/ 1 = OVERLAP(r,social(h)) A HEAD_ON(r,h) M-mib  GUgaGmoRxY)... O3

Planning v/ Knowledge Repre-  d¢fici == —PO(r, personal(h)) A _ Lo

Rul Iysis v sentation v/ o(ON_LEFT(h,7) R BEHIND(h, 7)) o Leloopen | [P

- I ’ 1 I
ule analysis o oo o

| Supervision v/

= BEHIND (h, 1) _ A
spatial model X*=(1.2,23,..)"

@ Universitat Bremen
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Applying Qualitative Spatial SPATIAL

Reasoning Technigues COGNITION
R3-[Q-Shape]

Diedrich Wolter, Christian Freksa, Frank Dylla 5 <
Immo Colonious, Jae Hee Lee, Lutz Frommberger, Arne Kreutzmann c 3 ¢ B o R
2 > O B< oe

k= o)) ] ©n ‘_; 2T qC)

Cooperations ([Designspacel] ) ( M.Eppe ) ( BBA ) 5 £ £ e 238 i;’ 2
N . o © S

@7-[FreePerspect|ve> < CoFriend > 3 § % g_ g E 8 %

£ & & v W ¥

Industrial Settings (Loglstlcs)

Processes

Traffic
Rules

Sea Navigation

TrafficRule
Compliance

Rule
Conflicts
Social Robotics
Model Based Reasoning
Abstraction o R SparQ Rule
I >53555> Starvars|  Representation
QLTL

Planner

Based on Pattern Matchlng

Trajectory Formula Formula Robot
<<<<<<<<<< ..
Model

De5|gn / Architecture / Ambient Assisted Living

W, E wx,_”) & Fa Failure
h-Approximation Diagnosis

HW.&EWBI -
= X , _—l Design

Requirements

Narratives
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Project Overview COGNITION
IR R4-[Logospace]

Bernhard Nebel, Till Mossakowski, Stefan Wolfl

Motivation
e In natural language qualitative spatial and/or temporal @
concepts are ubiquitous @
¢ Qualitative representation: description of spatial or temporal Equals (EQ) Disconnected (DC) Externally con_ Pamally over-
configurations on a purely qualitative level, abstracts from nected ( |app|ng (PO)
numerical data
iati : - - (a) ;
e Qualitative reasoning: reasoning methods tailored for the
qualitative representation language Tangential Inverse of TPP non- tangentlal Inverse of NTPP

e Application domains: human-machine interaction, GIS proper part (TPP) (TPPI) proper part (NTPP) (NTPPI)

(integrity rules, query answering), navigation systems (route The RCC8 base relations
descriptions), location-based services, etc.

Qualitative Representation &
Reasoning
Define formalism for abstraction:

use set of relations as vocabulary, e.g., “is north of”, {TPP} {DC}
“is south of”, "is part of”, “is left of”, etc

Reasoning about satisfiability: -~
erule sets
e : : : {EC} @

e constraint satisfaction techniques
e usable in established reasoning paradigms, e.g., Datalog, Qualitative description
ASP, SAT, CP, SMT, etc. Spatial configuration represented as constraint network

Research Topics

Revision of spatial
. . knowledge bases
Relation Spatio-temporal

Partition schemes .
algebras planning

Description logics
and concrete
spatial domains

R4-[LogoSpace]

Path consistency Applications &
Benchmarking

Applications in

Constraint ) d
logic programming

networks

Finite FO

structures

Complexity
in relational o
Route descriptions
languages

Model-
theoretic view
Propagation
encoded in
Datalog programs
w-Categoricity
and Fraissé limit

d \ 5

FQ) interpratations -
QSN TION
& <l theoiies

. s Deutsche
@ Universitét Brem@ Universitat Bremen  BIF@E Forschinosoemeinschat

UNI
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Project Highlights
S 4 [LozoSpace]

Bernhard Nebel, Till Mossakowski, Stefan Wolfl

Applying Qualitative Reasoning in Logic  Relative Directions

Programmin . .
g g Develop and compare reasoning approaches based on a-closure, linear
Inference encoded by Datalog programs. Usable in ASP, SAT, etc. programming, SMT, combinatorial geometry, oriented matroid theory.
. e . . T . . . B
e Automatic minimization of N2 e CSP(Toro.11) e Combinatorial geometrical methods allow to 0
e . 1A MGRD © TOoRD-H . o . . A
qualitative representations ' . derive composition tables for the Dipole Calculi e‘ 0n
and rules wle - Mgz © moros e SMT-based reasoning about sectors around xoaxis
e Study and comparison l'lp,foma/ oriented points improves on composition tables
. . . X _ .
o Superior to previous work in NS o e Benchmarks of efficiency and effectiveness of >< ><c
PAlG © TP . . —
SAT, ASP W () different approaches to this IR hard problem \/\A
e Novel RCC8 Horn theory TSmO L | o Explore interdependency functions between
<3 At ¢ © Tph . . . —_—
o FOL based M <o e relative directions and mereotopology D
Momle CSP(Tp.ai(pa))
Publications
Publications » Reinhard Moratz, Dominik Liicke, Till Mossakowski. A Condensed Semantics for Qualitative
» Manuel Bodirsky and Stefan Wolfl. RCC8 is Polynomial on Networks of Bounded Treewidth. Spatial Reasoning About Oriented Straight Line Segments. AlJ, 2011.
1JCAI 2011. » Till Mossakowski, Reinhard Moratz. Qualitative Reasoning about Relative Direction of

Oriented Points. AlJ 2012.

» André van Delden and Till Mossakowsi. Mastering Left and Right — Different Approaches to a
Problem That is Not Straight Forward. Kl 2013.

» André van Delden. Quality in Quantity — Relative Direction Constraints using Sector Sets
around Oriented Points. ECAIl 2014.

» André van Delden and Reinhard Moratz. Crossing the Boundary — Two Benchmarks for
Qualitative Spatial Reasoning bridging Relative Directions and Mereotopology. SC 2014.

» Julien Hué, Matthias Westphal and Stefan Wolfl. An Automatic Decomposition Method for
Qualitative Spatial and Temporal Reasoning. ICTAI 2012.

» Matthias Westphal, Julien Hué and Stefan WGlfl. On the Propagation Strength of SAT
Encodings for Qualitative Temporal Reasoning. ICTAI 2013.

» Matthias Westphal and Julien Hué. A Concise Horn Theory for RCC8. ECAI 2014.

» Matthias Westphal, Julien Hué and Stefan Wolfl. On the Scope of Qualitative Constraint
Calculi. K1 2014.

Applications and Benchmarking

GQR — the state-of-the-art implementation of path consistency.

Qualitative Planning

Reduce search space by qualitative spatio-temporal abstraction.
o New spatio-temporal relational
languages and sequential CSPs
o Non-trivial problems are
NP-complete 5000 i
4000 //

representations
e Used to implement belief revision & **® +/
@ :( @ of qualitative representations 0

¢ Improvements based on nogood
. 8000 T T T T T T T
techniques from CP R
e Used for spatio-temporal 6000 AzsAT I/

planning with qualitative

CPU time (sec)

1000

. KA
0 1002003004005006007008009001000
number of solved instances

e Theoretical study of revision
operations in the context of
qualitative reasoning

Publications

» Matthias Westphal, Christian Dornhege, Stefan W6lfl, Marc Gissler and Bernhard Nebel.
Guiding the Generation of Manipulation Plans by Qualitative Spatial Reasoning. Spatial
Cogpnition & Computation: An Interdisciplinary Journal 2011.

» Matthias Westphal, Julien Hué, Stefan W4lfl and Bernhard Nebel. Transition Constraints:
A Study on the Computational Complexity of Qualitative Change. |JCAI 2013.

Qualitative Route Descriptions

Generate, evaluate, and optimize route descriptions based on dis-
tinct, non-deterministic agent models.

e Problems become NP-hard if
agents detect cycles

o Certain evaluation tasks are
coNP-hard

o MDP-like extensions for
modeling probabilistic agents

(left, left, right)

Publications

» Jochen Renz and Stefan Wolfl. A Qualitative Representation of R

» Matthias Westphal, Stefan Wolfl, Bernhard Nebel and Jochen
Descriptions: Representation and Computational Complexi

» Matthias Westphal and Jochen Renz. Evaluating and Minimizin,
Route Instructions. ACM-GIS 2011. T

» Matthias Westphal, Stefan Wolfl, Bernhard Nebel and Jochen . On ollte
Descriptions: Representation, Agent Models, and Computational Complexity. To appear in
" Special Issue of the Journal of Philosophical Logic on KR&R".

n Qualitative Route

e
H e Deutsche
@ Universitat Brem@ Universitat Bremen DF Forschungsgemeinschaft _E

Networks. ECAI 2010.
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Publications
» Matthias Westphal, Stefan Wolfl and Jason Jingshi Li. Restarts and Nogood Recording in

Qualitative Constraint-based Reasoning. ECAI 2010.

» Anthony G. Cohn, Jochen Renz and Stefan Wolfl (eds.). Proceedings of 1JCAI-2011
Workshop on Benchmarks and Applications of Spatial Reasoning.

» Mehul Bhatt, Hans Guesgen, Stefan Wolfl and Shyamanta Hazarika. Qualitative Spatial and
Temporal Reasoning: Emerging Applications, Trends, and Directions. Spatial Cognition &
Computation: An Interdisciplinary Journal 2011.

» Julien Hué and Matthias Westphal. Revising Qualitative Constraint Networks: Definition and
Implementation. |CTAI 2012.

» Matthias Westphal and Julien Hué. Nogoods in Qualitative Constraint-based Reasoning. Kl
2012.

» Frank Dylla, Till Mossakowski, Thomas Schneider, Diedrich Wolter. Algebraic Properties of
Qualitative Spatio- Temporal Calculi. COSIT 2013.

Future Work

Planned activities in the near future.
o Relative directions: Explore adaptive grid methods combining
Genetic Programming, Ant Colony Optimization and Q-Trees
e Integrating qualitative constraint languages and Possibilistic
Logic into ASP

» Julien Hué, Matthias Westphal and Stefan Wolfl. Towards a new Semantics for Possibilistic
Answer Sets. K| 2014.
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RCCS8 is Polynomial

on Networks of Bounded Treewidth @
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Motivation

» RCC8: a popular constraint formalism in Qualitative Spatial Reasoning
. good for representation of topological information between extended spatial

objects (regions)

» The general network consistency problem (“decide whether an RCC8 constraint
network is satisfiable") is NP-complete,

» ... but tractable for several classes of (disjunctive) constraint relations
(tractable subclasses)

» Is the network consistency problem also tractable when networks have a
particular structure (e.g., bounded treewidth)?

Main idea:

Apply model-theoretic methods/results
» Show that all solutions of any RCC8 constraint network can be embedded into a
single w-categorical RCC8 model

» The CSP of this model is known to be tractable for constraint networks of
bounded treewidth

Outline of the Proof

Lemma

The class of finite RCC8 models
has the amalgamation property.
Theorem

A countable class C of finite relational
structures with amalgamation property
is the age of a countable homogeneous
(and hence w-categorical) structure
Corollary — (Fraissé limit).
RCC8 has a representation by a

countably infinite, w-categorical

structure R. Theorem (B./Dalmau, 2008)

The CSP of an w-categorical structure
is tractable when restricted to networks
with constraint graphs of bounded
treewidth.

/

The network consistency problem for RCC8 restricted to
networks of bounded treewidth can be solved in
polynomial time.

Theorem

Outlook

» So far no empiric evaluation:
What are the benefits for reasoning (cp. Li, et al, 2009)?

Selected References:

& M. Bodirsky and V. Dalmau. Datalog and constraint satisfaction with infinite tem
STACS'06, 2006; full version: arXiv, 2008.

nJ.J. Li, T. Kowalski, J. Renz, and S. Li. Combining binary constraint networks4 tive
reasoning. In: ECAI, 2008.

8 C. Lutz and M. Mili¢i¢. A tableau algorithm for DLs with concrete domains and GCls.
In: Journal of Automated Reasoning 38, 2007.

2 D.A. Randell, A.G. Cohn, and Z. Cui. Computing transivity tables: A challenge for automated
theorem provers. In: CADE, 1992.
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RCCS8 relations

®@30

Equals (EQ) Disconnected ( Externally connected (EC) Partially overlaps (PO)

Tangential proper part (TPP, TPPi) Non-tangential proper part (NTPP, NTPPi)

RCC8 composition table

oRCCB DC EC PO TPP NTPP
e ) DC, EC, PO, DG, EC, PO, DC, EC, PO, DG, EC, PO,
TPP,NTPP  TPP,NTPP TPP,NTPP TPP, NTPP
gc | DC EC PO, DT%PE%PZ?’ DC, EC, PO, EC, PO, TPP, PO, TPP,
TPPi, NTPPi gq | TPP.NTPP  NTPP NTPP
po | DG EC PO, D, EC, PO, . PO, TPP, PO, TPP,
TPPi, NTPPi  TPPi, NTPPi NTPP NTPP
DC, EC, PO,
TPP DC DCEC  1op Nrpp TPPNTPP  NTPP
DC, EC, PO,
NTPP|  DC DC —Pp NTPp.  NITPP NTPP

Simplification of composition rules

DC(x,y) A Pi(y, z) = DC(x, z)
EC(x,y) AP(y,z) = EC(x,z) V PO(x, z) VV PP(x, z)
EC(x,y) A Pi(y,z) = DC(x,z) V EC(x, z)
EC(x, y) ANTPPi(y, z) = DC(x, z)
PO(x,y) A P(y, z) = PO(x, z) V PP(x, z)
NTPP(x,y) A P(y,z) = NTPP(x, 2)
P(x,y) ANTPP(y, z) = NTPP(X z)
PP(x,y) A PP(y,z) = PP(x,z)
Pi(x,y) AP(y,z) = —=DC(x, z)

Py

Model-theoretic notions

A =(ADC* ...} and B = (B,DC?,...): RCC8 models

2 substructure of B: A C B and R* = R® N (A x A) for each
R € {DC,EC,...}

Isomorphism between 2( in B: a bijective mapping f : A — B such
that £ and f~! preserve all relations

Automorphism of 2l: an isomorphism f : 2 — 2

Embedding of 2 in ©B:a mapping f : A — B that is an isomorphism
between 2( and B[f(A)]

Age of 2: the set of finite structures that can be embedded into

Homogeneous 2: every isomorphism between finite substructures of 2
can be extended to an automorphism of 2

SFB/ R 8 works N = (Vo,...),
pJ.J Li, J. Huang and J. Renz. A divide-and-conquer approach for solving intervajiil#ebra e1 vinv, can be
SPATIAL GOGNITION'

Amalgamation property

¢

[ )
R

. B, Scenarios 51,52 of constraint net-
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A Concise Horn Theory for RCC8 ®

Matthias Westphal and Julien Hué SPATIAL
Department of Computer Science, University of Freiburg, Germany COGN'T'ON
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Region Connection Calculus (8 Atoms)

RCC8 is a Constraint Language for describing regions of space Consider FO formulas of the form
with 8 atomic relations: ¥ =3w,...,vaR(vi,vj) A -+ A S(vk, vi) over I'recs.
?
. \DC, - EC . E,Q , PO \ CSP(T) is the decision problem: T |= .
v ) v [ v w) (nw) ((u)w )
WA AT WA AS', > CSP(Irecs) is NP-complete
NTPP TPP NTPP/ TPPI » [, is the largest reduct of Mrccg which expands Trecsa such
TN TN VRN RN that CSP(I A) is in P; these are 148 relations
x/V1\F 7 ) % 7 ) Proof by Horn SAT encoding with size O(n*)
< L DT ()
o RN Example

Description of Central Park, Manhattan, and New York:

» recsa the FO structure defining these 8 atomic relations i = 3CP, M. NY NTPP(CP, M) A TPP(M. NY) A (NTPPV TP EQNY, CP)

» ['rccs the FO structure with 256 relations defined by disjunctions
on two variables, e.g. EQ(x,y) V PO(x, y)

e P(x,y) := TPP(x,y) V NTPP(x,y) V EQ(x, y)

Syntactic interpretations of [rccs Propagation by Datalog programs
» Natural interpretation in [rccsa by disjunction T ’R’Cég’ S ’C’S’P’(I’( ’)’ T T
» We propose another syntactic interpretation mrccs : P8 " :
> ...in a reduct of Mrccg named [recy }/ AT [
| HE%CS‘ ~  TIRCCH o 1 N }
Ireca has the 4 symbols {C, O, P, NTP} defined in Mrecs: (= i Rfj Reet !
o NTP(x,y) := NTPP(x, y), | ‘
! HRCC4 |5 © Trecat !
o ((x,y) := ~DC(x,y), RCCia G © TRec4 !
1T ! > RCCA™ |
0 O(x,y) := ~(DC(x,y) V EC(x, y)), 3‘1 : \ I O TRecat
| ” :

N
HRCC8A|G RCC4 |A O TRCC4+

. . . . . I CSP I
» 42 RCC8 relations are definable in 'rccq using only conjunction and -- f(f fRng“i{I ffffffffffffffffff

L > Strong 3-consistency MRS~ 131000 rules

» All 148 relations of rﬁs are Horn definable in recq

..68 rules when restricted to bodies on atoms ﬂi%ch

>We propose [MRC4" with 18 rules:

Example continued P(x,x) NTP(x,x)
Cx.y) = Olx,y) O(x.y) = Px.y)
y) - X

Using these syntactic interpretations:

P(x, NTP(x,y) false == Py, x), NTP(x,y)
Graeen () = 3CP, M, NY NTPP(CP, M) A TPP(M, NY) Obe.y) - Oly.) e y) - Clyx)
A (NTPP(NY, CP) v TPP(NY, CP) v EQ(NY, CP)) e v Clx y),Ct.y) e - NTP(x.), NTP(c.y)
Praccs (V) = ICP, M, NY NTR(CP, M) A A(M, NY) false == O(x, y), O(x, y) false == P(x, y), P(x,¥)
A= M) A=TITARL ) A RV C) P(x,y) == P(x,z), P(z,’y) C(x,y) = Cx,2),P(z,y)
O(x,y) - ((x,z), NTP(z,y O(x,y) - O(x, z), P(z,y)
NTP(x,y) == P(x,z), NTP(z,y) NTP(x,y) = NTP(x,z), P(z,y)

Propositional SAT encodings

Simply consider the Herbrand expansion of the (interpreted) input formula and the Datalog program (read as universally quantified implications).
How good is unit propagation (UP) on the resulting formula? Running time (instances with 200v, chordal variants)

8000 T T

» Size in O(n®) (three distinct variables in programs) _ 7o00 | e ngf S

» UP emulates (at least) Datalog semantics 8 5000 j QZ

» Previously encoding of I'IRS%C8A considered g :gzg ﬁ ;2“

> ...but does not even solve CSP(I'rccsa) S 2000

» Inste MR |~ UP solves CSP(Mg,) moogyf M ]

200 400 600 800 1000

> |-|RCC4 nd better than HEECSA Number of Solved Instances
» Novel inter, nd program enables propositional CNF superior to previous “support” encoding: smaller and better for UP

¢ f i m — avoid Herbrand expansion
SFB/TR 8¢
Cui SPATLAL gOG Nﬂ!w! @N polynomial on networks of bounded
treewidth’, [JCAL, 1

connection’, KR, 1992
@ B. Bennet, 'Logical representations for automated reasoning about spatial oM. W‘?StPhalv J. H.ue,-SA WGlfl, 'On the propagation strength of SAT
relationships’, PhD Thesis, University of Leeds, 1997 encodings for qualitative temporal reasoning’, ICTAI, 2013
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On the Computational
Complexity of Qualitative Change
M. Westphal, J. Hué, S. Wolfl, and B. Nebel

Department of Computer Science, University of Freiburg, Germany
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Qualitative Spatial Reasoning in a Nutshell
» Constraint languages on infinite domains D

r=(D;RP ... RP)

Example: Point Algebra
> base algebra (Q, <)

» Knowledge as primitive positive formulas:
.x,,,:/\ijjl...)g,
J

» Complexity of the satisfiability problem depends
on[; P, NP, ..., undecidable

p=13dx..

» full algebra (Q, <, <, #)
Interpret < spatially (in front/behind)
and in multiple dimensions

PA is central
Interval Algebra, Cardinal Directions,
Block Algebra, Rectangle Algebra can be

expressed by PA

Towards Spatio-Temporal Semantics

» Characterize motion qualitatively

» Handle time by snapshots of the world (states)
(as opposed to domains as “object-histories”)

» Instance of CSP(I'): primitive positive formulas without free
variables

» Instance of SeqCSP(I): & = (V, (Q*
Q' are instance of CSP(I")

e Qd)> where the

Definition of Transitions

» T-solution of SeqCSP(I):
af(v) < a'(y) = a'"'(v) < a"(y).

y y
1 2
Q X z Q X z

» Ty-solution of SeqCSP(I): T,-solution such that

af(v) # o' (v) A af(w) = af(v) =
_|(at+1(vi) _ Oét+1(|/j) /\CMH'I(V/() ?é OAH—I(V/))

» It does not allow point-to-interval and interval-to-point
transitions at the same time.

The Complexity of Continuity

structure

relations

, NP-complete

Deutsche
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» Qualitative descriptions should handle (immediate) continuity
in motion: x<y<i>x>y

» Associated with neighborhood graphs [Freksa, 1991]

> Represent continuity as 2 - n-ary relations: T,/ T4 C D*"
X1, ..., X, can immediately transform into x,.1, ..., X2.n

» Neighborhood graphs provide merely binary projection of
T/ T4

Unrestricted relational languages

Annotate variables with time points
— allows relations between variables at different times

» x moves right towards y is now expressible as a relation
Rmove,right(xoyyo’xlvyl) = (XO < yO) A (Xl < yl) A (Xo < Xl)

» Entities can be restricted to not change
In state spaces relations are restricted to not change

» Existing P/NP-completeness dichotomy result for constraint
languages built on < [BK, 2010]

» Languages interesting for theoretical study
— proper semantics for (qualitative) transition systems

» T, and T; relations can be generalized between any tuple of
variables

Where to go from Here?

» Analyzing continuity in non point-based formalims (RCC, OCC,
etc.)

» Investigating state space approach is close to Al planning,
e.g.,, PDDL

» Integrating continuity constraints into SAT /CP

References

@M. Bodirsky, J. Kéra, 'The complexity of temporal constraint satisfaction
problems’, JACM 57(2), 2010

@ A. Galton, Quahtatlve Spatial Change, Oxford Press, 2000

WGolfl, M. Gissler, B. Nebel, 'Guiding the

ns by qualitative spatial reasoning’, Spatial

Cognition & Computation, 2011
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Reasonmg about Relative Direction Constraints ®

André van Delden
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ector Sets around Oriented Points
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Initial Objective

- Improve on the OPR.A calculus in order to make spatial reasoning about
relative directions more versatile.

- Allow for qualitative abstractions. Provide a superset of the OPR.A relations.

- Stay computationally useful!

Introduction

In applications dealing with spatial properties, often these properties are not given
or useful as precise metric data but in terms of qualitative notions such as inside,
left or bigger. For spatial reasoning about qualitative, relative directions, the OPR.A
calculus [1] is a prominent candidate that is based on oriented points and fits into the
relation algebraic approach to Qualitative Spatial Reasoning.

However, this calculus has some important limitations:

- Relations of different granularity can not easily be used at the same time.

- Higher granularities result in very big composition tables (e.g. 16 GB), which make
reasoning infeasible.

-It only includes even, equiangular partitions of the real plane,

- The front and back relations are unidimensional.

- Integrating quantitative information is not directly possible.

Using a modern SMT-solver, these problems can be avoided. Deploying the angular
constraints that are used to compute the composition tables of the OPR.A calculi
directly to a given constraint network allows for more flexible and effective reasoning
that can even be faster than relying on the algebraic closure (AC) procedure from the
relation algebraic approach.

Figure 1: The OPRA; base relation denoted by A ,/; B

The OPUS Relation Set

The OPUS (Oriented Points Using Sectors) relation set allows to describe relative
directions of oriented points in the plane by means of sets of sectors around those
oriented points. OPUS relations are binary relations defined by
Opus(l, ) “ {(x,y) € Q? | xa/y N LX(y—x)eUh
Vx=y A LXy ceUh},
where O denotes the set of oriented points in the real plane, X denotes the orientation
of x, x denotes the location of x and I, , are finite sets of real intervals. For notational

convenience we define def
Opus,ghl, = (A, B) € Opus(h,h).

The language combining such OPUS constraints by conjunction and disjunction is
simply called the OPUS.

Example: We write Opusas{[0,%], [Z7,2m)}{[r, 7]} to denote that B, as seen
from oriented point A, lies either in the front quadrant including the boundary
B or exactly at A but oriented backwards. Since the OPUS distinguishes

between the directions left and right by the relations Opus({(0, 7)}, @)

\t{ and Opus({(m, 27)}, @), deciding realizability of a spatial description

B using OPUS relations is as hard as deciding satisfiability in the exis-
tential theory of the reals, which is NP-hard [2].

Triangle Consistency

- Express an OPUS sentence in QF LRA, the quantifier free first order theory of
linear inequalities over the reals.
- Add angular dependencies: e.g. the sum of interior angles in an triangle equals 7.

- Use an SMT-solver to decide the satisfiability of these angular constraints.

angle, = angle, + angleg:
angle, = anglegy

angleg,c = angle, + (27 - angle,z)

Figure 2: Proper and degenerated oriented point triangles.

DF Deutsche
Forschungsgemeinschaft

Support by:

Basic Formulas

« Each OPUS constraint Opus,ghl, can be directly translated into the following

F LRA f¢ la:

Q. ormuia —sameag A \/ infi < angleag < sup i
ich

a
a
&

OPairxghl,

v sameas A \/ infi < angleas < sup i

ich
where < is either strict or not depending on whether the interval is open or closed at
the respective end.
« Add triangle constraint formulas that depend on whether some oriented points lie
on each other or not.
« For each triple of oriented points, use a case-by-case analysis over the variables
samepg, sameac and samegc:

—samegc A\ @ABC
—sameac N\
V  samegc N @BCA

—samegc A\ @ACB
V. samesc N
V samegc A False

—sameag N

&
a,

(®ABC

V samepg N ---

The formula AS expressing the triangle consistency (TC) of an OPUS descrip-
tion S is given by translating each constraint Opus,glil, in S into the correspond-
ing OPairagl/, formula, restricting the angles of all pairs not occurring in S to lie in
[0, 27] and conjuncting the formula (?)ABC for every unordered triple ABC.

Two Interesting Scenarios

These scenarios can be interpreted as robotic sensor deviation and human left-right
confusion.
X4
A

D A D

Fourth Corner Problem
A,ZyB, A, D,
B,/5C, C,/5D

Left Right Confusion Problem
A,Z1B, A,/ C,
B,/7D, C,/ID

Figure 3: Two algebraically closed OPR.A, scenarios that are triangle inconsistent.

Results of a Benchmark on OPR Az networks

These are some results of a self-regulating randomized benchmark on OPR A con-
straint networks using a timeout of 20 seconds.
100

80 - 15

60

40 L1 L L L L L L | 0

510 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 S0
AC AC + TC (fastest) —=—=— AC AC +TC (fastest) —-—-—
TC-==- AC +TC ( best ) ==wewese TC-=-- AC +TC ( best ) ==seere

Figure 4: Percentage of inconsistent
networks discovered by each method;
per network size.

Figure 5: Average runtime in seconds of
each method; per network size.
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Initial Objective

- Implement or interface all proposed LR semi-decision procedures in a Haskell
library.

- Implement a self-regulating randomized relative benchmark procedure that is ap-
plicable to any qualitative spatial calculus.

- Compare the LR semi-decision procedures through this benchmark procedure.

Introduction

Reasoning over spatial descriptions involving relations that can be described as left,
right and inline has been studied extensively during the last two decades. While the
fundamental nature of these relations makes reasoning about them applicable to a
number of interesting problems, it also makes reasoning about them computationally
hard. The key question of whether a spatial scene that is described using these rela-
tions can be realized is as hard as deciding satisfiability in the existential theory of
the reals. We summarize the semi-decision procedures proposed so far and present
the results of a self-regulating randomized benchmark illustrating the relative effec-
tiveness and efficiency of these procedures.

The LR Calculus

The LR calculus [1] is a relative orientation calculus in which three points are related,
two of which determine a vector serving as frame of reference. The third point can
then be either to the left (/) or right (r) of

of A=B#C this vector or in front (f), in the back (b)

BO@e o(; (@) or inside (between the points) (i) of it. It

ou can also coincide with the start point (s)

® i or or the end point (e) of the vector. As spe-
cial cases, there are two more relations,

ADs tri one denoting that the first two points co-

65} incide but are distinct from the third (dou)

ob A=B=C and the other denoting that all points co-

incide (tri). These base relations partition

Figure 1 the (R?)? and can be combined to general

The LR base relations. relations through disjunction.

The Semi-Decision Procedures

- The algebraic closure algorithm is essentially the common path consistency algo-
rithm modified to be based on the binary (BAC) or ternary (TAC) composition of
relations. Several polynomial time algorithms computing this fixed-point are dis-
cussed in [2].

-In the algebraic geometric reasoning (AR) approach integrated into the SparQ [3]
toolbox an n-ary qualitative relation R over a domain D is modeled as the zero set
of a set of multivariate polynomials Fg over real-valued variables y, ..., y:

Vx1,..., X% € D: R(xy, .. LYKER:YfEFr: f(yr,-- yk) =0
Thus, a constraint network is expressed as a system of polynomial inequalities

which can be solved using Grébner bases and sets of polynomial transformation
rules.

LX) = 3y,

- Any n point solution of an LR constraint network induces n - (n — 1)/2 undirected
lines connecting all the points. The connecting lines between three arbitrary points
form a (possibly degenerated) triangle. The triangle consistency (TC) approach of [4]
uses simple properties of the angles of these triangles, like the sum of the three
angles always adding up to 7, and expresses them as a system of equalities and
inequalities over the angles of triangles. Triangle consistency can be verified in
polynomial time by using an algorithm for solving systems of linear inequalities.

- Interpreting the nodes of LR networks as vectors in R® any consistent LR scenario
is necessarily an acyclic chirotope of rank 3, where acyclic means that all vectors lie
in an open half-space [5, 6]. This alone gives a feasible semi-decision procedure for
the consistency of LR constraint networks. Furthermore an LR scenario is con-
sistent iff its associated acyclic chirotope is realizable. Since every rank 3 chirotope
with up to 8 points is realizable [6], only verifing the axioms of an acyclic chirotope
provides a complete polynomial time decision procedure for LR constraint net-
works with up to 8 points. Chirotopes are one form of appearance of oriented ma-
troids (OM) for which biquadratic final polynomials (BFP) provide a tried-and-tested
polynomial time semi-decision procedure, which is based on Grassmann-Pliicker
relations [7].

Deutsche
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A Self-Regulating Random Benchmark Procedure
Problems

- Huge and unknown number of possible LR constraint networks of a given size.
- Lack of a big database of real world constraint networks.

- Naively randomly generated scenarios are mostly trivially inconsistent.
Possible Solution

- Adjust network parameters that are independent from the calculus and methods.

- This parameters should have a phase transition, i.e. a small range of values in which
the transition from mostly consistent to mostly inconsistent networks happens.

- A simple yet interesting parameter is the network density, i.e. the ratio of elements
related to each other to the total number of elements.

Our program takes the arguments rels, d, t, n, m, M, methods and generates nnetworks
for each size between m and M allowing only relations from rels and giving each
method in methods a time of ¢ seconds to decide the consistency of a network. Starting
with the smallest size m and the initial density d it generates one random connected
network at a time, collects the results of the methods and adjusts the density of the
next network according to the following rule: Let d and s be the density and size of
the latest generated network and let d’ and s’ be the density and size of the network
to be generated next. If ' = s + 1 then d’ is set to the multiple of (53/)‘1 that is closest
to d. If s’ = s then the new density is calculated depending on the results collected
so far: Let A be the difference between the number of networks of size s and density
d that have been shown to be inconsistent — by any method in methods — and those
that have not been detected as inconsistent. Then the new density is set to

b 6 s\ 7'
d’":=min (1, max (s(s— W d—sgn(A)<3> )) .

This way we find the common phase transition of the combined methods regarding
the density of the networks and can be sure to generate mostly non-trivial networks.

Results of a Benchmark on £LR networks

These are some results of a benchmark on LR networks using a timeout of 20 seconds.

0F e
16
12 -
spi e
4 d -
0 - —
4 6 8
BAC — AR oo OM —-— BAC ——
TAC —-—- TC---  BFP —— TAC —-—- TC---  BFP —m
Figure 2: Percentage of inconsistent Figure 3: Average runtime in seconds of

networks discovered by each method;
per network size.

each method; per network size.
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On Qualitative Route Descriptions
M. Westphal', S. Wolfl', B. Nebel!, J. Renz?

SPATIAL
COGNITION

2 ANU Canberra, Australia

I RA-[LogoSpace]

Motivation

» Route navigation is a widely used application of spatial data
» Navigation systems are good at guiding users at decision points . ..
> ... but are bad at generating “good” route descriptions

“Good” route descriptions?

» Compact representation » Enables reasoning
» Easy to remember and process

» Minimize potential user errors » Automatic generation

Representation of Decisions

Use egocentric variants of STAR calculi

» mathematically well-defined partition schemes

» relations directly usable as qualitative turn labels
» allow for defining directions of arbitrary granularity

» Route description: sequence of qualitative turn labels

From Maps to Decision Frames

Starting point: a map-like graph (as, e.g., in OpenStreetMap):

For navigation tasks one only needs information about when and where
to turn along a route.

» Intersections: decision points for navigation

» Contour nodes: relevant points between intersections to extract
directional information

» Path arcs: connections between decision nodes, i.e., the possible
decisions for each agent

Agent Models

» Applicable to user generated maps

Two different qualitative schemes to define turn actions

You
are |
Here!

Destination

straight

slightly left slightly right

left right

4 .
sharp left sharp right

Turn actions at decision nodes in the map

Idea: use qualitative direction relations to describe turns at
intersections, such as, “turn sharp left”, “turn right”, “turn around”,
or “go straight”

Abstract from the metric data:

Convert map into a decision frame that contains only the intersection
nodes but also includes qualitative information about turn directions
To this end, introduce one state for each incoming arc of an
intersection node

Qualitative direction relations are calculated wrt. to the first and last
contour node of path arcs

Distinguish different execution models for agents:

a® strict processing of turn
instructions

a agent proceeds in straight direction if next instruc-
tion is not executable

aé agent recognizes goal states

a' agent learns visited states

Brief evaluation

Compute and evaluate shortest route
descriptions for a part of Canberra
(/= 20 km?) based on 10, 000 random
pairs of start/destination states.

Given are the average success probabilities
(in [0,1]) for reaching the destination
(rows optimized for, column evaluated on)

Outlook ®

» Optimize reliability te descriptions
Bp("'lﬂnsexpected

» Optimal algorit
» Approximation alg

» Haque et al.,

» Balance different criteria:

» Integrate landmarks and spatial chunking & Renz, Walfl,

Deutsche
Forschungsgemeinschaft

Support by: @ uimwerm

& Duckham, Kulik, "

‘Algorithms for reliable navigation and wayfinding'

§RyA,me!AenLgtc G !enz m ;;ua itative direction calculi with arbitrary granularity’.

‘A qualitative representation of route networks'.

Reasoning task a* a% 2% 2%l
Check existence of a conformant P P NP-comblete NP-comblete
path to a destination P P
Determine set of P P BH,-complete BH,-complete
final states
Check existence of a description with
P P P NP- let
bounded length compiete
STAR}
Opt.\Eval. a° a% 2%
a® 0.41 (0.38)]0.41 (0.38)]0.41 (0.38)
a% 0.01 (0.11)]0.25 (0.33){0.24 (0.33)
2% 0.02 (0.12)]0.29 (0.35)]0.29 (0.35)
STAR}
Opt.\Eval. a° a% 2%l
a® 0.62 (0.36)]0.62 (0.36)|0.62 (0.36)
2% 0.01 (0.11)|0.56 (0.39){0.56 (0.39)
2%’ ]0.01 (0.11)|0.61 (0.38)|0.61 (0.38)

References:

Simplest” paths: Automated route selection for navigation'. In: COSIT, 2003.
. In: Spatial Cognition, 2006.

In: COSIT, 2007.
PRICAI, 2004.

ECAI, 2010.

guistic and nonlinguistic turn direction concepts’.
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Human and Robot Navigation in

Structured Environments
> R6-[SpaceGuide]

Christoph Holscher, Wolfram Burgard, Gerhard Strube

Quantifying Spatial Ambiguity

Motivation

* Unreliable localization in ambiguous environments

« Utilize artificial (but indistinguishable) landmarks to
reduce the ambiguity

Goals

* Determine positions for artificial landmarks to
support localization of robots and humans

* Develop a tool for architects to identify potentially
ambiguous places in buildings

Pose Uniqueness
* Measure of how distinguishable a pose is from
the other poses

* Based on the potential observations of the robot
in the map

Uz, m) :
r,m) = — = =
Jzex p(z%* | ,m) dZ
%,—J
Sensor model
where

2¥* = argmax, p(z | x,m)
Experimental Evaluation

Robot Navigation

* Occupancy grid, candidate locations: occupied cells
* Sensor: laser range scanner, landmarks: reflective tape
* Detection based on remission values

Transfer to Human Navigation

* Candidate location for human landmarks: free cells

* Algorithm chooses from a set of 100 randomly
sampled landmark positions

* Comparison experiment: humans are asked to mark
most ambiguous locations for landmark placement

Conclusion

* Approach to reduce perception ambiguity in the
environment by placing indistinguishable landmarks

* Provides locations and number of landmarks

Publication
* D. Meyer-Delius, M. Beinhofer, A. Kleiner, W. Burgard.
Using Artificial Landmarks to Reduce the Ambiguity in
the Environment of a Mobile Robot. In Proc. of the Int. Conf. on
Robotics and Automation (ICRA), Shanghai, China, 2011.

@ Universitat Bremen
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Robot poses cannot be distinguished
based on sensor data

Landmark Placement

* Choose landmark that maximizes the
average uniqueness in the environment
* Select the locations m C V out of the
candidate locations V
that maximize the average uniqueness

1
m* = argmax (—/ u(m,m)dx>
mCV || X[| Jzex

* Approximate Solution
* Incrementally select maximizing location

EY IS

4

EIa Al i a!
Improved position tracking
performance

Faster global localization
convergence

Landmarks selected
by humans

Landmarks selected
by our approach

UNI
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Human and Robot Navigation in

Structured Environments
> R6-[SpaceGuide]

Christoph Holscher, Wolfram Burgard, Gerhard Strube

Efficient Landmark Placement

Motivation
Achieve robust mobile robot navigation
* In assembly halls or storage facilities
* In ambiguous or dynamic environments
* If the same trajectory is executed many times
Place artificial landmarks to achieve robustness
Problem Formulation

Optimize the localization performance of a robot on a
given trajectory by

* Placing artificial landmarks that the sensors of the
robot can observe

* Finding near-optimal locations for these landmarks
We assume a

* Motion model of the robot

* Landmark observation model
* Desired trajectory

* Control policy

Finding the optimal landmark locations is NP-hard

State Estimation

* Apply a Hidden Markov Model to estimate the
state of the robot

Attime ¢:
X, state of the robot
Z}: observation of i-th
landmark
L': position of i-the
landmark

U,-
Dynamic Bayes Network t: control command

Placing Landmarks
* Defined as an optimization problem
* Objective function: conditional mutual information

F(A) = I(Xy.7; Z{0|Ur.1, L1:\)
= h(X1.7|Ur.7, L1:n) — M(X 17127, Uty L1 )

* Given the properties of the system, find the set _4* of
landmarks with

A* = argmax F(A)

ACV;|A[<n
* Approximate the solution using a greedy selection
scheme

@ Universitat Bremen

UFG
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Experimental Results
Simulation
* 20 different randomly sampled
tasks, each consisting of
Set V of possible landmark
positions
Desired trajectory
* Autonomous controls
* Evaluation of four different
goodness criteria

One of the randomly
selected tasks

Mutual Information Entropy at Final State A ge Di Di: at Final State
) 12 1.2
1000
0 0.8 0.8
600 - D 06 06
400 -2 0.4 0.4
: sl w0
0 — -4 00 B 00 1
=] o o < o <
£E85E £e85E £85 £ £85E
€ 5 € 5 € 5 € 5
3 2 3 I3 3 2 3 e

Real Robot

* Evaluation of selected landmark positions using
an autonomous mobile robot equipped with a
web cam pointing upwards and visual markers as

landmarks : L
gt || = voter: mean i
g o belief: 2-sigma covariance elipse |
~ A landmark
Ak l; > 1‘ ﬂ poss:delandmalkpos:!»nnsv h
e P =t
», A
- ok M\u
e *,'__X H:
~ -“ !vl H 1 | e L i‘
' _I . fgml
N £ ‘)‘ , ]
Landmarks selected by our method
and one trajectory of a robot using
. these landmarks for localization
Conclusions

* More accurate localization using fewer landmarks

* No assumptions about linearity of the system or
about the structure of the set of possible
landmark locations

* Effective, approximate solution to an NP-hard
problem

Publication

* M. Beinhofer, J. Mueller, W. Burgard. Near -Optimal Landmark
Selection for Mobile Robot Navigation. In Proc. of the Int. Conf.
on Robotics and Automation (ICRA), Shanghai, China, 2011.
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UNI
FREIBURG



Human and Robot Navigation in
Structured Environments
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V. Langenfeld, S. Kuliga, R. Stiilpnagel, C. Holscher

Ambiguity

- Indistinguishability of locations without additional
information (e.g. movement history)

+ Robot: caused by isovist equality

« Human: assumably similar visual appearance, but the
360° experiment suggests the influence of other factors
such as expectation and overall complexity.

Research Question

- Strategies of human landmark placement for disam-
biguation?

+ Robot performance with landmarks placed by hu-
mans?

360° Experiment

- Tate Gallery with many of different spatial arrange-
ments e.g.: long/short line of sight, columns, ...

- 100 locations chosen by minima/maxima of:
integration, connectivity,

jaggedness, U _, . .

- Presentation of locations
from the egocentric per-
spective, recall of the loca-
tion in layout view.

« Landmark placement
from allocentric view to
simplifiy the self relocalisa-
tion task.

Results

« Landmarks placed by humans are at significantly
more integrated locations (U =41641.0,n1 =3050,n2 =
51, p=.000) and at significantly more connected (U =
30699.0, n1 =3050,n2 =51, p =.000) than by chance.

« Task is in its form uncommon, placement heuristics
are based on navigation rather than on self localisation.
Only 40% of the participants explained that they inten-
tionally used landmarks for disambiguation rather than
to mark places they would most likely navigate to.

But calculation of the optimal solutionon U, yieldsa
subset of the chosen locations.

- Humans are able to evaluate the correctness of their
self localisation (r = .626, p = .000).

Robot using Landmarks placed by Humans
- Landmarks set by humans at more unique places than
by chance (avgU , =.727,avg U, =.946,U = 26874, n1

robot

=3050,n2 =51, p=.000).

Minimalist version of the Tate
Gallery during presentation.

*J b
ambigue unique g

U . as calculated.

U being the percentage of

human

correct self localisations.

robot

Heatmap of human landmark
placement.

» The best human solution places three landmarks in
highly unique areas, two at U , improving positions.

Landmark positions and Iso-
vists maximizing U

human*

The best human land-
mark placement by
means of maximizing
U,....- Even this solu-
""" . = : e 3 tion uses three land-

al b . marks to disambigu-
ate places that have
far above the aver-
age uniqueness of the
building.

B ambiguous [@ intermediate [0 unique

Discussion & Conclusion

- Humans place landmarks at useful positions for hu-
mans. However, this effect may be dependent on the
building.

- For robot navigation there are far more useful solu-
tions than the landmarks placed by humans.

@ Universitat Bremen

Deutsche
Forschungsgemeinschaft

UFG

UNI
|

FREIBURG



Human Navigation in Structured S

Indoor Environments

-
Wayfinding in the Seattle Public
Central Library

Saskia Kuliga, Ben Nelligan, Steven Marchette, Laura Carlson, Ruth Conroy
Dalton, Amy Shelton and Christoph Hdlscher.

SPATIAL
COGNITION

R6-[SpaceGuide]

Building Cognitive map

Background

* Built in 2004 by Rem Koolhaas (OMA) / LMN. 38,300 m” on 11 floors
* High praise for being a showcase of modern architecture

* Sharp criticism that visitors get lost during navigation |
Methods P J g nhavig

* Based on spatial analyses:
predefinition of expected
“easy” and “difficult”
navigation tasks

* Peoplewatcher app to
track participants’

—>As part of a post-occupancy evaluation, we conducted a wayfinding
study to understand:

Framework by Carlson, et al. (2010),
Getting Lost in Buildings, Current

Which factors account for library visitors’ navigation and Directions in Psychological Science

orientation difficulties?

Wayfinding behavior ) (Expected) | (two tasks not (Expected) 8 N=56
" ” a3 = “Easy Task* analyzed “Hard Task” ;
(paths &“events”) SEA | here) !
« Standardized b = Within Floors | Childrens’ Aviation Sherlock .
. . T F Restrooms Room* Holmes Book )
questionnaires to assess | 1.25 (4.37) 3.05 . 4 - B Within
e . . . tial |
individual spatial skills m] ] m Between
(MRT, SOT, SBSOD, SAT, Across Floors Non-Fiction |Music Practice Meeting 1
QSR) and user experience DvDs fooms” Room #6 o
2.38 (3.25) 3.2 =
in building M @ Easy Hard
— . .
Screenshot of Expected and Mean Perceived Difficulty of Wayfinding Tasks (table) Percentage of Deviation from Shortest
Peoplewatcher app and potential underlying strategy (orange tags) Scale :easy(1)-difficult (4, 6) Ideal Path and Perceived Difficulty
(Dalton & Dalton)

Discussion & Conclusions

* Perceived, subjective task difficulty does not fully match a-priori expected task difficulty based on space syntax analyses.

* High scores on spatial skills do not necessarily mean overall successful performance. No overall classification of “good” or “bad”
navigators. Wayfinding tasks require adaptive strategies.

* Planned continuation: Investigate user wayfinding behavior in a systematically redesigned virtual model of this library.

Linking building
circulation typology and

human wayfinding
Saskia Kuliga, Asya Natapov, Christoph Hélscher

Aims

Understanding the relationship between
architectural configuration and human
wayfinding performance.

- How to systematically redesign
buildings (e.g. for empirical studies or pre-
occupancy evaluation)?

Methods
Systematic graph-based circulation redesign

Amsterdam Municipal Orphanage: translation to boundary graph (above) and
transformation to final layouts (with network, linear, and circular circulation)

[ Visual intelligibility |  Expected subjective difficulty

‘Network' circulation R*=45 64% rated as the most difficult
'Linear' circulation R*=.63 79% rated as the easiest
‘Concentric’ circulation R*=32 48% rated as intermediate

l{rt:?imbria
- UNIVERSITY

@ Universitat Bremen

of the existing building.

Planned Continuation
-> Investigate user wayfinding behavior in
these three VR models.

Space Syntax VGA Connectivity (left)
and VGA Integration Measures

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Deutsche
Forschungsgemeinschaft
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_ *SPATIAI.
Sparse Least Squares on Manifolds COGNITION
I

AT7-[FreePerspective]
Christoph Hertzberg, Udo Frese, Thomas Rofer

[+]-Manifolds

* Integration of manifolds into least-squares estimators
* By encapsulating their structure in a [+] operator
* Flexible definition of various state spaces

+ Mathematical theory and software framework | .- //
Axioms of a [+]-Manifold S m %
x ¢ smooth in § and y H x smooth in y.
range of unique values 0 € V C R” .
xHO0 =X
VyeS: xHB(yBx)=y

VéoeV: (xB)Hx =0

Vé1,02 € R" : [|(x B 61) B (x B 62)[| < [|61 — 02|
Probababilistic Concepts on a [+]-Manifold

N(p, L) :=pBN(O,X), pe8, X eR™"

X~N(p, X)=p@BN(O,I)E X3 u~ N0, X)

EX = argmin,cs E(|X 8 x||*)

CovX =E((XBEX)(XBEX)")

Gauss-Newton on a [+]-Manifold

F(X) — z ~ N(0, T) F(X)Bz ~ N(0, ¥)
y _ f(x tee) — f(xi — ee) ¥ _ (f(xiBee)Bz) — (f(x; B —eex) B 2)
ok = 2e ok = 2e

xig1 =x —(J X NTHTETYA() —2)  xpa=x B - =TT ST (x) B 2)

Example: Stereo-Camera Calibration in <50 Llnes of Code

typedef MTK::vect<2> vec2; vector<vec3> pts_world; /I calibration point positions
typedef pair<vec2, vec2> vec2pai.
typedef MTK::vect<3> vec3; Estimator est; Il Optimizer class
typedef MTK::SO3< > SO3; Il Camera parameters (shared by all measurements)
typedef MIK::trafo<SO3> trafo VarID<StereoCamera> K = est.insertRV(StereoCamera());
typedef MTK::vect<9> CamIntrinsics;
for (int t=0; t<num images; ++t){

class Camera : public CamIntrinsics { Il collect data, getmltlal guess for left camera

vec2 sensor2image (const vec. 3& point) const;};

vector<vec2pai

afo left2wo: ld

MTK_BUILD_MANIFOLD (StereoCamera, nd_checkerboa: d(l ft2w rld_init, , pts_world) ;

((Camera, left))
((Camera, right))
((trafo, left2right))

tr

£ing

VarID<trafo> left2world = //local ID left2world
est.insertRV(left2world init);

for (int i=0; i<num_poi c ++i)

est.inser (S e (
SLOM BUILD_ MEASUREMENT ( . 4,

K, left2world,
((Stereoc mmmmm K)) ((trafo, left2world)), pts_world[il], ));
((vec3, p_world))

)

}

SLOM_IMPLEMENT MEASUREMENT ( , ret){
vec3 p_left = left2world->inverse() * p_world;
vec3 p_right = K->left2right * p_left;

et << K->left.sensor: 21mag (p_left) -
K->right.s or2image (p_right) -

for(int i=0; i<100; ++i) est.optimizeStep();
cout << "Camera intrinsics " << *K << "\n";

alkal
‘B
Yy
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:

}
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Detailed Modeling and Calibration SPATIAL

of a Time-of-Flight Camera COGNITION
I AT -[FreePerspective]

Christoph Hertzberg, Udo Frese, Thomas Rofer

Idealistic Model

» (t) = asin(2nvt) + co

v

\\

A= \/ (s19 — sf21)2 4 (sl — s13])2

> z(t) = a-(t — At) +cp > At = 51 atan2(slt B, 5[0 —s[2) _ //// -
k+2 = -
Kl _ (4 _ - 7 —-

> sl = [ () de = b 7 = (10— o2y 1 (st _ 5B3ly; -

C2+éCOS(%k—27TVAt) » A=|Z| ®

> At = % arg Z

Irregularities
Lens Distortion Non sinusoidal light Non-Linearities  Fixed Pattern Noise Lens Scattering

Vignetting

Model

> Vignetting: ¢;(xLep) » A=t;-a -l (xEp)" i‘*_lc;o-_"}

> Emitted light: 1(t) modelled by piece-wise polynomials Ixceofl
> Wp(At) = [a50%y(t)dt

» Sensor non-linearities g¢ using rational polynomials

TWorld

v

_ |xep|+lixcaml|
At = epltitcn]
Z =hy-gc(A-(Vp(At) +iVp(At + 1))
Unknowns: o, L, H = (hp)per. G, P

v

v

> Fixed Pattern Noise: Complex factor h,, per pixel

E i t
(2 by R am
o U"Cul‘dllth‘l': : a3z Ul\:undllinn .
ai ai
e - (2]
S,
b L) AT 1R A
sk s
ot =1 W . s
458 < B 455
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Planning Complexity

SPATIAL
COGNITION

Pl: Marco Ragni

Research Question

* Human planning complexity is only investigated
empirically.

» Computational Complexity measures don’t take human
psychological factors into account (e.g. Boolean circuit
complexity).

» Can we find a computational complexity measure
that predicts empirical complexity?

Representational Factors
« Law of Common Fate
« Law of Continuity
« Law of Good Gestalt
« Law of Good Past Experience
Bennati et al. (2014), Albrecht et al. (2014)

Means-End Analysis

r Choose object

Select Heuristic Reduce

Identify blocking objects
) Dependency Graph (DG)
- Directed, cyclic graph (g)
» Nodes N: Game Objects
» Edges E c N x N: Blocking Structure

Ragni et al. (2011)

Select blocking objects
l Induces

= Solvable?

Computa-

no tional

yes

Structural Factors (SF)
» Cycles

+ Branching Factor

* Depth

« DG reconstructions

Ragni et al. (2011)

Steffenhagen et al. (2014),
Albrecht et al. (2011)

Results

« Computational cognitive models for Rush Hour
(Bennati et al. 2013) and Tower of London (Albrecht et
al. 2011; 2014).

* Human planning performance depends on
- representational complexity e.g. clusters

(Bennati et al. 2014)

Correct (%)
85.4

- structural complexity e.g. cycles (Ragni et al. 2011)

predictor (r = .77, p <.001):

Cluster?
Yes
No

Optimal (%)
31.3

80.6 77.0

cu(n) = [e() + 1]+
sesucc(n)

cy(9) = Z ca(m);  cu(p) = Z cu(9)

neN gesol(p)

depth(b)
becycles(n)

@ Universitat Bremen

UFG

Deutsche
Forschungsgemeinschaft

Associates: Rebecca Albrecht, Stefano Bennati, Sven Brissow, Felix Steffenhagen

Problem Instances

)

Rush Hour Tower of London

Approach

 Systematic formal investigation of
structural properties of planning problems
represented by dependency graphs and
state spaces.

 Systematic analysis of representational
factors (e.g. Gestalt Laws).

» Empirical studies of selected problems.

* Analysis of deviations from optimal
solutions.

* Analysis of eye-movement patterns.

* Definition of complexity measure wrt.
Structural and representational factors.

« Statistical analysis of the complexity
measure as a predictor for empirical
complexity.

Examples

JC LI

cp=4

cu(g) = 14

cy(g) =20
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|
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Processing of indeterminacy and negation @

in reasoning with cardinal directions

an fMRI study

GEE———
Pl: Marco Ragni

Associates: Simon Maier & Imke Franzmeier
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CA

The mill is SW of
the factory, which
is SW of the church

How are negated and indeterminate relations processed?
Which brain areas are involved in reasoning about
indeterminate and negated spatial arrangements in cardinal
directions?

Reasoning about determinate descriptions (allowing only one spatial
arrangement) recruits mainly the superior parietal lobe (SPL) and the
medial frontal gyrus (MFG) [Fangmeier 2006; Prado 2011]. In every day
life spatial descriptions are often indeterminate [Ragni 2013] (i.e.
allowing more than one spatial arrangement).

A
a

€

Example Inference
The mill is SW
of the factory

-l

Premise 2 AC A
The church is NE '1 '1
Premise 1 / of the mill \ [ ] [ |
The factory is SW B r— [N c
of the church .
Possible
B m inference AC

J c
\ Premise 2
A

The church is NOT

/ m orthogonal
SW of the mill CA
©
A

The factory is SW of
the church, which
is NE of the mill

Possible inferences for
negated and indeterminate

(" . . . .
Neural correlates of indeterminate and negated spatial relations

\

Construction phase: In indeterminate cases
reasoners tend to build a preferred mental model
[PMM; Ragni & Knauff 2013] of the order CA keeping
the order of the first premise unchanged (factory SW
church) and integrating the third stimulus (mill)
northeast of the factory. This study addresses, whether
CA is also the PMM for negated descriptions.

Validation phase: Participants have to decide
whether a presented inference is consistent given the
two previous premises. In indeterminate and negated
problems several inferences could be possible.

Model variation: When an inference deviates from
the PMM reasoners have to vary the model and build
an alternative mental model [AMM; Ragni 2013]. In
indeterminate problems the AC order is a possible
AMM. This variation is cognitively demanding [Ragni
20071 and involves higher superior parietal lobe (SPL)
functioning as validating a PMM.

Does the variation of a PMM recruit the SPL when
solving (negated) problems in cardinal directions?

\prob/em descriptions B ) p,
( - - . . )
Methods: Testing negated and indeterminate relations
Procedure
* 3 buildings (mill, church, factory) were presented in determinate, indeterminate and negated 3 term
reasoning problems (2 premises).
* Premises in four cardinal directions, SW, SE, NE, and NW
* Negated relation were indicated with a red fixation dot
* Subsequently, an inference with stimulus A and C was presented
*In indeterminate and negated problems some inferences were in line with the PMM and some required
model variation to build an AMM
* Task: Subjects responded by yes/no button press whether an inference was valid given the 2 premises :
MR parameters Da.t'a analysis ELIE
* EPI: TR 2 seconds, 38 slices, 3x3x3mm * Finite Impulse Response (FIR) & .
« Trial duration: 16s *14 time bins ) =
* Variable inter trial interval * Conclusion in time bin 11 & ]
Participants * Full factorial mode
» 17 right-handed subjects Time course of a determinate problem = )
\ /
" N N N N N ™
Results: Do negated and indeterminate relations differ functionally?
Contrast 1: Which areas are
active during model variation? SPL consirast estimates
AC > CA in indeterminate problems: |
«SPL: -15,-42,63; T=4.26; pFWE=O.277; |
p,, . cluster=0.033* | ‘
-MFG: 57,3,42; T=5.27; p, =0.008*; i B
§ oo
p_ Cluster=0.153 é AC CA AC CA AC J,A
Contrast 2: Do negated and = {
indeterminate problems differ?
Interaction: problem X inference: aig
T-maps of «SPL: -18,-39,54; T=5.05; pFWE=0.01 9; determinate negated indeterminate
contrast 1 p,, Cluster<0.001* J
T-maps of contrast 2 with contrast estimates of the SPL peak voxel
7
S

Model variation in indeterminate spatial relational problems involve the SPL and MFG activation

* Increase in late time bins, probably attributable to variation / validation processes

* The SPL might hold spatial relational information [Ragni 2014]

* The MFG might process the application of constraints or rules during model variation

* Reasoning in cardinal directions (large-scale space) involves the same areas as reported for relational
reasoning in small-scale spaces

* Higher SPL activation during CA in negated problems suggests model variation in this conclusion type

* Reasoners might build a PMM of the order ABC (instead of CAB) in negated problems

* Reasoners might build a determinate PMM (ABC) which is then labeled as being “wrong”

* Hence, preferred and alternative mental models in reasoning recruit brain areas that might hold and

manipulate the spatial relations of these models

rDo negated relations result in determinate mental models?‘
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Exploring the anatomical basis of deductive

reasoning with transcranial magnetic stimulation

PI: Marco Ragni Associates: Imke Franzmeier, Simon Maier

( \
This study is currently under review at the Journal of Cog Neuroscience

The neuroanatomy of deductive reasoning

> The aim of this study was to use transcranial magnetic stimulation (TMS) to explore the role of the
parietal lobe in deductive reasoning (Franzmeier et al,, 2014).

» Deductive reasoning consistently activates the bilateral PPC (i.e. the right SPL and precunes (BA 7); and
the left AG (BA 39) (as shown by the meta-analysis of Prado et al., 2011 and our review, Ragni et al. 2014)

*  Whatis the causal role of the PPC, specifically the SPL, in the construction and manipulation of mental
models? > Exploration by Transcranial Magnetic Stimulation (TMS)
* transient & focal disruption of neural processes (Walsh & Pascual-Leone, 2003)
* compromising performance even on cognitively complex behavioural tasks (e.g. reaction times are
slowed ; Franzmeier, 2013)

(Is the right SPL involved in mental model processing?

Materials: 72 indeterminate reasoning problems with four different models

\ A

SPATIAL
COGNITION
R8-[CSpace]

Design: 2 x 3 Presented Model Type
» 2 stimulation sites x 3 model types (preferred, alternative, incorrect) Stimuli
Procedure: 2 subsequent sessions with 36 problems each 1. AisleftofB
] 2. Bis left of C
§ 3. Disleftof E
| The apple is |left of the pear. 4. Bis left of D
| Model  ABCDE Preferred mental model
The pear is left of the mango. ABDEC Alternative model
Premise 1 EBCDA Incorrect model (far)
(2500 ms) Thekiwi is left of the peach. | ADCBE Incorrect model (middle)
Premise 2
(2500 ms) The pear is left of the kiwi. ‘
Premise 3 b P g R e
TMS-Protocol (2500 ms] \ apple pear kiwi mango peach
* 10 Hz rTMS over 600ms Premise 4 Velidvadiph
* intensity = 100% of rMT i Yes/No
« Stimulation sites: right SPL and Vertex PP -
> localisation by neuronavigation {2500 ms)
« Stimulation timing: 980 after model onset ““Pm.
1\ /
4 N
Effects of right SPL stimulation on relational reasoning
Accuracy (%) Participants: 24 right-handed students
100 Analysis: 2x3 repeated measures ANOVA:
98 o e UL stimulation site x model type
90 Results:
o * Effect of stimulation site:
9 Vertex > SPL stimulation
80 « Effect of model type:
75 incorrect > correct models
70 - preferred > alternative models
65 | » SPL Stimulation of correct models affected the
,,f{]' T - : 3 accuracy, while incorrect models remained
preferredmodel alteruative model incorrect model unaffected. References
\ / F ier, 1. (2013). 1 1schaftliche Studien zur

, Right SPL stimulation affected mental model processing

This experiment provides evidence for the causal role of the SPL in deductive reasoning

» The validation of correct models depends on mechanisms in the right SPL

» TMS, which has not been used before for a spatial reasoning paradigm , can be used successfully to
investigate complex cognitive processes such as reasoning.

Ongoing work: The same paradigm has been tested in an fMRI study (N=28) and is currently analysed
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Levels of Spatial Reasoning

Pls: Marco Ragni, Lars Konieczny

Research Questions

* Why do humans draw specific conclusions and neglect others?

* Where are the associated brain regions for spatial relational
reasoning located? Can we distinguish reasoning phases on

this level?
* How can reasoning difficulty be modeled?

Behavioral Level

Conflict Detection:

100%

8 g g
2 2 2

Correctness Percentage

g

Responsetimeins

Both conditionals One conditional

W Correctness O Response time

Neither conditional

(Ragni, Sonntag, Johnson-Laird, subm.)

Neuronal Level

Our meta-study identified the SPL as activated region, assumed to be
essential for the construction and manipulation of mental models (Ragni et
al,, 2014); this was further supported by our TMS- and fMRI-studies

(Franzmeier et al.,, 2014; Maier et al., 2014).

Information Integration (Premise 3)

anterior

posterior

Information Retrieval (Conclusion)

(e.g., Fangmeier, in pvep.)/'

Future Directions

* Changes in the reasoning process during aging
* Spatial abilities a key factor for general cognitive abilities?

=>» Relevance for education

@ Universitat Bremen

UFG

SPATIAL
COGNITION
R8-[CSpace]

Information Processing

System 1/ Synthesis
| Spatial information comprehension |

’ Information

consistency check ’ (possiblereduction) |

Construct
representation

Integration Process

Inspect

Information

i
1

1

1

1

: consistency check validation
1

1

i

1

‘ New information

Constructalternative
representation

Conclusion

System 2/ Analysis

Methods & Results

Behavioral Level
All phases of the reasoning process investigated
* human processing for conflicting information in classical, conditional, and
quantified relational reasoning
-> Construction of specific mental representations
- Identification of conflict resolution processes in Systems 1 and 2
» combinations of different domains
* accordance with eye movement patterns
Neuronal Level

* Meta-Analysis to identify associated brain regions in relational reasoning
(Ragni et al., 2014)
* Findings supported by 3 TMS-Studies (Franzmeier et al., 2014); Visual
Impedance Effect in cooperation with M. Knauff
* 3 fMRI-Studies analyzing the processing of indeterminate information
and small/large scale space
- SPL relevant for the manipulation of mental models
- Interplay between different brain regions supports theory
Computational Level (Cognitive Modeling)
* Mind-Brain-Mapping Analysis of the ACT-R function analyzed
* ACT-R Models and Neural Network Models for relational reasoning
- Predicting reasoning differences
*  Webmodel of PRISM with an extensive data collection

Computational Level

PRISM Human BOLD
e S Wi oy oc W APFC PPC ‘
- E 28 = |
o g o }l |
: £ a2 i jal |
. g > - |
= H S =
PSR 2] " s J
LT T .
(. Ragni & Knauff, 2013) Predicted BOLD
ACT-R e W e W megral

{Ielel ™ |

i B

3] - m - 3

BOLD responss

SR -l -
(e.g,, Briissow et al,, 2013) (e.g, Ragnietal, in prep) /
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New path: Cognitive Robotics COGNITION
- R8-[CSpace]

Pl: Marco Ragni Associates: Enrico Rizzardi, Stefano Bennati

Spatial reasoning takes place in an environment,
hence understanding spatial complexity depends on the embodiment as well

Research Questions

* Humans can navigate into an environment, can
Cognitive Robots too? How?

* Which perceptions are sufficient to perform a
navigation task?

* Can a Cognitive Robot show human-like behavior
while navigating and searching for a goal?

* Which platform can be used to achieve that goal?

* Which are the advantages of cognitive robotics
over classical robotics? ° ’ MEthOdS

* Mind-R' as new inexpensive platform for
Cognitive Robotics
* A LEGO Mindstorms robot controlled by the

LISP Interpreter

i L e Pl cognitive architecture ACT-R
[ e ) Sy e * Navigation can be achieved with very basic
x — | perceptions
ASTR | ot ﬂ * Interactions with basic sensors and actuators for

navigation tasks
* More advanced perception through visual

landmarks
Results
* Embodied cognition by connecting ACT-R with gy =T - ® ==
a Cognitive Robot Mind-R i ' s T g
* Extended ACT-R with new modaules to interact AT S oy »
with the environment . | I e iy M
* The robot simulates the human behavior and kL | e Tt s,
learning strategies?in a labyrinth navigation e
task s
* Cognitive Robotics used for teaching purposes,
successfully applied in the course “Formal . .
Methods and Programming” WS 2012 Future Directions
* Communicating Robots: route description that a
e " etoreter second robot has to understand
@ — %; w B, « Taking forgetting into account
@ L] gf * Connecting Mind-R for spatial relational

reasoning models

1. Mind-R Website: http://webexperiment.iig.uni-freiburg.de/mind-r/index.html

2. “How to bouild an inexpensive cognitive robot: Mind-R” Authors E.Rizzardi, S.Bennati, M.Ragni. Cognitive processing, CogSci 2014, Tiibingen 2014.

3. “Cognitive Robotics: Analysis of Preconditions and Implementation of a Cognitive Robotic System for Navigation Tasks” Authors S.Bennati, M.Ragni. In
Proceedings of the 11th International Conference on Cognitive Modeling. Universitaetsverlag der TU Berlin, 2012.
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Three-Dimensional
Map Construction

Wolfram Burgard, Matthias Teschner

Motivation

* Which objects are relevant for humans?
* How do humans handle objects?

Goal: Reconstruction of 3D environment
models from human motion and activity

Key Tasks and Work Packages

Activity Recognition * Activity Recognition (WP 15)

* static and dynamic gestures * Reconstruction of Objects (WP 16)
Object representation e Data Structures (WP 17)

* Data structures for reconstruction and interactivity ¢ Symmetries and Similarities (WP 18)
Environment reconstruction * Multi-Floor Mapping (WP 19)

* Feature extraction * User Interaction (WP 20)

* Data association * Enhanced Reconstruction (WP 21)

* Optimization * Evaluation and Integration (WP 22)

Activity Recognition

Consider different activities as landmarks

describing the environment

* e.g., opening / closing doors, climbing stairs,
sitting down, painting along edges, surfaces

Motion Templates for activity recognition:

* Each frame is described by a set of Boolean features
(e.g., left foot in front of right foot...)

* Each activity consists of a sequence of frames

* Goal: learn a general motion template from
a set of 1 training examples

o yes
| no

4= Feature

Other activities Motion template generation: dynamic time warping + merge
* Neural networks for detecting stair climbing

* Painting objects
left hand on hip, right hand moves along the surface
to extract walls, tables, ... —)

Activity: paint rectangle Wall landmark: plane
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Three-Dimensional SPATIAL

Map Construction COGNITION
- A2-[3D-Space]
Wolfram Burgard, Matthias Teschner

Reconstruction of Objects

High-quality surface reconstruction from 3D data
* Scalar field is reconstructed in a narrow band
around the surface
complexity and memory consumption scale
with surface instead of volume
* Efficiency is improved by using marching cubes
Efficient post-processing steps
* Surface decimation: alleviates particle-alignment related
bumpiness, reduces the number of required triangles
in flat regions

* Subdivision: surface smoothing
Results

* Comparison to state of the art
*15-20 x speedup

* 80% less memory required

Highly detailed surface mesh reconstructed from 3d point cloud data

Data Structures T tor-omnecn

Support of efficient insertion, deletion, and update operations
Requirements:

* details and smoothness,

* small memory consumption and computation time
Adaptive instead of uniform grids

* Detail varies in high curvature and flat regions

* 3-level grid structure adapts cells according to
curvature of the surface

* Seamless stitching of mesh blocks from cells of
different resolution: closing cracks with new triangles

Results

Comparison to single level low-resolution uniform grid:

* Reconstruction of fine details

* Comparable performance (memory, computation time)

Comparison to single level high-resolution uniform grids:

* similar quality,

* up to 4 x less memory, up to 60%faster

= Level 3 - fine cell

IR

L = Level 2 - surface cell

I

Surface

Reconstructed surfaces and underlying grid structures

A L LT T T TP i]1] 1 HAH

A
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Three-Dimensional SPATIAL

Map Construction COGNITION
B A2-[3D-Space]
Wolfram Burgard, Matthias Teschner

Environment Reconstruction

Correct for drifts in the suit

Approach

* Landmark detection: doors, chairs, lines, planes

* Nearest neighbor data association

* Optimization: minimize the overall error of the graph using

constraints between poses and objects Human posé:\éstimates
* Constraints: (co-) planarity, perpendicularity,... Formulation as graph-based optimization problem
Experimental Evaluation p ﬁ% [
Multi-Floor Mapping EuE aé., m
* University building with several floors \\ If | ey
» Trajectory length 2.85km “\_ e e T

* Door detection: 175 (178) TP, 1FP, average error:1 m+0.41 m
* Stair detection: 411 (473)TP, 0 FP
* Reconstruction matches the floor plans and corrects
for drifts in the odometry
Cube 3D

e Extraction of lines and detection of corners
along the edges of 0.4x0.4m cube

* Optimization of the corner positions

3D reconstruction: detected corners before
and after optimization

Key Publications

* G. Akinci, M. lhmsen, N. Akinci, M. Teschner. Parallel Surface Reconstruction for Particle-based Fluids, Computer Graphics Forum, 31

(6), pp. 1797-1809, 2012.

* G. Akinci, N. Akinci, E. Oswald, M. Teschner. Adaptive Surface Reconstruction for SPH Using 3-level Uniform Grids. In Proc. WSCG,

pp. 195-204, June 2013.
* N. Akinci, J. Cornelis, G. Akinci, M. Teschner. Coupling Elastic Solids with Smoothed Particle Hydrodynamics Fluids. Journal of
Computer Animation and Virtual Worlds (CAVW), 24(3-4), pp. 195-203, CASA 2013 Special Issue, 2013.

* B. Frank, C. Stachniss, R. Schmedding, M. Teschner, W. Burgard. Learning Object Deformation Models for Robot Motion Planning.

In Robotics and Autonomous Systems, 24(8), pp. 1153-1174, 2014.

* S. Grzonka, A. Karwath, F. Dijoux, W. Burgard. Activity-based Estimation of Human Trajectories. /[EEE Transactions on Robotics (T-RO),

8(1), pp. 234-245,2012.
* J. Sturm, C. Stachniss, W. Burgard. A Probabilistic Framework for Learning Kinematic Models of Articulated Objects. Journal of

Artificial Intelligence Research (JAIR), 41, pp. 477-526, 2011. Reasoning Action Interaction
M R1-[ImageSpace] A2-[ThreeDSpace] 1-[OntoSpace]
Collaborations | . Lo |
. . . . | R30Shepel || A3Multibot] | | 12 (MapSpace] |
* A3: Human-motion tracking, building consistent maps,
le g . . R4-[L S A5-[ActionS SharC
probabilistic models for articulated objects ‘ Logospace) | | AstActionspace) | | Bisharq |
« R7: Algorithms for parallel architectures, deformable | RelspaceGuide] | [n7FrecPerspectivel] | I5{Diaspace] |
object-fluid interaction, surface reconstructions \ R7-[PlanSpace] \ %87[Humanoid5pace]\ \ l6-[NavTalk] \
* BAALL: Interaction with futuristic environment, R8-[CSpace]
evaluation Of mapping algorithm ‘ external cooperation (BAALL) ‘
G
)
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Cooperative Human-Robot
Exploration

Cyrill Stachniss, Wolfram Burgard

SPATIAL
COGNITION
A3-[Multibot]

Objective

* Develop tools to explore unknown areas in cooperative mixed human-robot teams

Build Semantic Maps

* Learn semantic maps that combine detected objects with L

i i | ‘ 3 ‘ y
SR Ol % 9 P
laser and odometry information o fu{‘_; s [EEESED \§ B B O
* Representation as pose graph allows to propagate F T et oo b
pose uncertainties and pose updates r T el \\’
« Build maps by observing human motions, s ) )\w-*
in cooperation with e e o

Map of an office environment annotated with detected objects

Learn How to Describe Routes from Human Demonstrations

* Learn how to generate natural and intuitive route

directions from human demonstrations

* Use inverse reinforcement learning to imitate style

and cultural preferences of humans

* A user study suggests that the directions generated
by our approach are perceived as highly human-like

Autonomous Robot Exploration

* Temporal symbolic planning for coordinating heterogeneous teams of robots

Ju__ L

Go to Bremen.

Start heading
south.

Turn left at the
2nd junction.

Go straight
head.

Walk towards
the church.

Go straight
ahead.

Your goal will be
on the right side.

Route on a map and corresponding Markov Decision Process
representing different ways to describe the given route

* Approach that allows robots to autonomously deploy artificial landmarks
* Approach to quantify spatial ambiguity and to efficiently place landmarks

for mobile robot navigation, in cooperation with ( Ré-[SpaceGuide]

in cooperation with

R7-[PlanSpace]

Exploration with Human-Provided Background Knowledge

* Exploit human-provided background knowledge

for more efficient exploration

* Guide autonomous exploration by drawing

a graph of the exploration region

@ Universitiat Bremen

UFG

Topologic graph provided
by the user
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Overview A5-[ActionSpace]:

Empirical Results and Experiments
I A5-[ActionSpace]

Kerstin Schill

We conducted a series of behavioral studies to investigate
the nature of the spatial representation in humans. The
experimental paradigm features the use of 'impossible’
virtual environments (VE), which include severe violations
of Euclidean geometry. The experiments were run with an
omnidirectional locomotion input device, the "Virtu-
sphere," which is a rotatable 10-foot hollow sphere that
allows a subject inside to walk in any direction for any
distance, while immersed in a virtual environment.

Possible

Impossible

Impossible and possible virtual environments

Study 1:

Do spatial violations affect navigation performance?
Study 2:

Which cognitive resources are required when exploring
and building mental representations?

Study 3:

Is auditory space included in an integrated mental
representation?

Study 4:

Are there differences of the exploration process in
impossible VEs compared to possible VEs (in collaboration
with i6-[Nav-Talk]?

(a)

Impossible Environments

(b)

— Impossible Worlds

SPATIAL
COGNITION

Omnidirectional Input Device "Virtusphere"

Subjects are able to navigate in impossible VEs

The new results resemble our former ones, which have been
obtained in a traditional VR-setup without sensorimotor
feedback, in basic aspects.

Indication of a sensorimotor representation of space
Navigation in impossible VEs cannot rely on a map-like
spatial representation. A map-like mechanism would be
reflected in a breakdown of navigation performance in
impossible VEs, because these VEs cannot be represented
in a geometrically correct way.

The results indicate that motor/proprioceptive information
may be combined with vision to a sensorimotor
representation.

Cognitive Load

The Virtusphere as locomotion interface requires cognitive
ressources for the novice users and may thus interfere with
judgements about the environments. Nevertheless it
remains remarkable how normal subjects behave in the
impossible environments, in spite of the associated
inconsistencies between vision and sensorimotor
information.

Evidence for auditory influences on the representation
of mid-scale spatial structures

There is an effect of auditory stimuli on path reproduction
results, which applies particularly on VEs that bear a
distinct ambiguous or 'bistable’ nature. Other VEs are less
systematically affected by auditory stimuli.

100

@
9

IS
8
1
I
I

I Impossible
I Possible

Navigation performance (%)
3

S
9

[ T T T T T T
1 2 3 4 5 6

Difficulty
Study 1 navigation performance for impossible and possible worlds,
respectively, organized by difficulty of the task.

bistable
environment

no audio :
> A" :

path reproduction
Y

>

A

audio

Study 3 Plots of the path reproduction outside of the learning
environment are examples.

\

iy
-y

Tl

Adaptation
it | 74
4

Tl

3 g Baseline
- £ o, % >
/ I L A
] &=

Pointing Task: typical results in baseline, prism-exposure, after-effect phases
(example: stationary condition)

~ Multisensorimotor Spatial Alignment of the Senses

Multisensory contributions the sensorimotor calibration
Sensory modalities are usually appropriately aligned in space. audition, vision, and proprioception
each direct actions to the same spatial coordinates. Subjects wearing prism glasses that shift the
visual input first miss the target in a pointing task, but quickly adapt to the new sensorimotor
configuration. This adaptation may take place in (1) the visual or (2) the proprioceptive pathway.
Usually, the proprioceptive component is affected, probably due to the often observed dominance
of vision over other modalities. This process of adaptation is changed when auditory stimuli are
presented during prism exposure: Auditory stimuli lead to a shift of the visual representation. This
may be the result of a cortical mechanism performing a statistical reliability estimation, i.e. both
audition and proprioception remain unaffected by prism exposure and therefore force vision to

Experimental Setup After-effect
T realign. We conducted a study using a prism adaptation paradigm to investigate whether sound
Y V] source localization affects the process of sensorimotor calibration.
4
‘ 4
Pt ® R Conditions

(1) Stationary: Pointing task was accompanied by auditory stimuli at target position
(2) Shift: Auditory stimulus was shifted by 16.6° (same as prism-offset) under prism exposure

Visual shift Visual shift

Baseline

[

Prism-exposure
pointing

Proprioceptive shi Proprioceptive shi

&

After-effect
pointing

Pointing Pre-exposure

alignment Tests

Post-exposure
alignment tests

30 Trials 10 + 10 Trials 30 Trials 10 + 10 Trials 30 Trials

Order of experimental phases

We found a higher contribution of the proprioceptive component compared to the visual one to the
adaptation in the stationary and non-localized conditions.
In the shift condition the visual component is dominant. Sound source location affects visuomotor
t adaptation. Results cannot be explained by a cortical reliability estimation between sensory
modalities

Proprioception

lateral deviation (arc degrees)

T T T
stationary shift  non-
localized

Vision

lateral deviation (arc degrees)

10

T T
stationary ~ shift

-

T
non-
localized

Results of the alignment tests in all
conditions
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Overview A5-[ActionSpace]:
Place Cells and Localization

Kerstin Schill

Neurobiological findings show that so-called place cells in
the hippocampus can be driven by visual input alone. But
how exactly can vision support localization?

Localization differs in its invariance requirements from other
tasks such as object or scene recognition tasks. Therefore, it's
not clear which feature vectors used in other areas apply to
self-localization tasks.

Illustration showing difference between localization and
object recognition

~—Visually driven Place Cells

SPATIAL
COGNITION

A5-[ActionSpace]

Datasets ——— > Models
Google StreetView data
(world scale, countr scale and city scale) Landmarks,

Sparse features
Object parts
HMax
Spatial envelope
Gist

Texture histogram
Textons
Luminance
Histogram

-ﬁ

Virtual world screenshot data

Indoor localization
— -
h ﬂ

Comparison datasets
(Caltech101, Animal/Nonanimal, Scene15)

% .5 o

Image statistics

Holistic image descriptors,

P

One-versus-all - Linear Regression
Poor performance on landmarks
Strong performance on statistics

performance

o i L
Streetview  Animal Callech-101 Scene-15
dataset

Space untangling by holistic descriptors

Classification

SV-Ciy

‘SV-Cauntry
dataset

SV-Worid

\ [1] Photos: (c) Stephen & Claire Farnsworth via flickr, license CC-BY-NC. Map: Google maps (c) Google inc1
~ Audiovi S Localizati
udiovisuomotor Source Localization 1
. Lo N . . . Mator Control (M: Iy Inf 1
® Active audio-visual source localization (2d: azimuth and distance) for use on a mobile robot. l 1aoorton "” ey fctins) ) |
PR 7 a1
® |nformation Gain mechanism is used for the selection of the most informative action in each step. Hdia Gammatone |~ Binaural 1TD e [sensor| ’ ‘
— O +—= Model ——~—
Filterbank > Analysts ‘
| et s Audno
) — Pamde
System Behaviour P . i Filter
4 4 a a | A |. |sensor|
Templale |cere 3 ;
3 3 |3 i Mal(?hung == ’RGLO,QE'::;" 'S Model [0
2 i Vision| ‘ | Y | Vision | B
) [ )
9 B ‘ 9 Cod _‘1’ 2 | Stereo Microphane Unisensory Feature Probabilistic ?;gg;;zx
_ _ _ _3 and Camera Preprocessing Extraction Models 200 Tracking
- - - -3
44-3-2-10 1234 %-32-101234 % 32101234 %-32101234 Results: RMS error Information Gain vs Random
3 3 ALl 8l
2 2 2 e e
5 1 14 1
0| * o o * 0 . 0 ‘. i3 3
- - - -1 to b \\
- - - | -2 fou fos \
- L= |- - e —
=3-2-10 1 2 =3-2-10 1 2 37 =3-2-10 1 2 3 13—2—10 12 3 o8 06
os 04
02 02
og s w1 o B % s oo w m
Wi R
\ J
—Evidential SLAM
vidential S 1
Uncertainty in SLAM is usually represented probabilistically. ocatmaton 4
However, this can lead to ambiguities: Is an occupancy = S
robability of 0.5 the result of missing or conflictin NS(Y IC(Y
p y ) 9
measurements? We have developed a SLAM approach based I ) l B
on Dempster-Shafer theory which avoids this ambiguity by / == l
introducing additional dimensions of uncertainty. [’ T j [ T
ground truth probabilistic map = .
m[20:4, u1:)(To:4, YY) = p(To:e|20:4, Ur:e) m[To:t, 204)(Y) T‘r R
path/map belief path belief map belief ll EC(Y) - A ‘( H(Y)
|
P(To:t]20:85 u1:t) X PllTo:t, 20:0-1](21) P(To:t|20:4—15 U1:t) | l” y
, — : ) I
path posterior evidential likelihood path prior
- uncertainty measures
MeM [To:t, 20:¢] = Moy [z¢, 2] ®@meuy [To:t-1, 20:¢-1] ’
_
map belief inverse model map prior Lo . -
M h]gh NS ‘mixture
. o8 ] raint o 1€ high IC
mewu [To:t, 20:¢] = G?mey" [%0:¢5 20:t] 06| medumns t ] 2 \“‘e‘i‘ws\wws
= mixture » AR W)
map belief ! grid cell belief =2 oaf o 17 00 0z 0.4t 06 08 10
! X 02} cortainty medium I high 1c 4 projection entropy
These equations can be approximated by an evidential Rao- evidential map oole*” | e L%
Blackwellized particle filter. 00 02 MICO'G 08 10
\ J
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Overview A5-[ActionSpace]: S
SPATIAL

Visuomotor Spatial Perception COGNITION

I  A5-[ActionSpace]
Kerstin Schill

~Sensorimotor Object Recognition in 3D Space

Sensorimotor Approach Bayesian Inference Application and Results

Classical views of perception consider only sensory features,
as do most object recognition approaches. We propose a
probabilistic object recognition approach integrating
sensory and motor information in one representation. The
recognition system controls a camera attached to a robotic
arm in order to obtain different views on an object. Arm
movements are generated by minimizing the expected

BN1 (without motor information) BN2 (with motor information)

entropy of the posterior distribution over object classes. P(yls1m) < P(y)P(s1]y) [Ty P(silsi-1.9) Pylsinymin-1)
o P(y)P(s1ly) TTiZy Psilsio1,mim1 y) Pmioa]si1)
Sensorimotor Features
-~ . . Recognition Performance Mean Entropies
A T T L Information Gain : - :

The information gain is defined based on mutual information:
I1G(my) == H(Y[s1:n, 7”1:n—1) - H(Y|Sn+137”n-, Slins 7”1:n—1)

Action selection is based on minimizing the expected entropy:

BNL
BN2 G
— BN2+IG

S U R TR TR
interactions.

m* =argmin(_E [H(Y|s1.n, Snt1,M1n)])
Mo Snt1
\

~Spatial Numerosity

Computational experiments
| ) [
D " t o y "Different" task  "Larger" task
A S E
et ' ¢ yi
> J ‘ Q 4 - fo
P - - i
The estimation of the cardinality of objects in a spatial environment requires a high
degree of invariance. Numerous experiments showed the immense abstraction ability
of the numerical cognition system.
Here we try to approach numerosity from a mathematical perspective. Based on Invariance
concepts and quantities like connectedness and Gaussian curvature, we provide a
general solution to number estimation and apply it to visual stimuli. We show that the g -
estimation only requires derivatives of the luminance function and a multiplicative N o P 4
AND-like combination of these features, which can be realized by neurophysiologically - N
realistic Gabor-like filters and by the neural mechanism of cortical gain control.
N , &= -
loa (@, 9)lyy (2, y) — lay (@, Z/)2 § :
K dS= e, y)) d(z,y), [
Joxas=], (0 Lo (2,)? + fy ()2 SO dY) g
=K (x,y) /7 I o ’ '
where xg is the characteristic function with respect to the set S, and H § = ~ D B
Blyy + Bloe = 2alyley 5 4 - y
_ T : 2\1/2 ; Geometric invariance w
/c” o /R @rEprarE g V) TxeO) d E
=g (x(t),y(t)) . « ’ _‘”m ) /
where y¢ is the characteristic function with respect to the set C. ) # * P 4 * 0 o T
2mn = - K(z,y)xs(,y) d(x,y) + /RF»_q(z(t)-,y(t))f(c(w(t)sy(t)) dt.

\

~Future Activities

Space Exploration Assistance Systems

Active Localization - Multisensory Processing - Evidential SLAM Sensorimotor representation - Route optimization based on cognitive complexity
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Spatial Models in Impossible Worlds

SPATIAL
COGNITION
A5-[ActionSpace]

Thorsten Kluss, Tim Hantel, William E. Marsh, Christoph Zetzsche

— Impossible Worlds Studies

feedback would interact with the impossible environments.

To investigate mental representations of novel environments, Zetzsche et al. (2009) asked participants using to explore and learn virtual worlds that violated rules of Euclidean geometry and
planar topology. Results showed that the "impossibility" of the environment neither affected shortest-path judgements nor could it be recognized by the subjects under forced-choice
conditions. These findings indicate that humans do not form image-like cognitive maps - in spite of having the necessary metric knowledge available. An alternative is some form of sensorimotor
representation, but it is neither clear how these alternative representation is organized in detail, nor how the results would be influenced if full-body movement and natural sensorimotor

We conducted a series of behavioral studies to investigate the nature of the spatial representation in humans. The experimental paradigm features the use of 'impossible’ virtual environments
(VE), which include severe violations of Euclidean geometry. The experiments were run with an omnidirectional locomotion input device, the "Virtusphere," which is a rotatable 10-foot hollow
sphere that allows a subject inside to walk in any direction for any distance, while immersed in a virtual environment.

The main questions were (1) the influence of spatial violations on navigation performance[1], (2) which cognitive resources were required when exploring and building mental representations[3],
and (3) the question, whether auditory space is included in an integrated mental representation [2, 4].

— Method

(1) Training trials

(2) Exploration and memorization of possible and
impossible VEs

(3) Different tasks, such as:

a) finding the shortest path from one landmark to another
b) reproducing the route outside the learning environment
c) drawing sketches of the VE

d) spatial or verbal cognitive tasks

(4) Interview/Questionnaire

Several Conditions were compared to each other:

a) impossible vs. possible VEs

b) VEs including auditory landmarks vs. visual-only VEs
) increasing complexity of VEs

d) increasing difficulty of the tasks

2
2

807

I Impossible
I Possible

Navigation performance (%)
Py
9

[} T T T T T T
1 2 3 4 5 6

Difficulty

Fig. 3 Study 1 shortest path scores for impossible
and possible worlds, respectively, organized by
difficulty of the starting position (1 is closest to the
symetry point). Performance was similar to the
results of the 2009 study, but slightly lower from
the more difficult starting positions. (Error bars
show +/-1 standard deviation of the mean).

By tin
—
0
Cezea

| Retege3  Comeser Trrgm

Map

Navigation performance (%)

Fig. 4 Study 1 shortest path scores for each map.
Performance varied between maps, indicating that
characteristics of the maps should be further
investigated for their role in the formation and
recall of mental representations.

Possible

Impossible

Fig. 2a Impossible Environments Fig. 2b Possible and impossible virtual environments

Fig. 1 Omnidirectional Locomotion
Input Device (Virtusphere)

———> Results & Discussion

Subjects are able to navigate in impossible VEs

The new results resemble the former ones [1], which have been obtained in a traditional VR-setup without sensorymotor
feedback, in basic aspects but also show new effects. Since shortest path performance is not systematically affected by the
impossible environments there is no indication for the breakdown that would have to be expected if inconstent information
from impossible environments would be forced into an

image-like map (Fig. 3). However, we found differences on the level of individual environments (Fig. 4). Further studies are
regired to investigate, in how far this could be attributed to the conflicts between ideothetic and allothetic information
arising with impossible environments. [1, 3]

Cognitive Load

The Virtusphere as locomotion interface requires cognitive ressources for the novice users and may thus interfere with
judgements about the environments. Nevertheless it remains remarkable how normal subjects behave in the impossible
environments, in spite of the associated inconsistencies between vision and sensorimotor information [3]. In fact, most
participants did not even notice the violations of geometry (s. Fig. ).

Indication of a sensorimotor representation of space

Navigation in impossible VEs cannot rely on a map-like spatial representation. A map-like mechanism would be reflected in a
decrease of navigation performance in impossible VEs, because these VEs cannot be represented in a geometrically correct
way. The results indicate that motor/proprioceptive information may be combined with vision to a sensorimotor
representation.

Evidence for auditory influences on the representation of mid-scale spatial structures
There is an effect of auditory stimuli on path reproduction results, which applies particularly on VEs that bear a distinct
ambiguous or 'bistable’ nature (s. Fig. 5). Other VEs are less systematically affected by auditory stimuli.
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The visual signature of a place SPATIAL
COGNITION
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Sven Eberhardt (sven2@uni-bremen.de), Christoph Zetzsche and Kerstin Schill

Place Cells

The ability to make reliable assumptions about their own position in the world
is of critical importance for biological as well as for man-made systems such

Localization task
Localization differs in its invariance requirements from other tasks such as
object or scene recognition tasks. Therefore, it's not clear which feature

as mobile robots. i O
vectors used in other areas apply to self-localization tasks.[10]

Vision is of particular importance for localization, as becomes evident in cases
where no reliable prior information about past location is available, e.g. if we
need to find our way home after getting lost.

Neurobiological findings show that so-called place cells in the hippocampus
can be driven by visual input alone. But how exactly can vision support
localization?[1][2]

Models

e Distinct biologically inspired vision models

ide visual feature descriot Landmarks,
provide visual feature descriptors. Sparse features By ¥
o Descriptors may either respond only to a Object parts N
select number of distinct features HMax
(landmark-based) or build histograms over Spatial envelope Results
more common features (Holistic descriptors). (Gist) Performances
o Models from different areas in human visual | u n
. Spatial P 100
system modeling are tested on the (Spatial Pyramids) EEEG
localization task: Animal detection Text?{zxrlgrt](;g)]ram 80 =
(HMax)[3], Scene recognition (Gist[4], - o I Texton o
al P ids[51) | . Luminance g 60 g
Spatial Pyramids[5]), Image segmentation o £ :
(Textons[6]) g 40 5
e Output vectors tested on localization task Holistic image descriptors, 20
using one-versus-all linear regression[7] Image statistics B
Streetview  Animal 6allech—1071 Scene-15
D a t a Sets dataset dataset
Results validated on a wide range of datasets. « Simple texture statistics sufficient to provide a strong prior for the

e Google StreetView data at world scale, country scale and city scale self-localization tasks.

o Statistics of common outdoor features: Tree density, foliage type or road
structure stronger than landmarks

e Use of such common feature vectors as priors for self-localization systems

o Stable across all datasets (indoor, virtual, streetview) and scales

el L *

Pixel HMax Textons
o Models that separate locations well untangle the space and cause little
variation as the observer rotates.

Location untangling

e Indoor localization[9]

Texton performance

3 —<— City
2 09 —&— country
A B
o 0.9 world
©
©
208 0.85
Q
o
<
@ 0.7 0.8
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Information-Driven Audio-Visual

Source Localization on a Mobile Robot
I

SPATIAL
COGNITION
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— Introduction

in each step.
the source's position by particle filtering

movement to detect and disambiguate all possible sources.

® Active audio-visual source localization (2d: azimuth and distance) for use on a robot.
¢ Information Gain mechanism is used for the selection of the most informative action

e Combination of consecutive auditory and visual measurements into a single estimate of

e System is suitable for use in complex and cluttered environments, which require

el

— Method
® Pioneer P3DX robot

o Rotatable Head equipped with realistic human-like pinnae

® Robot is equipped with stereo microphones inserted directly into the
ears, mimicking the human outer ear system (pinna, auditory canal and
eardrum) and a stereo camera

e Auditory Processing:

* Transformation into a biologically plausible time-frequency
representation (cochleagram) by a gammatone filterbank

* Source Localization by classic binaural analysis approach:
Interaural time differences (ITDs) 2/

e Visual Processing:

* Object Detection: Template Matching for detection
of arbitrary object classes

¢ Logistic Regression to calculate probabilities for -
the presence of the source using template matching +2 . = /%
results based on cross-correlation ; :

o Multisensory Integration with Particle Filtering:|:

* Probability density function (PDF) is approximated “ - ~ -«
by a set of samples (particles)

* Integration of auditory and visual measurements

* Temporal integration of consecutive measurements

e Sensor model for audition designed to enforce front/back confusion

Iu*]l'.\',]’—‘z §2 6 9 (7305 S -1 6 N - S TR |
s Prediction Ste

IO LY TR

plx|zo, . up )J=anlzlx)bellx, )

Correction Step

e Action Selection by Information Gain mechanism

¢ System chooses the most informative action with respect to current
particle distribution; Minimization of the entropy of PDF estimate

¢ Calculation: Actions are sampled randomly; Simulates movements
(— prediction step) and measurements (- correction step) using
motion- and sensor model

Discussion
e System is able to accurately estimate azimuth and distance of the

source, despite simplified unisensory processing and "enforced"
front-back-mixups in audition

® Few actions needed for accurate estimates

® Robot estimates distance of a source without explicit measurements:
particle filter combines multiple measurements of angles from different
positions into a distance estimate.

e Entropy of the estimated PDF decreases with each performed action:
number of actions needed to achieve an accurate estimate is minimized

o Reasonable multisensory behaviour: System utilizes audition to
reduce number of hypotheses and vision to achieve better estimates

® Robot systematically approaches source to improve accuracy

e Alternative to expensive microphone arrays (audition) for mobile
robots equipped with cost-efficient standard sensors
e Applications
*Speaker detection in automatic camera control systems
*Rescue Robotics
e Future Work
- Source Separation: Multiple dynamic sources
- Localization in median plane: utilizing filter characteristics of the
artificial pinnae (position-dependent HRTF)

UFG
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Evidential SLAM: Dimensions

of Uncertainty in G

Thomas Reineking, Joachim Clemens
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—Evidential FastSLAM

Motivation

Uncertainty in SLAM is usually represented probabilistically.
However, this can lead to ambiguities: Is an occupancy

probability of 0.5 the result of missing or conflicting
measurements? We have developed a SLAM approach based
on Dempster-Shafer theory which avoids this ambiguity by
introducing additional dimensions of uncertainty.

Belief Functions
Belief functions are defined on the power set of the
hypothesis space. Mass assigned to the disjunction of
"occupied" and "empty" corresponds to a lack of evidence. In
contrast, mass assigned to the empty set corresponds to
conflicting evidence.
m: P(Oy) — [0,1] with Oy = {o, e}

pI(Y) >omy)

YCOy,Y#0)

\

Forward Sensor Model

Evidential SLAM

Numerous works on mapping based on belief functions exist,
however, none have dealt with the joint estimation problem of
SLAM.

plausibility of 2,

m[20:, Ur:e) (Z0:0, Y) = P(@0:¢|20:05 Ur:) M[20:0, 20:4] (V)

path belief

path/map belief map belief

P(T0:]20:6, w1:¢) X pl[2o:e, 20:0-1)(2¢) P(0:¢|20:6—1, U1:t)

10
measured distance 7,

path posterior evidential likelihood path prior Inverse Sensor Model

Moy [zo:t, 20:¢] = Moy [z, 2] ® mey [T0:0-1, 20:6—1]
————

N———
map belief inverse model map prior 0 o ' S}
mey [®0:4, Z0:¢] @ mey , [To:t, Z0:¢] 10 .
0.8 1
i=1
map belief ! grid cell belief 06 1]— o
&= i I
E 041 ) 1
i : : . = H )
Approximation based on a Rao-Blackwellized particle filter 02 ¢ 4
00 . . /. .

0.0 0.5 1.0 1.5

distance

For normalized belief functions, there are two dimen-
sions of uncertainty: non-specificity and conflict.
Nonspecificity can be quantified by the Hartley measure
while there are different possible measures for conflict.
Because we are allowing for unnormalized belief functions
(mass can be assigned to the empty set), we further
distinguish between internal conflict (related to entropy)
and external conflict (resulting from combining conflicting
pieces of evidence).

NS5(m)

NS(m)= > m(Y)log|Y|=m(Oy) :
YCOy,Y#D §
. (Y 1og _PLE)
IC(m) = Yg@:}y (Y)log ; gy
EC(m) = —log(1 —m(0))

\

—Dimensions of Uncertainty

Relatlon to Entropy

re
\hlgh NS

Evidential Uncertainty Measures 10

0.8

medium NS

«n 06
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m(e) = m(o)

m(Oy) =1—m(o)
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m(o)

02 0.6
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—m(e)

—Results and Applicati

Additional dimensions of uncertainty can make effects like localizati

ons

ion errors and dynamics in the environment explicit which would otherwise be lost.

Application in Space Exploration

0
F7

/

il

ground truth probabilistic map NS(Y)
\—7 il
m(o)‘ L 1 [ \
| 8 Bow)
m(Oy) 8
I T

evidential map

The evidential SLAM approach is applied in the
context of the "Enceladus Explorer" project where an
autonomous melting probe is supposed to analyze
samples from the Saturn moon Enceladus in order to
search for extraterrestrial life. The evidential SLAM
approach is used to map an environment about which
very little is known in advance and to extract as much
information as possible.

I0(Y)

"

uncertainty measures
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Affordance-based object recognition using interactions
obtained from a utility maximization principle

SPATIAL
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Tobias Kluth, David Nakath, Thomas Reineking, Christoph Zetzsche, Kerstin Schill

a4 N
Introduction Bayesian Inference / Information Gain
The interaction of biological agents within the real world is based on their abil- We designed two types of Bayesian networks (BN) which process different kinds
ities and the affordances of the environment. By contrast, the classical view of of information.
perception considers only sensory features, as do most object recognition mod- . . )
els. Only a few models make use of the information provided by the integration e The Sensor N etwork (BN1) processes only thc sensor information W}th. an
of sensory information as well as possible or executed actions. Neither the re- extended natve Bayes approach V"’hwh additionally allows for statistical
lations shaping such an integration nor the methods for using this integrated .depeIldEI-lCIES betw?en the .preced.mg (si—1) and the current (s;) sensor
information in appropriate representations are yet entirely clear. We propose a }nformajclon: The 1n'forr.nat101.1 gain strategy can not be employed as no
probabilistic model integrating the two information sources in one system. The interaction information is available.
recognition process is equipped with an utility maximization principle to obtain o The Affordance-based Network (BN2) processes the whole information
optimal interactions with the environment. stored in an SMF by assuming that the current sensor information s; de-
pends on the interaction m; and the preceding sensor information (s;_1).
Additionally, BN2 allows for statistical dependencies between the interac-
tion m; and the the preceding sensor information (s;—1). The integration
of interaction information allows to use an information gain strategy to
choose an optimal next interaction m*.
-
& )
( . . M
Sensorimotor Representation
Sensorimotor Feature: e @ @
SMF; := {si_1,m,s;}
BN1
P(yls1n) o< P(y)P(s1ly) [Ty Plsilsi-1.9) P(yls1:0.M1:n-1)
o< P(y) P(s1ly) [Tizs P(silsi—1,mi1,y) P(mii|si—1)
The information gain IG of a possible next action m,, is defined as the difference
between the current entropy and the conditional entropy:
The knowledge representation is comprised of the learned sensorimotor repre-
sentation (SMR), which is a full joint probability distribution of SMFs and IG(my) = H(Y[s1:n, M1in—1) = H(Y|Sp41, M, S1in, Min—1)
.the classes represented by the discre.zte rapdom Va'ri.able Y. Every Possible SMF This is equivalent to the mutual information of Y and (S,+1,m,,) for an arbi-
is generated on a set of known objects in a training phase. This means that, trary m,,. As the current entropy H(Y |s1., m1—1) is independent of the next
from every possible state x, the sensory consequence of every possible action u action m, the most promising action m* can be calculated by minimizing the
is perceived, resulting in expected entropy with respect to Sp1:
L SMR:=P(SMF,Y)=P(S;_1,M;_1,5;,Y) ) m* = argmin( E [H(Y|$1ms Sns 1, min)])
M 1
4 N\
Model
Evaluation and Results
- o ‘ ‘ e Ten fold cross validation was conducted on a data set made by a robotic arm
representation ierence srategy with a camera attached. The dataset has the following properties:
interaction e 8 Object classes e 30 absolute positions
7777777 satof possie contoter e 10 objects in each class o 95 possible relative movements
e 435 SMF's per object o 30 interactions conducted
sensory interaction 100 Recognition Performance Mean Entropies
processing command
g 2.5
environment : 201
s g
interaction 5 2 BN1
§ & 13 BN2 -IG
< g — BN2 +IG
< =10
.g
The proposed affordance-based object recognition system consists of the follow- § 0.5
. &
ing subsystems:
5 10 15 20 25 30 0 5 10 15 20 25 30
e information processing: raw sensor information is fed into the sensory Interactions Interactions
processing module (clustered GIST features) and is subsequently stored
in the sensorimotor feature (SMF) alongside interaction information.
e knowledge representation: provides a learned sensorimotor representation ConC|USIOn
in the form of a joint distribution of SMF and object class Y. e The integration of affordance-based interaction results in better recogni-
e probabilistic reasoning: uses a Bayesian network to infer the object class tion performance.
and provides a new interaction command obtained by an information gain e The information gain strategy leads to the acquisition of relevant infor-
strategy. mation with fewer interactions.
. /
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Visual numerosity: A computational model

based on a topological invariant

Tobias Kluth, Christoph Zetzsche

SPATIAL
COGNITION

A5-[ActionSpace]

( . N . . 0
Introduction Computational model - Luminance
The estimation of the cardinality of objects in an environment requires a high The projection of the conceptual case to a luminance surface results in the loss of
degree of invariance. Numerous experiments showed the immense abstraction the invariance property. We thus assume a threshold h applied to the luminance
ability of the numerical cognition system. Numerosity is assumed to be an function  to define the integration domain .5 := {(177;'/‘1(1’»1/)) € R¥|l(z,y) > h},
abstract feature which is represented on a high level in the processing hierarchy. parametrized by ¢(z,y), and C := 05, parametrized by c(t).
But there is also evidence for a direct visual sense for number since number seems
. . . . . . . /KdSJr/Rg ds = 2mx(S)
to be a primary visual property like color, orientation or motion, to which the s c
visual system can be adapted by prolonged viewing (Ross & Burr, 2010) and the In order to identify the requirements on the neural implementation, we use
precise relation to other low-level features (like density as computed from spatial . . . )
frequencies) is unclear (Dakin, Tibber, Greenwood, Kingdom, Morgan, 2011). /K ds :/ $1Z(zl,y)r yy(z’y)l*'zy(z’g/)z xs(d(x, ) d(z,y),
Here we try to approach numerosity from a mathematical perspective. Based on o 2 (@2 + @ y)?)
concepts and quantities like connectedness and Gaussian curvature, we provide =K (z,y)
a general solution to number estimation and apply it to visual stimuli. We show where s is the characteristic function with respect to the set S, and
that the estimation only requires derivatives of the luminance function and a 21 2 .y
multiplicative AND-like combination of these features, which can be realized by / kg ds = / = ”;3/2 s y;f/z (@2 +y*) 2 xo(c(t)) dt,
neurophysiologically realistic Gabor-like filters and by the neural mechanism of ¢ w (B4 E)?A+E+1)
cortical gain control. A neural hardware thus would be able to estimate the =k (x(t),y(t))
number of objects using this neural correlates. where x¢ is the characteristic function with respect to the set C. We thus can
) obtain the number n from
== L L & o i )
=3 " o § 0 3 20 = [ Ro)son) dag) + [ Ryla(0).90) e, (0) dr
-~ " S I
\_ a b c ) i . : 5M
e 3 w — i
Formal model - Concept . . ;
In order to determine the number of objects in a scene in the real world, the il -
following three questions are addessed: i )
e What is the formal definition of "real world”? f
_ R \’ - ;
— Topological space R* with its standard topology. - P4 - s ) )
e What is an object and which properties does it have? N
. . . ~ o - ( . N
— An ‘ob]ectl is  (simply) connected and 3- |t { , . Error analySIS
dimensional.
. . . T The proposed model is extended by additive normally distributed noise on the
° Wh.at 15 mee'mt by numb.er m t}.ns cgntext and how are i 7 0 N input luminance 7;, and the output of the linear filter operators 7;;,. The
its invariant properties defined? 2 ~ resulting analog quantity is fed into an optimal classifier (receiver-operator-
— The expected properties of the invariant n are — Cemreneme cljla-racter.istic) to make binary decissions in a "smaller - larger” and a ”same -
. 4 ) o 7 different” task.
* Invariance: "(‘I) = n(f(2)), for a specific § < We used 51,200 binary test stimuli with rectangular objects, generated as
clfxs.s ?f operations f. * * & described in Stoianov and Zorzi, 2012 (numbers from 1 to 32 and various cu-
* Additivity: n(z Uy) = n(z) +n(y), for e mulative areas).
lisjoint x, y. .
ajomt L, y "Different" task "Larger" task
A e E gy e
." £ 1" .‘A. 'R 4
X 7'y ! | ¢
Is any invariant known which fulfills these requirements? W7/ !/
- In general not but the Euler characteristic x with homeomorphisms as possible W M
operations is a good candidate. il ol
B e * F
. Conclusion - \\Y/ 1
Connection to local features - Curvature , 1 AW ‘
e The proposed model can deal with arbitrary ! LRV /1
elptic shapes of objects (simply connected). Not T L
O restricted to ”blob”-like stimuli (Dehaene et . s )
al.,1993). N P
2. /)
(% parabolic e All principles to obtain the invariance are 27
- clearly defined. No black box (Stoianov and {
Zorzi, 2012). .
(e I IR
— hyperbolic o Computation is neuronal plausible; it only re-
? b N quires threshold, linear filter and cortical gain
. control operations.
Theorem (Gauss-Bonnet). Let S C R? be a regular oriented surface (of
class C3), and let R be a compact region of S with its boundary OR. Suppose e Resulting error fits human behavior, compare o e e
that OR is a simple, closed, piecewise regqular, positively oriented curve. Assume results with Piazza et al., 2004, (Fig. 2). e o
. b Nin ~ N(0,0.2), min ~ N(0,0.1)
OR consists of k reqular arcs OR; (of class C?), and let 0; be the external angles - J
of the vertices of OR. Then - ~
References
k k e Dakin S C, Tibber M S, Greenwood J A, Kingdom F A A, Morgan M J (2011). A (,omrnor(l visual metric for
K dS + / ko ds + 0, — 27TX(R) approximate number and density. Proceedings of the National Academy of Sciences, 108(49):1955219557.
/R ; OR; g ; ‘ e Piazza M, Izard V, Pinel P, Le Bihan D, Dehaene S (2004). Tuning curves for approximate numerosity in
the human intraparietal sulcus. Neuron, 44(3), 547-555.
where K is the Gaussian curvature, Kg is the ggod&%‘c curvature, and X s the e Ross J, Burr D C (2010). Vision senses number directly. Journal of Vision, 10(2):10.18.
Euler characteristic. e Stoianov I, Zorzi M (2012). Emergence of a visual number sense in hierarchical generative models. Nature
k ) K Neuroscience, 15(2):194196. j
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_ *SPATIAI.
Sparse Least Squares on Manifolds COGNITION
I

AT7-[FreePerspective]
Christoph Hertzberg, Udo Frese, Thomas Rofer

[+]-Manifolds

* Integration of manifolds into least-squares estimators
* By encapsulating their structure in a [+] operator
* Flexible definition of various state spaces

+ Mathematical theory and software framework | .- //
Axioms of a [+]-Manifold S m %
x ¢ smooth in § and y H x smooth in y.
range of unique values 0 € V C R” .
xHO0 =X
VyeS: xHB(yBx)=y

VéoeV: (xB)Hx =0

Vé1,02 € R" : [|(x B 61) B (x B 62)[| < [|61 — 02|
Probababilistic Concepts on a [+]-Manifold

N(p, L) :=pBN(O,X), pe8, X eR™"

X~N(p, X)=p@BN(O,I)E X3 u~ N0, X)

EX = argmin,cs E(|X 8 x||*)

CovX =E((XBEX)(XBEX)")

Gauss-Newton on a [+]-Manifold

F(X) — z ~ N(0, T) F(X)Bz ~ N(0, ¥)
y _ f(x tee) — f(xi — ee) ¥ _ (f(xiBee)Bz) — (f(x; B —eex) B 2)
ok = 2e ok = 2e

xig1 =x —(J X NTHTETYA() —2)  xpa=x B - =TT ST (x) B 2)

Example: Stereo-Camera Calibration in <50 Llnes of Code

typedef MTK::vect<2> vec2; vector<vec3> pts_world; /I calibration point positions
typedef pair<vec2, vec2> vec2pai.
typedef MTK::vect<3> vec3; Estimator est; Il Optimizer class
typedef MTK::SO3< > SO3; Il Camera parameters (shared by all measurements)
typedef MIK::trafo<SO3> trafo VarID<StereoCamera> K = est.insertRV(StereoCamera());
typedef MTK::vect<9> CamIntrinsics;
for (int t=0; t<num images; ++t){

class Camera : public CamIntrinsics { Il collect data, getmltlal guess for left camera

vec2 sensor2image (const vec. 3& point) const;};

vector<vec2pai

afo left2wo: ld

MTK_BUILD_MANIFOLD (StereoCamera, nd_checkerboa: d(l ft2w rld_init, , pts_world) ;

((Camera, left))
((Camera, right))
((trafo, left2right))

tr

£ing

VarID<trafo> left2world = //local ID left2world
est.insertRV(left2world init);

for (int i=0; i<num_poi c ++i)

est.inser (S e (
SLOM BUILD_ MEASUREMENT ( . 4,

K, left2world,
((Stereoc mmmmm K)) ((trafo, left2world)), pts_world[il], ));
((vec3, p_world))

)

}

SLOM_IMPLEMENT MEASUREMENT ( , ret){
vec3 p_left = left2world->inverse() * p_world;
vec3 p_right = K->left2right * p_left;

et << K->left.sensor: 21mag (p_left) -
K->right.s or2image (p_right) -

for(int i=0; i<100; ++i) est.optimizeStep();
cout << "Camera intrinsics " << *K << "\n";

alkal
‘B
Yy
ol

:

}
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Detailed Modeling and Calibration SPATIAL

of a Time-of-Flight Camera COGNITION
I AT -[FreePerspective]

Christoph Hertzberg, Udo Frese, Thomas Rofer

Idealistic Model

» (t) = asin(2nvt) + co

v

\\

A= \/ (s19 — sf21)2 4 (sl — s13])2

> z(t) = a-(t — At) +cp > At = 51 atan2(slt B, 5[0 —s[2) _ //// -
k+2 = -
Kl _ (4 _ - 7 —-

> sl = [ () de = b 7 = (10— o2y 1 (st _ 5B3ly; -

C2+éCOS(%k—27TVAt) » A=|Z| ®

> At = % arg Z

Irregularities
Lens Distortion Non sinusoidal light Non-Linearities  Fixed Pattern Noise Lens Scattering

Vignetting

Model

> Vignetting: ¢;(xLep) » A=t;-a -l (xEp)" i‘*_lc;o-_"}

> Emitted light: 1(t) modelled by piece-wise polynomials Ixceofl
> Wp(At) = [a50%y(t)dt

» Sensor non-linearities g¢ using rational polynomials

TWorld

v

_ |xep|+lixcaml|
At = epltitcn]
Z =hy-gc(A-(Vp(At) +iVp(At + 1))
Unknowns: o, L, H = (hp)per. G, P

v

v

> Fixed Pattern Noise: Complex factor h,, per pixel

E i t
(2 by R am
o U"Cul‘dllth‘l': : a3z Ul\:undllinn .
ai ai
e - (2]
S,
b L) AT 1R A
sk s
ot =1 W . s
458 < B 455
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Online Evaluation and Grasping SPATIAL

of Arbitrary Objects COGNITION
I  A8-[HumanoidSpace]

Judith Miller, Armin Hornung, Maren Bennewitz, Thomas Rofer

Online Calculation of Grasp
Points on Unknown Objects

General Conditions

* Grasps are single-handed and form-closure

* Objects or parts of them are limited to certain
dimensions to fit into NAO’s hand

* Graspable parts are surrounded by free space

Detecting of Grasp Points in Multiple Phases

1. Scanning and building a local map using
probabilistic approach (OctoMap)

2. Registering of local map in global frame using ICP

3. Identifying of grasp candidates on basis of OBBs via
region growing using dimension constraints

4. Verifying graspable parts by detecting free areas in
surrounding cylinder and rasterizing grasp points

5. Calculation of next scan poses using grasp
candidate specific information gain and
precalculated 6D look-up-table

Real-Time Motion Planning

Precalculated Workspace

* Reachability checks per 6D look-up-table containing
hand poses and 5D look-up-table containing body
poses instead of inverse kinematics

* 6D entries represent reachability of hand positions
(3D) with possible lower arm directions (2D) and link
to possible body poses (1D)

* 5D entries represent COM-stable body positions (3D)
with possible body directions (2D)

Online Motion Planning

* Finding body poses by voting over sum of reachable
grasp points per pose using 6D look-up-table

* Frame-wise A* planning of hand motion path in 3D

* Heuristic estimates change in distance and lower arm
direction compared to goal node

* Robot body parts and OBBs (obstacles) are modeled
as geometric primitives

* Planned path is converted into a Beziér spline using
least-squares method
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Humanoid Robot Navigation in T
C

SPATIAL
Complex Indoor Environments OGNITION
A8-[HumanoidSpace]

Armin Hornung, Judith Muller, Maren Bennewitz, Thomas Rofer
Navigation Planning for Humanoid Robots
* Anytime search-based footstep planning using the ARA* and _I_ ' _ »' —._ ' !

R* planners o TR
« Fast planning results with guaranteed suboptimality T i
* Plans can be improved during execution . ‘ . ‘
 Adaptive level-of-detail: Combination with fast 2D path planner I l I I

in open spaces | ;

Environment Representation and Efficient Plannlng in 3D

» OctoMap: An efficient probabilistic 3D mapping framework - = r

» Open-source, wide adoption in robotics and beyond as 3D %Z‘%‘E [}

environment representation = ?/éf&;
« Efficient collision checking for navigation with the PR2 in - ii""’“

cluttered environments o "3 Al
in cooperation with F’

Full-Body Motion Planning

* Whole-body motion planning considering multiple constraints

* Generation of statically stable and collision-free whole-body
motions for a humanoid robot

* Probabilistic planning with RRT-CONNECT and inverse kinematics
* Applications: Grasping and manipulation of articulated objects

Integrated Perception, Task Planning, and Action
Execution

* Integration with a high-level symbolic planner (PDDL/M)
* Enables a humanoid robot to clean up a cluttered room
+ Continual monitoring of action outcome and plan validity

* Foresighted object placement at intermediate intermediate
positions in case objects block the path

=
=

in cooperation with (_ R7- [PIanSpace]
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SpacePortal and Ontohub SPATIAL

COGNITION
I 11-[OntoSpace]
Oliver Kutz, Christoph Lange, Till Mossakowski

Distributed Ontology Language (DOL)

Distributed Ontologies circumscription-like structuring

* Heterogeneity (OWL, FOL, HOL, ...) g0 aico
* Conservative extensions Th level and del-th ti
- Modules, approximation, hiding, = | cOTYTeVeland modertheoretic
freori PP d * Preserves semantics of individual OMG Standard
g ontology languages * Request for proposal issued in 2013

- Non-monotonicity via * First version of standard will appear
in Dec. 2014

. . ://ontqiop.or
Towards an integrated upper Wrg Jegibin/doc?
Spatial ontology classificationa ©29FB papers

alignment DolceLite2BFO :
<http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl> to
<http://www.ifomis.org/bfo/1.1> =

endurant = IndependentContinuant,

physical-endurant = MaterialEntity,

physical-object Object, perdurant = Occurrent,

process = Process, quality = Quality,

spatio-temporal-region = SpatiotemporalRegion,
temporal-region = TemporalRegion, $é£ I[ﬁ q
space-region = SpatialRegion qualjtative -~
alignment DolceLite2GFO :
<http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl> to
<http://www.onto-med.de/ontologies/gfo-basic.owl> = ..
alignment BFO2GFO :
<http://www.ifomis.org/bfo/1.1> to
<http://www.onto-med.de/ontologies/gfo-basic.owl> = ..
ontology Space =
combine BFO2GFO, DolcelLite2GFO, DolceLite2BFO

Alignments between foundational ontologies
DOLCE, BFO and GFO using DOL syntax

* Theory interpretations
* Alignments, combinations

Tag-based browsing a repository of SFB papers

i‘, i it 0 % i S i i ‘A 4& Tine
¥ = function
Combination of the foundational ontologies Upper Ontology-based browsing

a repository of SFB papers
References
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Cognition 2014, Bremen, Germany, 15-19 September 2014. -
* M. Codescu, T. Mossakowski, O. Kutz. A Categorical Approach to Ontology Alignment. Soloohs .

Proc. of the 9th International Workshop on Ontology Matching (OM-2014), =
ISWC-2014, Riva del Garda, Trentino, Italy. CEUR.
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Conference on Artificial Intelligence (IJCAI 2013), Sister Conferences Track. Bejing,

China, August 2013.

* T.Mossakowski, C. Lange, and O. Kutz. Three Semantics for the Core of the Distributed

Ontology Language. Proc. of the 7th International Conference on Formal Ontology in

Information Systems (FOIS 2012), Graz, Austria, I0S Press, 2012. Best Paper Award

0. Kutz and T. Mossakowski. A Modular Consistency Proof for Dolce. In Twenty-Fifth

Conference on Artificial Intelligence (AAAI-11), held in San Francisco, California, SpaCGpOf'tal. org and ontohub. org/spaceportal
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Towards Ontological Blending

SPATIAL
COGNITION

11-[OntoSpace]

Joana Hois, Oliver Kutz, Till Mossakowski, and John Bateman

Ontology Reasoning and Blending with Hets/OntoHub

Ontology Languages
* OWL support / Manchester Syntax
* Common Logic (CL) support

* Structuring constructs for OWL
and Common Logic

Combining Ontologies

Integration o

* Reference Ontology 0o T 0,

Connection ¢

* Bridge Ontology 3 R

* Modular Languages: i b S
DDL / E-Connections g o

DOLCE Lite ——————————————= DOLCE.

Refinement

* Subontologies,
and Equivalence

' i
domain ootology (DL domain ontology (FOL)

Alignment

* Homonymy/Synonymy/ e
Polysemy

Blending Ontologies

blendoid

Blending

* “Creative mix” of
ontologies through
common base. oy

* The Base is reinterpreted
in the
two input ontologies.

* The “Blendoid”is
computed via a colimit
computation.

blend diagram

base diagram

base ontology

JFG

@ Universitat Bremen

63

Structuring & Reasoning
* Reasoning with various ontology
languages and structuring, e.g.:
- OWL: Pellet and FACT++
- First-order & Common Logic

Deutsche
Forschungsgemeinschaft

* Use of morphisms, e.g. translations
and interpretations

The DOL Language

* Combines simplicity and tool
support for OWL with the more
complex blending facilities of
OBJ3 (Goguen) or Haskell.
. * “views" are used to relgte theories
Blending EQigste iR SgRem
* An example of seemingly unrelated ontologies
that share (partial) structure
* The common base has to be formally specified
(e.g. theory intersection, analogy search)

Analogies between
signs and forests

Formal specification of
the SignForest Blend

Blending specification in Hets

T 1 e g e Lt G -
Ry vy =— -

EE—

weW s wAd 7

Blending specification
after colimit computation
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DO-ROAM: Activity-Oriented Search
SPATIAL

& Navigation with OpenStreetMap COGNITION
IE» 11-[OntoSpacel]

Oliver Kutz, Mihai Codescu, Till Mossakowski

Motivation and Goals Activity-based navigation

* Navigation based on users’
spatially-related activities
* Focus on the “what”, and only Sy

Interface

tology

<«

Ontology of <€————— Ontology of

H H Hy oy n OBDA " osM
roug.hlylndlcate the “where \mmm, R - Pt _, e d
* Provide use case for ontology-based erace e i
data access osm

layers

* Provide ontological structure for R W i

dpenStreetidap Rail; Por; ]
OpenStreetMap data and tags e

Ontology-based data acces at work System architecture

H ® Activity Ontaology = Activity Ontology (expanded) = Tag Ontology
ont°|ogles & databases . ChargingStati_on o ChargingSgaL‘ion g
* Ontol f iallv-rel = Jamenity. charging_station U 3fuel_electricity. yes
0 tO ggy of spatia yre ated » Gastronomy = Bar U Café u FastFood U Pub U Restaurant
activities = Jamenity. bar U amenity. cafe U Jamenity. fast food U ...
» ltalianRestaurant + Restaurant N3 hasCuisineOfNationality . Italian
‘ OntOIOQy of OpenStreetMap tags = Jamenity. restaurant N 3cuisine . Italian
* OSM database
hasCuisineOfNationality T, Mapplng examp/e
=2 = hasCuigine hasNationality Nation
> Cuisine s
* Sk natural ~ ' DO-ROAM

|
[

oKk opening_hours
» Sk power
» Sk power_source
» K rallway L
» Sk religion
» Bkroute om ooy
» @K ruine
v @K shop
& v_bakery
oV beauty
#v_beverages e

vbote Activity ontology S

@v_car_repair
@ v_chemist
#v_clothes
#v_compater

|

|
s
|

O

i
T

ITEYETIT

hasCuisine
o v convensence O
oo v_restaurant

S v_department store

#v_dotyourself

#v_dry_cleaning

#v_electronics

> k_cuisine

av_garden centre
v _hairdresser ;
v hardware v_pizza v_french

v jewelry
o bl

Tag ontology: concepts Tag ontology: roles
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Magdeburger Logistiktagung.

User interface at do-roam.org
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Ontology-Based Data Access
B

Carsten Lutz, Inang Seylan

SPATIAL
COGNITION

11-[OntoSpace]

Ontology-Based Data Access (OBDA)

Mixing Open- and Closed-World Semantics

Data (also called ABox)

e The data is stored in a relational database system (RDBMS)

e E.g., OpenStreetMap (OSM) with annotations
Ontology-Based means we have background knowledge

e The background knowledge is also called TBox

e E.g., every Scandinavian company is based in a Scandinavian country
Access means asking database style queries.

e Mostly conjunctive queries (CQs), which are SQL queries of the
form

SELECT ... FROM ... WHERE zg = 21 AND ... AND z,, =z 41

Let 7 = {ScandComp C JbasedIn.ScandCountry},

let A consist of the following

ScandComp(cp),

ScandCountry(den), ScandCountry(nor), ScandCountry(swe)
TimberExp(den), TimberExp(nor), TimberExp(swe)

and let ¢ = Jy basedIn(z, y) A TimberExporter(y)
cp is not a certain answer to g(z) in A given 7. In contrast, if

we interpret ScandCountry with closed-world semantics, then cp is
a certain answer.

PROBLEM:
We want to mix open- and closed-world semantics in OBDA but it
leads to intractability of query answering.

Contributions

Algorithms for Reasoning in OBDA

Let 7 be a TBox, A an ABox, ¢ a CQ.
q(T,A) denotes the answers of ¢ over T and A.
We are interested in computing ¢(7,.A).
Two main approaches to reasoning in OBDA.
1. QUERY REWRITING:
Compile ¢ and T into SQL query perfecth such that for every ABox
A, we have
(T, A) = perfect;r((l), A)

2. COMBINED APPROACH:

e Extend A to new finite ABox A7+ D A and

e Rewrite ¢ into SQL query g7

such that
(T, A) = qr (0, AT)

PROBLEM:

perfectz and g7 may blow up exponentially.

First-order Rewritability

In the query rewriting approach, it is a desired property for an on-
tology language L that

e for every TBox 7 in L and

e for every CQ ¢
we have that perfectg— is always a SQL query without recursion.
This property is called first-order rewritability.
It allows us to use any RDBMS, e.g., PostgreSQL, IBM DB2, for
computing ¢(7T,.A) if A is already stored in RDBMS.

PROBLEMS:

e Only very simple ontology languages from the OWL2 QL profile
enjoy first-order rewritability.

e There are many ontologies formulated in the OWL2 EL profile
and its extensions and these languages do not satisfy first-order
rewritability.

ALGORITHMS FOR REASONING IN OBDA:

We proposed the filtering approach, which avoids exponential
rewritings [ISWC13].

Let 7 be a TBox and A an ABox. The idea is to

e extend A to a new finite ABox A7 D A and

e for every CQ ¢, generate a procedure filterz such that
q(T, A) = filter] (¢(0, A7)

We implemented the filtering approach in the system Combo along
with a benchmark for testing OBDA systems.

http://code.google.com/p/combo-obda/

The experiments show very encouraging results!

FIRST-ORDER REWRITABILITY:

We have provided characterizations of FO-rewritable TBoxes in Horn
description logics, i.e., OWL 2 EL and extensions, and determined
the computational complexity of deciding FO-rewritability of a given
TBox [IJCAI13a]. Practical algorithms are also on their way [DL14]!

MIXING OPEN- and CLOSED-WORLD SEMANTICS:

e Complete complexity characterization, i.e., a precise condition
that delineate tractable cases from intractable ones [[JCAI13b].

e In the tractable cases, it is still possible to have integrity con-
straints on the data and use full SQL as a query language.

MOREOVER:

e Discovered a novel connection between OBDA and constraint
satisfaction problems, which allowed us to provide a very fine-
grained analysis of OBDA data complexity [PODS13].

e Gave characterizations for uniform interpolation and approxima-
tion in £L, which are relevant for extracting relevant parts of
an ontology for some signature (set of vocabulary items). For
deciding uniform interpolation, we also provided a worst-case
optimal algorithm [KR12].

e Studied OBDA for finite models and devised novel algorithms
for the problem in extensions of ££ [KR14].

In total 16 publications among which 5 are 1JCAI, 4 KR, 1 ISWC
(Best Paper Award), 1 PODS papers.
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maplT

“What You See Is What You Map”

Falko Schmid, Chunyuan Cai, Lutz Frommberger, Christian Freksa

SPATIAL
COGNITION
12-[MapSpacel]
X

CapacityLab

Idea and Workflow

WYSIWYM: What you see is what you map

Micro-mapping of small geographic
objects

Geo object with exact geometry

TSN [

()
U

Take a photo

Taken from smartphone photo

Targets technically unskilled users

Outline the object

Annotate by speech Inspect the entity

Upload to geo-server

Geodata Acquisition

Calculation of object geometry based on GPS,
compass, and tilt sensors "

Inverse perspective transformation

Less than 5% error wrt. area, angles, perimeter —
Variation Area | Perimeter | Angle i
Multiple perspectives | 3.44% 4.46% | 5.99%
Multiple distances 4.30% 4.25% | 5.88%
Multiple entities 4.90% 3.84% | 6.26%
[ Overall Deviation [ 3.82% [  4.33% [ 5.99% |

"!"#$%"m'%&*6+:%*(.%"”/%$%"
e L e

—

o]

I I‘_!_i
i o4 ANk

|

Accessibility / Usability

Comparison of Mapping Approaches

111
£

Average devistion of the
_ drea %)
SEEEE R E R

WYSIWYM (maplT) vs. GPS trajectory
tracking (MyTracks) vs. satellite image
annotation (JOSM)

o
Entity types and Avarage

Three types of visibility for target entities

*Crestsen
BLoeaiing.

WYSIWYM: Highest precision, shortest
duration, few interactions

Target User Study (Villagers in Rural Laos)

~Map your village”

Technically unskilled
users - first
smartphone usage

Steep learning curve

Neglectable difference
in core mapping task

Suitable workflow

. »
e
-
o
ey ionn
. ™ S MAPT Hr
Eauw s »
L. T
= F e
00 “
-
108
=
[ .

Crasiien
Mapging Task

Publications

Schmid, F, and D. Langerenken, "Augmented Reality and GIS: On the Possibilities and Limits of Sensor-
based AR', The 17th AGILE Conference on Geographic Information Science, Castellén, Spain, 2014.

Schmid, F, L. Frommberger, C. Cai, and F. Dylla, "Lowering the Barrier: How the What-You-See-Is-What-
You-Map Paradigm Enables People to Contribute Volunteered Geographic Information", ACM Symposium
on Computing for Development (DEV-4), Capetown, South Africa, 2013.

Frommberger, L., F. Schmid, and C. Cai, "Micro-mapping with Smartphones for Monitoring Agricultural
Development', ACM Symposium on Computing for Development (DEV 2013), Bangalore, India, 2013.

Schmid, F, L. Frommberger, C. Cai, and C. Freksa, "What You See Is What You Map: Geometry-preserving
Micro-mapping for Smaller Geographic Objects with mapIT", Geographic Information Science at the
Heart of Europe: Springer, pp. 3-19, 2013.

Schmid, F, C. Cai, and L. Frommberger, "A New Micro-Mapping Method for Rapid VGI-ing of Small Geogra-
phic Features', Geographic Information Science: 7th International Conference (GIScience 2012), Colum-
bus, Ohio, USA, 2012.

Schmid, F, O. Kutz, L. Frommberger, T. Mossakowski, T. Kauppinen, and C. Cai, "Intuitive and Natural Inter-
faces for Geospatial Data Classification”, Workshop on Place-related Knowledge Acquisition Research
(P-KAR), Kloster Seeon, Germany, 2012.

Frommberger, L., F. Schmid, C. Cai, C. Freksa, and P. Haddawy, "Barrier-Free Mapping for Development and
Poverty Reduction", Role of Volunteered Geographic Information in Advancing Science: Quality and Credi-
bility, 2012.
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Ensuring Quality of Volunteered
Geographic Information

Ahmed Loai Ali, Falko Schmid, Rami Al-Salman, Tomi Kauppinen

Heterogeneous Quality of VGI

Problems:

* Inaccurate or incomplete results
* Wrong handling of data by algorithms
* Unreliable data quality

Classification Problems:

* Hierarchical Inconsistency: inconsistency with hierarchical classification
* Implausible Classification: classification does not match inherent properties
* Classification Ambiguity: potential membership to several classes

Integrity Checking to Ensure Classification Quality:

Rule-Based Approach:

* Formulation of constraints into a rule-based model
* Checking the integrity of contributions by the rule-based model

Leaning-Based Approach:

* Classification: learning properties by analyzing similar entities
* Consistency Checking: contribution, manual and automatic checking

SPATIAL
COGNITION

12-[MapSpace]

Reasons: Germany Germany Gejjmany
* Heterogeneous contributors
* Various tools and technologies
* Loose classification mechanisms Administrative boundaries are hierarchically organized
z "3 a) agrass land . b) awater body
appropriately classified as
classified as “lake” or
“garden” “pond"
Plausibility and ambiguity
Classification
| _— apply enerate L,
yei | -{Tmmg‘ g ~~Classifier
Consistency Checking
5 o —~ contribution tool
;:g j cantribule [New CDﬂlrlbuhor] check -<Glassrlie\l | store rVGI1
LE:C’ |' ask for revision | [Recommendations] ,_generate 4 Lata
B b [Possible Gutiiers ),
EE rVGI | apply _ﬁlﬁ generate.  ask for re’«‘l&lQﬂ—F
Eg Data] ) “{Recommendations)’
[ submit revisions
eI N
5| 1 apply i
55| (3t oo
it | B auto correction |
Learning-based integrity checking approach

s . R N
Hierarchical Inconsistency

Administrative boundaries entities should follow the
following rules:

Vu €U; wherel<i<11 @Y
Vua € UL->1,EIub € U]'>i: UgC Uy (2)
VUj,Uk c Ui : anUk =0 (3)

The rules allow detection of three types of outliers:
Incorrect class (rule 1), Inconsistency (rule 2) and

Admin Lovel = 8 . 3
Example of inconsistent

Admin Level = 9 . N
classification

[ asmin Lover =11

About 10 % of all administrative boundaries entities
were detected as potentially problematic.

(S

Duplication (rule 3) x,

( Classification Plausibility )

Analyzing geometric properties is one possibility to
distinguish between the classes “park” and “garden”.

a) b)

Som

Areas of classes “park” and “garden” a) Birmingham b) London
The learning - based approach

to distinguish entities, utilizing
K-NN classifier

Examples of detected implausible classifications of “park” entities:
a) roundabout b) house roof

J

Classification Ambiguity

An entity covered with grass can belong to various

classes like “garden”, “grass”,

o

park” or “meadow’”.

Due to inherent properties, one class typically is more
appropriate than the others.

v <

Topological properties

Geometric properties

Examples of detected implausible classifications: a) grass b) park

Agres ® Disagree

Our study showed dlsagreement with respect to
the classifications of detected problematic entities.

Publications:

* Data Quality Assurance for Volunteered Geographic Information, GlScience 2014, Vienna, Austria, to appear.
* Ambiguity and Plausibility: Managing Classification Quality in Volunteered Geographic Information, ACM SIGSPATIAL 2014, Dallas, TX, USA, to appear.
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Crowdsourced Disaster 'o'.CapathLab
Alerting and Reporting

Lutz Frommberger, Falko Schmid, Christian Freksa

Mobile4D: Disaster
Alerting and Reporting

* Bi-directional system

« Official disaster warnings and reports of users
affected

« Also focuses on “small-scale” disasters

* Cooperation with Ministry of Agriculture and
Forestry, Lao PDR

* Components: smartphone app, web frontend,

central server

Intuitive, easy workflow
* Guided dialogues

* Step-by-step procedures

* Text-free interfaces

Android App

Features
* Location-based information flow

* Real-time notifications (Push technology)

* Verification system

* Very low bandwith requirements

e Alerts via SMS, RSS, Twitter, Facebook, ...

* Buffered data transmission

* Common Alerting Protocal (CAP) compatibility
* Buffered data transmission

@ Universitat Bremen
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Bi-directional flow of information

* Tightly integrated into instituitional workflows
* Implicit model of administrative structures

Ministry - - —> E
/ .

P o /\
g

District A4

B T ey
SR TRONY
= e

Top-down view
Official disaster warnings and in-
formation material

mobile4D

Field Test in Laos
* Technical functionality proven
* Training of local officers

* Data collection

* Feedback sessions

5
o

¥

el Fffc.':'

/iy

Ministry

e PN

District 4 -~ :; //
Office Al
e g
moo S Ay

Bottom-up view
Crowdsourced disaster reporting

Web Frontend
I=lvemesmssea e = = =iy
Dashboard
L g
¥ ~ o e
‘-: + l ] & = 'ﬂ'
A= = AR Y
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My dutricts LS
L] -] - 0 0 -~ 3 L]
_
= Warnings » : - " _T":- = = - ~
3+ [T > Eln) i AR
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ol g gf e “§or
° Oe -] %o - -
Yiig ¥ ° 2 - & ‘on
) i
) o 9% g -]
|0 o 0o
Sg o . .

System Properties
* Reliable flow of data

* Real-time distribution of alerts

* Ease of use

* Cost-efficicient

* Connecting people

Deutsche

F

70

Forschungsgemeinschaft

UNI
|

FREIBURG



. B OpenScienceMa
OpenScienceMap P P N spaTiAL

Map-based Research for the Public COGNITION
12-[MapSpace]

Falko Schmid, Christian Freksa, Hannes Janetzek, Michal Wladysiak, Bo Hu, Yasser Maslut

Data and Infrastructures for Vector Maps

« Entirely open source i \ i —
« Based on the complete OpenStreetMap database ) o ; ’

« Own server to serve vector tiles 3

« Huge impact in open source mapping community

« Large number of users, especially in developing countries

Open Infrastructure, Algorithms, Data, Results

Bandwidth Analysis of OpenScienceMap PBF ' WA TR - =
« Availability of maps crucial for all parts of the world OpenscienceMap MapQuest Googlettaps Holda Maps : P — = =
« In developing countries: low bandwidth especially in rural areas e T =7
- Identification of 10 similar and relevant zoom steps ~ e ML LU LA LU BT
« Dense urban area (Manhattan), semi-rural area (Worpswede) 'l{ ‘_ﬁ'?. = i3
« Analysis of required network traffic to render a 480x800 screen \- SOORE | W V5 | Whles [ 0T
TATH [T [ THinifk | Fm2ihs

G
Road Network Generalization of OSM Data

Generation of a meaningful road network essential for small scales of topographic maps: communication of general connectivity, visualization of settlements.

OSM Data Quality Issues Identification of Places Road Network Computation  Result
i " B i\, ¥ "{“ | \ b RV m
b © MR, . e Al
[ S il S Wusclan
iy s Wi

Street network only displaying highway:motorway, Result of SELECT-PLACES (population >10.000). Voronoi-diagram for selected places, links be-

highway:trunk, and highway:primary. The network Places represented by large dots are selected tween nearest neighbors are red, neighbors of
is too dense and cluttered. (dark = large, bright = small). 2nd degree blue. The extended neighborhood

ensures the detection of important network links.

v o g RN < Agorithin:  COMPUTE-STREETSETWORK
\ 1 ! i y 1 « Enpeat Set of places (p fiagreem, strect-netieork)
A n . i Ovutput Reduced strvet n 5
o I o . 1 netword = {}
Disconnected street network in OSM only dis- Result of place selection with population >50.000. Result of the road network computation for the BRI By IR RO rtatns resalsninpeond
playing streets tagged with highway:motorway, astworh. = Y

Voronoi diagram. The road network is homoge- o sheslabeespnibuttoss e g
neously distributed and at the same time sparse.

+ netwsrk U competeRout o

highway:trunk. The network is highly fragmented.

Map Interaction and Visualization Task-Specific

Task-specific Interaction Offscreen Visualization Consistent Labeling Map Customization
~ [ A 15em 1 @ (] 3
: E - e |1 [ ] .. "] P
I \ 1% & i e = S CapeTown Cape/Town

« F. Schmid: DistanceTouch@ OpenScienceMap: Towards task-specific map interaction, Proceedings of the 1st ACM SIGSPATIAL International Workshop on Maplinteraction, 2013
« F. Schmid, H. Janetzek: A method for high-level street network extraction of OpenStreetMap data in OpenScienceMap, Proc. of the 26th International Cartographic Conference, 2013
« F. Schmid, M. Wladysiak, H. Janetzek, B. Hu: OpenScienceMap: Open and Free Vector Maps for Low Bandwidth Applications, ACM Symposium on Computing for Development, 2013
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WellComm

A Communication Hub for Remote Areas

® ® )
.:":,CapacuyLab

Daniele Tatasciore, Giorgio De Felice, Falko Schmid, Lutz Frommberger
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/|

Bluetooth-Android data connection

N

(% E-mail
Remote
Server

SMS-based configuration

Cheap and reliable communication
mean, widely used in developing
countries. Allows for configuring:

® Warning messages
* WellComm status

Independent solar
based power
Solar panel for system power

Solar panel for charging station

EENNDWB‘H-’!"_‘"
t
£ S5min OFF IR TloN L BT ON
55 min OFF L [Finles ;BT Finding
smea,

Current per Hour [mah]

What is WellComm?

» 3
;:.*!Capaclw at

Communication and

and environmental monitoring.
® Self-sustaining system design
® Solar power based

® SMS-based administration

information hub for
remote areas: charging station as a mean for
social information distribution and collection,

Web-based
administration tool
oo WellComm
=TT o
;_

Centralized tool for configuring
the device:

* Set LED status
* Set messages
* Define GSM Sleep/Awake period

Visual information output

LED panel for
immediate
communication

Multiline LCD display
—4 for detailed information
communication:
* Messages
* System status

Sensor support

Any sensor can be attached.
Currently we have a flexible and
waterproof temperature sensor.
Allows for measuring:

* Atmospheric temperature

* Sensor measures

Y

* Liquid temperature

WellComm components and costs

Arduino UNO - ATmega 328 microcontroller (19,99 €)

Siemens TC35 GSM controller (27 €)
Wireless Serial 4 PIN Bluetooth RF (12 €)
Lithium lon Battery 2A (12,90 €)

1.5W Solar Panel 81x137 (9,90 €)

Everything is possible
Wider multiline LCD display
E-Ink display

ZigBee radio connection

Mesh Potato internet connection

LiPo Rider Pro (15,89 €)

10000mAh Dual USB Solar Power (20,60 €)
Fibox - TA201610T (13,10 €)

DS18B20 Temperature sensor (6,60 €)

Led, LCD, Jumpers, Box, Switches (30 €)

Full waterproof container

ODK integration

Integration of any kind of sensor
GPS board

-
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Towards a description SPATIAL

of symbolic maps COGNITION
I5-Diaspace

Daniel Couto Vale, Elisa Vales, Rumiya Izgalieva

What can be achieved Other Attempts

Use of CCG for text synthesis

Halliday and Matthiessen (2004)

Symbolic
pruned-into Map pruned-into

Combinatory

Categorial
Grammar

Combinatory KPML
Categorial Chinaas
Grammar .
Use of KPML for text analysis
= used-by = used-by

Text Analyzer Text Synthesizer

How KPML works How OpenCCG works

Introduction to Functional Linguistics

— past N .
S Tonse Halliday and Matthiessen (2004) L. =past
- - Finite / Tense Tense | Clause\Mention - -
M I S S I n g Tense ::: past-feature M I s s I ng
:?Jﬁjsrzm + TenseHead :
U TENSE  Tonsetead DOING-] * TenseTail Clause\Mention S t
Se s Finite / TenseHead yS e m S
flenselal n PRESENT-} 1 /cctiead * TenseTail o —Present
. TenseHead * TenseTail GATE g::z?j\a?’:i:nP-REaiSi\‘E-Afg;iLerRY Tense | Clause\Mention Tense + Voice
gives TenseHead :: FUTURE-AUXILIARY = Ing-particip
TenseTail ::: ing-participle-feature . The duke gave the teapc’t to my aunt.
gave is Clause\Mention
_ BEING-| - tense
given PRESENT-| Finite / Tense . o =Stop Tense + Voice
- Tense ::: present-feature Clause\Mention . P
giving GATE Phase The duke is giving the teapot to my aunt.
is
. stopped : Clause\Mention
— being-and-h A Fear
FIGURE-| —joino-ancheving Phase + Tense + Voice
was TYPE oing-and-nappening Agent  Beneficiary _Goal -
- saying-and-sensing I _ goin , AU " - - The duke stopped giving the teapot to my aunt.
9 Voice Clause\Mention/Mention/Mention
been DOING-AND-J] +Actor
Actor : menti
bein HAPPENING-J {7 Tener
"9 TYPE] -+ Medium was ProcessBrick Tense + Voice
Medium : mention | _ e indoing My aunt was given the teapot by the duke.
DOING-] - Goal Beneficiary _ Agent  Ggal
TYPE] Goal : mention VoiE;EéT Clause\Mention/Mention/Mention

— non-affecting-doing [| - beneficiating-affecting- Tense + Voice
-] doing .
AFFEch::g + Beneficiary ProcessBrick The duke is here.
" Beneficiary : mention
TYPE] - non-beneficiating-
affecting-doing

Trinocular View Preliminary analysis

Device

Brick ’
Pattern Sequence

i Figure Element
Clause 4 Clause vy

Complex Simplex AR

Modality Process 5 Quality
Modality Process # N

Mention Qualificat.

Brick Brick

Contact
danielvale@uni-bremen.de

. em Deutsche
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Tacit contracts for wheelchairs

Daniel Couto Vale

Rolland-BAALL Corpus

Anastasiou & Couto Vale (2012)
Attitude
Small Fragment of the Ontology Exchange Theory

Introduction to Functional Linguistics
Halliday and Matthiessen (2004)

<
/

Affirmative

[please] take me to the kitchen
e“fahr mich [bitte] in die Kliche”
will you please take me to the kitchen
e“fahrst du mich bitte in die Kuche”
can you please take me to the kitchen
e"kannst du mich bitte in die Kidche fahren”

Imperative

will you take me to the kitchen
e“fahrst du mich in die Kuche”
can you take me to the kitchen
e“kannst du mich in die Kdche fahren”

I would like to go to the kitchen

¢“ich méchte in die Kidche fahren”
| need to open the door

e“ich muss die Wohnungstur 6ffnen”
I would like to do a mouth wash

e“ich wirde gern eine Mundspullung machen”

Stance

Small Fragment of the Ontology Modality Theory
Introduction to Functional Linguistics

Halliday and Matthiessen (2004)

World Models
under Personal Assessments

Possible Worlds
in Personal Plans

Control Conviction

Likelihood

Usuality

Inclination Regulation

be willing need not - can sometimes possibly
be keen  should - should not often likely
want need - cannot always definitely

@ Universitidt Bremen

Deutsche
Forschungsgemeinschaft
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Grammatical Metaphor

I need to go to the kitchen
“ich muss in die Kuche fahren”

Grammatical Metaphor
Introduction to Functional Linguistics
Halliday and Matthiessen (2004)

MOOD affirmative

<>

CASE accusative

o>

‘. : -
#Addresser @ »

{ v L ..
=Y -

ich  missen fahren Kuche
Explicat
Fragment of the whole explicature
actor, process | route agent medium| route
@D
modahtyj | relatum | destination

modality

Tacit Contract

Moving _ .
Surrogation \ A

client/ service|  server agent ~ control/ reactivity|  stance
Moving N “" Moving Moving 7
Disabled Disabled Requires Obligation
Human#John Moving#1 Robot#Roland Human#John Requiring#1 Learning#1 Obligation#1

Contractual Implicature

Requiring#1 Requiring#2

I
Robot#Roland Learning#1 < Human#John

T

Robot#Roland Obligation#1
mentem

agent medium

Human#John Human#John

Moving#2

agent medium |

Contact
danielvale@uni-bremen.de
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Context and

Vagueness in REG

Vivien Mast (viv@tzi.de), Diedrich Wolter (dwolter@informatik.uni-bremen.de)

Gradedness and Vagueness in REG

* Meaning of graded properties depends on context

* When several properties allow discrimination, humans choose
the one with largest contrast to distractor set

 Category assignment is vague and always depends on context

SPATIAL
COGNITION

I—— University of Bremen

the small dog

Vs.

orsgh

g
e T

? the small dog

the bright one

Vs.

the small one

the red circle
Vs.

on

on

the orange circle

gradedness

contrast

A probabilistic framework for object descriptions

« Jointly maximize discriminatory power P(z|D)and
acceptability P(D|xz) of a description

vagueness

D* := argmax ((1 — o) P(z|D) + aP(D|z))

* Probabilistic semantics for vague properties and spatial relations

* General modular feature modeling

P(D) =

Probabilistic Semantics
* P(2|x): Probability that human accepts D as description of x
* P(2|12): Probability that human selects object x given description D.

Calculated using Bayes' law: P(5|) = EiolE(n)

P(D)

* PP(x): Probability of randomly choosing object x: () :=

« P(D): Probability that D suits arbitrarily chosen object

YL P(Dlo)
N

+ Extends to descriptions with several objects: P{|y) - P(1)

L
N

Modeling Features as Conceptual Spaces

P
[

Gardenfors’ Conceptual Spaces
* Mixed multi-dimensional parameter space
* Similarity from proximity

Categorization
* Prototypes from sample members

* Voronoi tesselation: assign category of
closest prototype

T e

Color Space Voronoi tesselation
Similarity
* Calculated based on Distance d:
5(1, ) 1= e~ ¢hd)

* ¢ sensitivity function

@ Universitat Bremen

N

Feature Models using Discretization
* Extreme cases form prototypes
* Categorization by Voronoi tesselation

* Acceptability [0,1]: normalized proximity to
prototype

» Covers non-pareto-optimal combinations

- Y
Bl & '.'::'-3'?‘ ' ’-"‘“_‘,"i“ i
2 Naay (Bt b N = el
e W O L =
1 2 3 4 5
the skinny  the short the tall fat the tall the short
dog skinnydog  dog dog fat dog
physical festures descripsion feaiures
id  height i fom| welght » [kg]  w/h | height PDlx) cerpulence IV x
1 At ko) 03| SHORT 008 SKINNY oxy
LL] 0 057 | SHORT 092 SKINNY 100
55 a5 0,82 | TALL 062 FAT 1o
4 i a5 075 | TALL 100 FAT 048
5 4 b3 0.76 | SHORT 100 FAT 057
* Context influences description
D
R o s
i R e ik
AL U
L 2" 3 da 5
the fat dog
o ‘.'-. .
RIS, o sy b
s ..é- - .‘.:.-.ﬂ Tety' .. .:,v
Al e - | - b i
v oo e W wf
y - 2 E - 4 " 5a
the tall fat dog

DFG Deutsche
7&orschungsgemeinschaft

Feature Models using Similarity
* Graded acceptability ]0,1] based on
similarity function
* No explicit categorization
* Sensitivity c depends on generality of
category (more general = smaller c)

* Usage of secondary category for better
distinction if necessary

1 =
Wl | Pitalllsl  Plsh

i
WML
e

[

[RLTTR

th
the short

Outlook

* Similarity-based acceptability values for
complex features

* Learning of dimension weights and
sensitivity parameters from experimental
data using Machine Learning technique
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Referential Grounding
for Situated Communication

Vivien Mast (viv@tzi.de), Daniel Couto Vale, Zoe Falomir, Mohammad Fazleh Elahi

Scene

O

Perceptual Module Property Models

Probabilistic mapping from
objects to conceptual properties

+ Detect objects .
» Extract relevant points
* Extract metrlc property values

| S A TR

}

Probabilistic Reference and Grounding Mechanism

-~

v

* Acceptability/Nomenclatory Power: P(D|z) )

Probability that humans accept description D for object x
* Resolvability/Discriminatory Power: P(z|D)
Probability that humans identify object x with description D
P(D|z) - P(z)
P(D)

P(z|D) + aP(D|x)

Referring Expression Generation:
Description rank by appropriateness

P(z|D) = Reference Resolution:

Object rank by acceptability

v

« Appropriateness: (1 — «)

Grounding Dialogue

Success Selection

List acceptable CR ‘
R: Where do you want R: Where do you want
me to go? me to go? best APP > T
H: To the large box. H: To the box. yes no
R: The large box? R: Do you mean the
Ok, I'm going large box or the Elect most appropriate CR List acceptable CR
there. one in front of
the small ball?
H: I mean the large Dest
. : S
Confirmation one. yes no yes ACC>T
. R: Ok, I'm going
R: Wh
meeii gz?you want there. Success Confirm Select Fail
H: To the small box. . ; )
R: Do you mean the Failure CR: candidate referent Number of CR with
one in front of p— 3 " APP: approprlalt(.aness appropriate descriptions
the small ball? Pooee gzoyou wan ?Ctﬁi aChC?gtablllty
. : : thresho ;
H Yis' , H: To the long box. S 1]
R: Ok, I §ee it, R: Sorry, I don't 0 1 2
I'm going there. 1 b
See any Long box. . Offer One Offer Two
Fail . .
Option Options

Deutsche
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] SPATIAL
16 The inference process COGNITION
G

16-[nNavTai]

How do people find their way in complex
environments?

* Which clues from the environment do people attend to?

* How do they interpret and use these clues as a basis for navigation decisions?

* How does generic previous knowledge come in?

* What strategies do they use to fill in their knowledge gaps when navigating unknown complex environments?

Freiburg experiments ‘ ‘ Bremen empirical studies
1. Questionnaire: Assessing participants' il : 1. Early cognitive mapping in a complex real building
expectations about spatial relations between i S - Route descriptions of an unfamiliar complex building
targets and certain landmarks ' = T =5 - Route following of expert and novice indoor route descriptions
; e y 2, Of a procedurally experienced room
Targets: common targets in public buildings, e.g., ) S —y= ' Descriptions of a collapsed mock-up environment

main entrance, back exit, restrooms, main

3. Of an impossible virtual environment
auditorium etc.

Think aloud during navigation; verbal report during sketch drawing

Landmarks: common landmarks found in public
buildings, e.g., stand-up display, artwork etc. Methods
Think aloud during navigation
and retrospective reports

reveal inference processes involved in
early cognitive mapping
Descriptions of environments
based on incomplete

information reveal properties of the
partially developed

cognitive maps

2. Picture selection task: Participants
choose the picture with the hallway leading them
to the target, pictures were snapshots from a
virtual environment differing in landmarks and
geometry

3. Validation of findings in navigation task
using the virtual environment of Experiment 2,
collecting language data

Res u Its Analytic categories used and
refined All shed light on the
i i H H ildi - spatial elements
Spatial inferences in real and virtual buildings ) "sguisﬁc e underlying cognitive
Global structures - coherence map and oncognitive
- granularity states of the speaker
Expectations about architectural features of central and peripheral areas which  |_jinguistic markers

support cognitive mapping and navigation

Expectations about the
environment

Local structures

Layout inferences based on knowledge about geometric forms and prior
experience with buildings

Local building
structy
geometries

A

Strate: ’
gies

WARRANTS

_

Inferences based on building features and items: goal-specific associations D T
based on sensory input: \([ buiing

- objects and landmarks

- architectural features — corridor geometry, spaciousness
- decoration — illumination, furnishing, wall paint, artwork
- crowdedness

- auditory input: (noise, chattering, elevator)

Landmarks, items CLAIMS

Continuation,
Repetition, Symmetry

augmentation

dew sAuBoD

Navigation
decisions

Frankenstein, J., Biichner, S., Tenbrink, T., & Holscher, C. (2010): Influence of geometry and objects on local route choices for wayfinding. Spatial Cognition VIl, 4153

Frankenstein, J., Briissow, S., Ruzzoli, R., & Holscher, C. (2012). The language of landmarks: the role of background knowledge in indoor wayfinding. Cognitive processing 13(1), 165-170.
Tenbrink, T., Bergmann, E. & Konieczny, L.; Wayfinding and description strategies in an unfamiliar complex building

Proc. 33rd Annual Conference of the Cognitive Science Society, 1262---1268.

-
' o n c I u S I o n Bergmann, E., Tenbrink, T. Hertzberg, C. & Gondorf, C (in prep.): How descriptions structure an unstructured environment.

- Previous experience guides interpretation of global building structure as well as local building features and
landmarks to support navigation decisions

- Low-level inference processes fill in information to support the development of a cognitive map while high-level
semiotic interpretation guides goal-directed search

URG

. o Deutsche
@ Universitat Bremen DF Forschungsgemeinschaft D
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Basis for inferences: SPATIAL

human cognitive maps COGNITION

The relation between route and
survey knowledge

Method: 23 participants were tested in Virtual Reality
on their spatial knowledge of their home town.
Performance in the route knowledge task (from two
different perspectives) was compared, and related to a
survey knowledge task within the same area.

- While participants relied on a North-up reference
frame for the survey task (pointing), they did not do so
for they route knowledge task (indicating a route).

Participants facing a virtual model of their hometown
(left side) indicated route sequences imagining a map
perspective (upper right hand picture) or walking
perspective (lower right hand picture).

— Most likely, route and survey knowledge rely on
different mental representations.

Meilinger, T., Frankenstein, J., & Bulthoff, H. H. (2013): Learning to

navigate: Experience versus maps. Cognition 129, 24---30 @ @ @ @J

p=.19 p=.29 p<.001 p=.01

Are cognitive maps adjusted based on
viewing direction or position within £ R o] B
the environment?

Method: 60 visitors in pubs located North, East, West, + B " g
South and within the city centre of Tlibingen were asked North-up | | Home | | Location | | Body
to map the spatial configuration of well-known targets R —
located within the city centre. Bog &0 < 3R = et

— Participants tended to adjust their maps due to viewing
direction (e.g., draw a South-up map when facing South)

or their position relative to the target area (e.g., draw a B Navigatar Home
West-up map when located East of the target area). . et

City of Residence
Meilinger, T., Frankenstein, J., Simon, N., Bilthoff, H. H. & Bresciani, J. Circular histograms: obtained map orientations
P.: Humans use combined ego-allocentric reference frames. (submitted). relative to the four orientations. P-values indicate

clustering around the predicted orientation.

Are cognitive maps adjusted due to
moving direction or spatial planning?

Method: 36 participants drew a map of Freiburg, facing
East while driving West in a tram (or facing West while
driving East).

- Maps reflected participants' viewing direction rather
than their moving direction.

The case of spatial planning: data analysis in
progress. 40 participants were asked to conduct a “plan a

day“ task, and sketch a map of the spatial relation of the © Targets within the Freiburg city centre used for the
locations visited in the task experiments on moving direction and spatial planning.
' Tram line \\

[©]

o

@ Universitat Bremen DF Deutsche . 3
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Spatial inferences in unknown SPATIAL

buildinﬂs COGNITION

Spatial expectations in built environments
Experiment 1 (explorative paradigm)

Method: 40 participants watched video sequences leading them along
a trajectory in a rectangular, building-like virtual environment. Stopping
at an intersection, participants were asked to sketch the expected
ongoing geometry on a sheet of paper.

Sketches revealed:

*Participants expect rectangular structures.

*Participants tended to close loops (i.e., connect already experienced
parts of the environments).

* Participants expected regular structures, i.e., if the explored
environment suggested a certain pattern (i.e. regularities), participants
tended to expect patterns to repeat.

Experiment 2 (confirmative paradigm) Method: Participants watched a film leading them along a
Methods like in Experiment 1, but participants had to pick out of two trajectory in a virtual environment. Stopping at an
images the alternative they expect to show the more likely continuation. intersection, they either sketched ongoing structures

expected on paper (Experiment 1) or picked out of two
images the alternative showing the more likely continuation
(Experiment 2)

Pictures were designed to either suggest loops, ongoing symmetry or
pattern repetition.

Data analysis is in progress, we test for strategy preferences depending
on the properties of the environment experienced, as well as for general
preferences depending on spatial ability.

Individual differences in spatial inferences
within complex environments

We are currently piloting an experiment based on a very complex, more
naturalistic environment, a virtual hospital building containing several
building parts and three floors.

Method: Participants learning the position of indoor targets by g : _ e
navigating along a guided route, while experiencing views of the = 2
hospitals surroundings. Pl )

Task: Participants are asked to point to the targets learned. Starting == o [ ©
locations involve not only locations visited along the route, but locations e

in the surroundings only viewed from inside the hospital (e.g., the parking s L
lot, the helicopter patch).

To solve the task of pointing from not yet experienced locations, Virtual hospital environment

participants have to infer their position by completing their cognitive map, This environment has been designed for spatial

by perspective change, expectation or guessing. We expect participants' experiments in cooperation with architects. While it is
abilities and strategies to vary with spatial ability, therefore, the not a virtual copy of an existing hospital, it has the
experiment includes spatial tests like e.g., Mental Rotation, SBSODS properties of a hospital (i.e., is architecturally and

functional plausible) while meeting the needs of an

and the Bergen Left-Right Discrimination Test. - ! i .
environment suitable for complex spatial experiments.

UNI

@ Universitat Bremen DF Deutsche .
Forschungsgemeinschaft
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A7-[FreePerspective]
16-[NavTalk]

Representation of a

collapsed environment
G

Motivation

Search & Rescue equipment poses challenges to the user
Perceptual and conceptual challenges:
Discrimination of objects and persons
Unusual perspective(s)

Device movements

Lack of discriminative features
Can novices derive coherent representations based on this input?

What effect does time pressure have?

Empirical Study
36 students without prior knowledge
Material: mock-up of a collapsed room
Tasks:
- Participants watched and navigated a film shot inside the mock-up,
and memorized object locations
- They described where they had found them
- and drew a sketch of the room

Conditions: time pressure / no time pressure

Analysis
Performance measures:

Coherence of texts and specificity of localisations

Sketches and descriptions alike show variation from
incoherent collages to integrated representations

Coherence: consistent description strategy

Sample sketch of object locations Sample sketch of object locations

Specificity: use of global markers (i.e. projective terms)
Accuracy of sketches
Also: spatial ability test (Cross Section Test) =5 r 55, =

Resulits B -

- Identification of objects was harder than discrimination

- Localisations lacked the coherence and specificity of

typical room descriptions

Conditions:

We computed a generalized linear model with sketch accuracy, time pressure and spatial ability as fixed effects, and specificity as
response variable. Time pressure was not decisive for specificity, but
sketch performance (p < .05) and spatial ability (p < .05) predicted the quality of descriptions

Progression

The first room | went into, there was something. In the
second room was the Iamp thus it was left, stood
there in the corner on the ground. Then. in the third,
there was this | don't know.. dogleash or what it was
down on the ground. Then, there left agaln was the
camera up there or, well it probably wasn't a camera

Temporal structure
Markers: ordinals, motion verbs, sequentials

Conclusion:

Anchor

If you look from the start view, then there was the
tennis ball squeezed in in the middie. And next to it,
hldden was something sﬂve A matte I don't know.
And uhm, a_littl as the bottle

opener. Then, uhm, to the left S|de of the tennis ball

was this cube, that you can turn. And right, the lamp,
it was uhm, uh, also a little right of the tennis ball.

One single salient relatum: the tennis ball
Markers: relational terms with target relata

Room

When | had finally understood how the film functioned
| know that at the front, well, at the very front directl
on the right side must have been suc a little Iamp
such a table lamp. An h I he fr
was this little cube which was a ki nn this maglc
cube or how you saK that. And | thln Mfi
and left was ‘something like, | don't know, whether it
was a perfume flask.

Fixed viewpoint onto the room
Markers: room-related projective terms

Collage

[I remember] The ball, because it was often displayed. It
was squeezed in between the stones. And then in front of it
on the ground was such a hubcap. And then there was a
bottle opener. And what else dldP I see? Right, this cube.
But where it was, I don't know. The lamp was on the floor,
if you go towards the ball and then turn right, as far as I
remember. And there was something at the end, too. That
was somewhere left and above the ball.

Collage of localisation types
Markers: progression, room and anchor markers

Time pressure was less decisive than spatial skill when integrating this perceptually difficult

environment

@ Universitat Bremen
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Impossible worlds paradigm

If humans generated integrated cognitive maps online, they should detect violations of euclidean metrics right away
But: performance rates in possible and impossible worlds are equivalent

* Which processes are involved when acting in possible and impossible virtual environments?
* What kind of representation is generated?

* How are violations handled when they are detected?

Empirical Study

Participants: 40 University students

Material: 4 virtual environments; 2 possible, 2 impossible
Conditions: between subjects: think aloud/ no think aloud

Procedure: navigation + shortest path task + sketching
Questionnaires: spatial ability, spatial strategies

The Mental

Verbalisation during Stages of Consolidation processes
- - articipant 21 awareness, (between subjects)
Preliminary Results Collage - ’
* abstract shape representation o - . L

* object order
Shortest Path Performance <l . i
* distance information

Equivalent performance in possible and + .. all exist side by side

This time it was a rectangle.
[spontaneously and confidently draws
rectangular shape]

no awareness: rectangle
consolidation: triangle: during
navigation,

angles are ignored

abstract representation is
retrieved

consolidation (unconscious):

In the short corridor, there was for once misrepresentation of distances,

object order and distance
are added

impossible worlds
Think aloud has no effect on performance

If forced to integrate,
mismatches MAY clash
- but typically DON'T

angles or number of objects

Conscious d ion of mi

[hesitation] oh, uhuh. painting-
and[hesitation] table- But | said that
[break] Well, | can position the objects:
painting, table [draws objects on opposite

Think Aloud during Navigation:

sides], the three points and the lamp. But
that doesn't match the corridor’s lengths.
[sighs, break] | am certain the lamp and
the painting were in the short corridors.
But the lamp was after the painting.
[break]

mismatch is noticed problems are detected

* Layout inferences based on angles

* Consolidation processes to handle violations
in triangular environment

* No awareness in rectangular environments

j =

new attempt to integrate
perceived object order,
distances and angles

mismatches are either resolved
or explained with lack of memory

But this is- [begins new figure] short,
short, long- [break] yes.

But this is-. Well, this is not possible, that
short, short- because there was no kurve
there- and then long, long: that's not
possible! Yes, that is not possible.

awareness of

impossibility solution

Sketching:
Overall symmetric shapes that misrepresent either

* distances,

* angles, or even

* number of landmarks

Stages of awareness:

1) no observable trace of doubts

unconscious consolidation

2) detection of problems

conscious consolidation

3) detection of problems

leads to revision

of symmetric shape

4) and full integration/

awareness

abstract geometrical shape

Conclusion

Full integration through

@ Universitat Bremen
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object order and distance

don‘t match

No online integration during navigation and performance

offline reasoning is the exception
© [ IS—S—S—S—S—
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in Unfamiliar Urban Street Networks: The Case of Soho
T ————

Navigational Strategies

Claudia Cialone, Tl:lora Tenbrink, Christoph Holscher, Hugo Spiers

In an unfamiliar urban street network:
How do people navigate with an incomplete map?
How do they conceptualize the environment in sketch-maps?
What is their orientation and sense of direction accuracy ?

How do they feel whilst ‘wayfinding’?

Maps and Routes for the Study

Meeting & End training
Debrief &Start testing
point point

Soho Square Gardens Regents Place

Method

Participants

17 participants: 6 male, 11 female; mean age: 30 years;
native English speakers; not very familiar or not familiar

with Soho

Procedure

s s =

Frequency of Mnguistic markers |

Tasks at each decision point on the complex testing route,
with respect to each of the 6 landmarks learned on the

simple training route :

1) Euclidean distance in meters
2) Shortest walking path

3) Direction to get to the landmark
4) Choice to consult the incomplete map for ‘some time.

Final Debrief

General questions about the experience.

Map-sketch task: to complete the Soho incomplete map by
adding in everything remembered from the testing route.
SBSOD (Hegarty et al., 2006) and FRS Self-Assessment navi-

gational tests.

Think Aloud verbalizations were collected during naviga-

tion and tasks-accoplishement.

@ Universitat Bremen

Incomplete Map of Soho & Landmarks

230 meters ca.

SPATIAL
COGNITION

[16-NavTalk]

Soho lllustrative Plan of Navigation

Soho with all the streets shown

Red Line =Training route

Red dots = 6 Landmarks

Light blue line = Testing route

Dark blue numbered dots = 36 Decisional Points

C { hy by Lukasz g

The maps are a pen-paper remake of a Soho Google Map.

First Results

W e/ v s mermett

plmidrmiang®
’ T
* halererne 0 new lindman
e
| ‘
l | I
{ f { ’t! R AT g
Ry e ' JRIAN 790 50006
sty ‘—:‘ 22 917 240 #5530, 5.0 6404
L} Shetches with dacrene 7] Swetthes wth v 3| Shetches with dacrese dne
Ontind e i 00 Sncsete fvw DA and abwets
mbjecty Gscontivages obyecty
Sketch-Maps Corresponding TAs

<N

501 think we wenr... we started at Regents
place, and we went down this way, and then we
went that way and then | think we came back
up again... hum._.that way then we went
towards Piccadilly, Regents street and then we
sort of came back up towards Soho_t know we
crossed over there cose at one stage we ot to .
Carnaby street i up here., then | think we
came back across couple of times..

~ 1V know there wos o Rustle & Bromley here so Il
put a Rustle & Bromley and there was also @
Hamneys cose people were blowing bubbles at
us. and | know there was Hugo Boss... some-
where..and then | know there was also like

- Bariana republic or whatever. | can give you the

shop names probably. Poland streer_ | know
there's a road theve that continues on..

A do remember stopping many different times..
seemingly came across up Noeth... how did we go
Novth of 1S pub. | can remember seeing. | can
remember seeing the 8T tower... what did we do..
maybe we came.. we didn't certainly . didn't get to
Poland street so perhaps something a bit like this...

Cognitive Discourse Analysis (CODA)

Of sketch-map TAs (Tenbrink, 2014), allowed the distinction of 2
main linguistic markers systematically used by participants :

1) Expressing first person movement in space:

(subject) + verb of motion

2) Expressing objects position in space:

(there is/are) + landmark

They were grouped into 2 cognitive semantic categories defined
as:

1) Dynamic route conceptualization/memorization

2) Static landmark concep ion/ izati

3) Dynamic&Static conc

p memorization

Sketch-map Analysis

Sketches were classified according to visual patterns (cf. Klippel et

al., 2003) as follows:

1) A discrete continuous line expressing the sequence of route
steps from start to end.

2) A cluster of statically positioned landmarks

3) A dynamic discrete line with few static landmarks

Statistical GLMM analysis
Shows a conceptualization alignment between the sketch-map
groups and the linguistic categories

Preliminary Conclusions
People memorise travel through an unfamiliar space with refer-
ence to either:

1.The landmarks encountered

2.7he route travelled
3.Both landmarks and the path

Hagerty, M. MooteRo DR Rxhardvon A £ hikawe T, Lovetsce & 006 itreNpence 14 151176

o | mean there were building works dotted around PPN AL T . Matel €003, s 4 bytia oot o
& the place..there’s many different stop-off points AT el o — Thwasgh lan-
hum... guage Dot Langusge and Cognitien
Eorschungsgemeinschaft ——
8 zg
p= [T
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Dextrous Spatial Interactive Manipulation

of Virtual Objects

René Weller Matthias Teschner Gabriel Zachmann

University of Bremen University of Freiburg University of Bremen

Natural Interaction

= Direct spatial manipulation methods
for virtual objects

= Grasping, manipulation, movement

= Physical plausibility

= Real-time applicable

Collision Detection for Deformable Objects
in Constant Time'
= Proven O(n) complexity for the overlap of
two sphere packings
= New collision detection algorithms
= Worst case sequential time: O(n)
= Worst case parallel time: O(1)
= Running time: < Tmsec for 30k spheres

Improved Bounding Volume Hierarchies?

= BVHs for higher branching factors

= New hierarchical parallel Batch-Neural-Gas
clustering algorithm

= 4 times faster query times than simple
heuristics

Real-Time Distance Queries for Point

Clouds?

= Online hybrid CAD/point cloud
proximity computations

= Supports cheap point cloud sensors like
Kinect

= New massively-parallel algorithm using
GPU acceleration

= Running time: < 10 msec for 5 million
points

~ DF Deutsche o
‘kgg‘.‘,‘.‘ﬁ}," Forschungsgemeinschaft Universitat Bremen B

Virtual assembly
simulation

@

Entertainment

12k
ek
Wl 20k

Time / msec

Publications:

1) Weller, Frese, Zachmann, ,,Parallel Collision Detection in Constant Time*, Vriphys 2013

2) Weller, Mainzer, Srinivas, Teschner Zachmann, ,Massively Parallel Batch Neural Gas for
Bounding Volume Hierarchy Construction®, Vriphys 2014

3) Kaluschke, Zimmermann, Danzer, Zachmann, Weller, ,,Massively Parallel Proximity Queries
for Point Clouds*, Vriphys 2014
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N1-[SocialSpace]: Social Learning for Cognitive Robots

Junior Research Group within SFB/TR8

Kai O. Arras, Social Robotics Lab, University of Freiburg

Overview

* Motivation: growing number of
robots deployed in human
environments

* Research objectives: give cognitive
systems the ability to sense and act | o
in a socially acceptable way:

* Develop key technologies for
socially informed perception,
(spatial) cognition, learning,
and action

« Safer, more effective and more acceptable robot systems
People Tracking under Social Constraints (WP2) mmss

* Goal: to “socially inform” a people tracker by incorporating domain
knowledge on humans either learned from data or described by models
from cognitive and social science

* Tasks and achievements:
* Person detection in 2D, 3D, RGB-D data /4441°10, IROS’11, ICRA’11, ICRA’12]
* Socially informed people tracking /icr4°10, ICRA’11, URR11]

* Unsupervised learning of dynamic objects /rss'08, AURO09]
* Tracking groups of people /iCRA09, 1ISR 10, RSS’13]

Multi-Hypothesis Grouping and Tracking

» Motivation: analyze human groups, learn socially normative motion
behaviors for navigation and interaction

« Contributions: recursive social grouping hypothesis approach, moving
sensor, real-time, 2D laser data /RSS’13, award nomination]

» Approach: extension of multi-hypothesis tracking (MHT) approach by
intermediate tree level at each time step, on which social grouping
hypotheses spring off from parent hypotheses /Lau et al. ICRA 09, 1JSR*10]

* In this way, we can simultaneously hypothesizes over data associations
(between observations and tracks) and models (group formations)

« Detection of social relations via coherent motion indicators from social science
* Leads to social network graph, graph-cutting produces group candidates

* Individuals in groups form stable patterns

* We learn such patterns in an on-line fashion using a particle filter with Brownian
proposals and priors from social science

* Both relations improve person-level tracking by enabling constraint-based
motion predictions of occluded tracks and adaptive track occlusion probabilities

* Results

» Two large unscripted outdoor data sets
collected at the Freiburg city center

* Our approach reflects group formation
changes much faster than baseline ==
* 40% fewer track identity switches and 5%
28% fewer false negative tracks "
« Cycle time 17,6 Hz on laptop PC 1

Dissemination and Outreach

L ]
fspAnAl.
COGNITION

DFG

UNI
|

FREIBURG

Infrastructure (WP1)

* Goal: establishing the Junior research group B
* Robot DARYL

* general-purpose HRI
research platform
* unique, custom-made design

* expressive, mildly
humanized look

* 10 degrees of freedom
* sound, LED, pointing modality
* real-time RTOS XO/2

Socially-Aware Robot Navigation (WP3) e

* Goal: achieve efficient yet socially-aware navigation behavior by
informing a motion/task planner by learned human behavior models

 Tasks and achievements:

* Learning to plan under social constraints /ICR4’11, IROS’11, ICAPS’11]
« Slipstream navigation /CogSys ‘08, STAR'10, IROS’12]

» Unsupervised learning of crossing trajectories /1ros 12}

* FLIRT: interest points for 2D range data /ICR4’10, ISER'10, STAR'14]

* Learning to navigate human crowds /ir0S 14/

Learning to Navigate Crowds of People

* Motivation: learning navigation behavior from demonstration
for dense crowds of people

* Contributions: pedestrian simulator with state-of-the-art models
from social science, comparative study on different features and
learning algorithms, efficient yet socially conform behavior /1ros 147

» Approach: inverse reinforcement learning (IRL) , allows to model the
factors that motivate actions, not only the actions themselves

* Characterizing the robot’s social surrounding by
different feature sets that encode person density, /j.
relative proximity, speed, and motion direction 1 '

* Learning from few operator demonstrations ' ke

* For inference, IRL produces dynamic cost maps used -4
to guide a Dijkstra-based motion planner R

* Results

« Defining objective (task-related) and
subjective (user comfort-related)
performance measures

* Robot has learned to efficiently join,
cross and leave pedestrian streams

* Results from three different scenarios
give valuable insights on feature
design (important), IRL algorithm
(less important), state space
representation (very important)

Best path from start (S) to goal (G)

* Publications: 25 peer-reviewed journal and conference papers (e.g. lJRR, AURO, RSS, AAAI, ICRA, ICAPS, IROS), 4 workshop papers, 3 editorials

* Teaching: 1 PhD thesis, 5 Ms/diploma theses, 10 Bs theses, 1 specialized course “Human-Oriented Robotics”

» Awards and distinctions: RSS 2013 best student paper award finalist, most cited paper of IROS 2011 (32% acceptance rate)

* Follow-up: [N1-SocialSpace] has led to the EU FP7-project SPENCER, “Social situation-aware perception and action for cognitive robots’, K.O. Arras (coord.)
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Assistive Intelligence for Spatial Design >
SPATIAL

Carl Schultz, Mehul Bhatt www.design-space.org COGNITION

SFB/TR 8 Spatial Cognition
A — Project [DesignSpace]

o Computational Design Analysis

User-centred design analyses during the master-planning stage should be one of the most crucial considerations in the spatial design of large-scale
public environments such as airports, museums, train stations, exhibition halls, hospitals; all places with clearly definable functional purposes. In our
research on computational design analysis in Project DesignSpace, we developed a range of analytical aids that support the designer from the during
the early master-planning stage. In the context of wayfinding analyses for circulation planning, our system: (1) derives the logical structure of topological
connectedness, (2) generates all possible topological and geometric routes, (3) derives affordance-based routes aimed at predicting the motion pattern
of special interest groups, (4) performs hypothetical ‘what-if ' scenarios by providing comparative analyses, (5) visualizes not only the explicitly existing
physical space, but also the implicitly existing affordance spaces, physical and non-physical artefacts etc. Our system conforms to emerging standards
such as Industry Foundation Classes (IFC), Building Information Model (BIM), and commercial design software (e.g., ArchiCAD).

o Standard Route Graph o Walking Route o Wheelchair Route

Va R
aa]iel

E.g, Wheelchair gets stuck

o lsovist

1 ‘ o2

e I

Museum Calouste Gulbenkian, Lisbon, Portugal 7' -
—*-lj* Lo %—

o Multi-storyed Building

© Routes and Visiblity

\\//\

o Macro Circulation Patterns

BT & \ \»\ =1\ ¥
Case-study: Academic Interchange, Bremen i
© Indoor Navigation o Privacy / Security o Emergency Scenario

(fvﬁf/ I “ijA
ip AR S FI_,JT_

Avoid Functional Spaces Avoid Range Space of Camera Avoid Empty Space or Follow Walls

References

© Bhatt, M., Schultz, C,, Thosar, M. (2014). Computing Narratives of Cognitive User Experience for Building Design Analysis: KR for Industry Scale Computer-Aided
Architecture Design, in: Principles of Knowledge Representation and Reasoning: Proceedings of the 14th International Conference, KR 2014, Vienna, Austria.

© Universal Design and the Built Environment. http://www.design-space.org/edra45
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CLP(QS) - A Declarative Spatial Reasoning System g

Carl Schultz, Mehul Bhatt
www.spatial-reasoning.com SPATIAL
email: {cschultz,bhatt}@informatik.uni- bremen.de COGNITION

IS SFB/TR8 Spatial Cognition
Project [DesignSpace]

Abstract Spatial Objects

convex circle
We present results of the ongoing development of a declarative spatial reasoning system within the sphere polygon
context of Constraint Logic Programming (CLP).The system is capable of modelling and reasoning about \ _
qualitative spatial relations pertaining to multiple spatial domains, i.e., one or more aspects of space such b ° / line
cube
L

as topology, and intrinsic and extrinsic orientation. It provides a seamless mechanism for combining point extruded

formal qualitative spatial calculi within one framework, and provides a Prolog-based declarative interface | polygon polyline 1
for Al applications to abstract and reason about quantitative, geometric information in a qualitative - | ,"\‘
manner. Based on previous work concerning the formalisation of the framework [1], we present ongoing ‘ » D rectang e// \
work to develop the theoretical result into a comprehensive reasoning system (and Prolog-based | poiunt concave

library) which may be used independently, or as a logic-based module within hybrid intelligent systems. cuboid cylinder square polygon

IntrOd uction CLP(QS) In action ¢ surfaces in product design
«spatial reasoning is hard - infinite domains, ¢ enable declarative reasoning with real data SRy SR )
7 i)y )y
multiple constrained dimensions . icati i i f | C=rectangle(_,_,_
pl a||>pllt{at|ons in architectural design and urban | size(bigger, C;A), size(bigger, C,B),
e qualitative spatial reasoning - commonsense planning lruzereolugy(rccsw)' & U)o
abstractions of geometric relations *automatically managed optimisations and

;:t.);-)ology(rcca(dc), A, B).
mereology(rcc5(p), C, union(A,B)).
alse.

* constraint logic programming (CLP) - extend logic datastructures

programming to handle constraints over different e utilise solvers: CLP(R), SMT, CAD
domains e.g. CLP(Reals)

|
|
|
t

sidea: CLP over qualitative spatial domains - * mix spatial object domains €
express and solve declarative, high-level . q T q
. . - - . * mix numerical and qualitative information
constraints over spatial entities (e.g. points, line
segments, regions) ® access geometric constraints
¢ encoding qualitative spatial relations as polynomial
expressions, solve by dedicated algebraic solvers 7- A=circle(point(2,2), ),
| B=rectangle(_,6,_),
| P=point(3,4),
D2 | topology(inside,P,A),
| topology(inside,P,B),
| topology(Relation,A,B).
Pig
Relation = intersects,
/ CLP(QS) Constraints: ® door operational spaces must not overlap with
P (1) Bores: functional space of activity objects (e.g. washbasins)
(2) A.y=2 P Y ©Dj -8
left = xap3 Fxpy2 FX301 —yax3 —yix2 —yaxs > 0 (3) B.width = 6
PR P2 = s X Xy S (4) A.radius>2.23607 |
(5) B.y=<2.0
(6) B.height+B.y>4.0
(7) B.x> -3.
(8) B.x=<2.0
* seamless integration with standard KR 7 —
P door
* QSR with complete unknowns B M
*mix types of spatial relations ?- (furnishing(id(0bjA),_); flowelement(id(ObjA),_)),
AO. v,,O B functional_space(id(ObjA), representation(FuncGeom)),
. . T operational_space(id(0bjB), representation(OpGeom)),
- topology - orientation intersects topology(intersects,OpGeom, FuncGeom).
- mereology - distance
- size - translations, rotations
?- A=cube(_,_), B=cube(_,_), C=cube(_,_),
| topology(rcc8(ntpp), A,B),
| size(smaller, B,C), i
| size(SizeRel, AC), Conclusions
| topology(rcc8(TopoRel),A,C).
Sl = sl We are developing a system for reasoning in a high-level manner about space, the physical
opoRel = dc, . . . . . .
extension of objects, and their regions of influence, or spatial artefacts. Our system manages
5 the computational complexity by combining high-level constraint logic programming control
B with select calls to underlying algebraic solvers. Thus, a user can provide a (possibly
il . . . . L. . .
e OY' incomplete) geometric and qualitative description of an environment and then check high-
A O Toc A © level rules about their application domain, such as connectedness and movement, visibility
Camiieand”” along routes with respect to occupant experience, privacy and security, and potential
(de or poor ec or tpp or nipp) collisions of functional spaces of objects. In this paper we have focused on the application

domain of computer aided architectural design (CAAD).

[I1 Carl Schultz, Mehul Bhatt, ‘Declarative Spatial Reasoning with Boolean Combinations of Axis-Aligned Rectangular Polytopes’, in 21st European
Conference on Artificial Intelligence (ECAI 2014)

[2] Mehul Bhatt, Carl Schultz, Madhura Thosar, ‘Computing Narratives of Cognitive User Experience for Building Design Analysis: KR for Industry Scale
Computer-Aided Architecture Design’, in Principles of Knowledge Representation and Reasoning (KR 2014)

[3] Carl Schultz, Mehul Bhatt, ‘Toward a Declarative Spatial Reasoning System’, European Conference on Artificial Intelligence (ECAI 2012)

[4] Mehul Bhatt, Jae Hee Lee, and Carl Schultz,‘CLP(QS): A declarative spatial reasoning frameworlk’, in Conference on Spatial Information Theory
(COSIT 2011)
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COGNITIVE VISION: The ROTUNDE Initiative SPATIAL

Jakob Suchan, Mehul Bhatt http://www.cognitive-vision.org COGNITION
SFB/TR 8 Spatial Cognition

A  Project [DesignSpace]

© Human Activities grounded in Spatial Change
Associate observed spatial change with hypotheses on real world interactions
> Interactions

spatio-temporal relations
based on intervals of
space and motion

Automatic Meeting Cinematography » Operations

> people, artefact, and interaction tracking basic elements of

» high-level cognitive interpretation

» real-time dynamic collaborative camera control

an Interaction [[horizontaiy tettie. 0.0 ] [Chorizentally_rigntce. 0.1 ]

partally_occluded(?, Q. )

Troving(left, P, 11
moving(right, P, T)

SpproaChTng[P, T border, 11

PO, 0, T)

ight border, T)

General Tools and Benchmarks . L.
» functionality-driven benchmarks o Perceptual Narratives of Human Activities
» general tools for the commonsense cognitive interpretation of

. Hypothesised object relations are semantically interpreted as activities in the
dynamic scenes

context of the domain

Examplary Sequence of Observations:

Region P elongates vertically, region P approaches region Q from the right, region

P partially overlaps with region Q while P being further away from the observer

than Q, region P moves left, region P recedes from region Q at the left, region P

— gets discrete from region Q, region P disappears at the left border of the field of
view

Porceptual Narratives

enter_meeting obstructing_speaker leave_meeting(P) ask_question present_topic

Hypotheses on Change

stand_up(P) moving_right(@) passing_behind(P, Q)

Observations

right

static h. shortening h.elong.  static w.elong. h.elong. static  h.elong. |static  w.elong. static  h.short, shrinking
approaching po receding po app.po staticpo rec.po  staticpo [recedingde: static de

rec. | receding left
partially odpluded
moving left

Hypothesised Interpretation:
Person P stands up, passes behind person Q while moving towards the exit and
leaves the room.

ider wider wider, thinner

‘Spatial Relations

patially overiaping disconnected

closer further d. edual

Control Actions, Full Shot Speaker + Proj Insert Shot Projection Overview Shot Audience

Projection Audience

Medium Shot Speaker "\ @ p Speaker
A\

Zoom on Speaker

s Projection

© Qualitative Abstractions of Space and Motion

Karl mildly gets up

© Interpretation Guided Spatial Control

ELELLE

q

Interpreting ongoing activities, for explanation of incomplete observations, and
5 = for projection to the near future to anticipate next interactions.
]

Explanation of perceived interactions in the context of the activities in the
meeting

Prediction of immediate next interactions based on the previously observed
» Domain Independent Theory interactions

% Space - Spatial relations representing the scene Planning of control actions by utilizing the before mentioned methods

Topology Control actions based on the interpretation
T Motion - Perceived motion of individuals

Movement Size-Motion Rotation
References

> Spatia| Dynamics Of Individuals in the Scene © Suchan,J, Bhatt, M., and Santos, P.(2014). Perceptual Narratives of Space and Motion for Semantic

Interpretation of Visual Data, in: Proceedings of International Workshop on Computer Vision + Ontology
Visbility . Multiple Complex Applied Cross-Disciplinary Technologies (CONTACT) at ECCV 2014, Zurich, Switzerland.
Patterns Viewpoints Individuals © Bhatt, M, Suchan, J.,and Schultz, C.(2013). Cognitive Interpretation of Everyday Activities - Toward
Perceptual Narrative Based Visuo-Spatial Scene Interpretation. In Finlayson, M.; Fisseni, B.; Loewe, B.; and
Meister, J. C., eds., Computational Models of Narrative (CMN) 2013.

© Bhatt,M, Suchan, J.,and Freksa, C.(2013) ROTUNDE - A Smart Meeting Cinematography Initiative.In M.
Bhatt, H. Guesgen, and D. Cook, editors, Proceedings of the AAAI-2013 Workshop on Space, Time, and
Ambient Intelligence (STAMI)., Washington, US. AAAI Press.

» High-Level Declarative Model

h_elongating(4,1510);
dc(1,2,1§10); dc(1,3,1510); dc(2,1,1510);

spatial | cft(3,4,1410); right(1,2,1510); right(4,3,1510); Spatial
= === RREE Static DCfh,2,1510); approaching_PO(3,4Ai510); = = 0 == © Suchan,J, and Bhatt, M. (2012).Toward an activity theory based model of spatio-temporal interactions -
b getting_tller(4, 1510); partially_oYfudes(L,4,1510) b integrating situational inference and dynamic (sensor) control. In Kersting, K., and Toussaint, M., eds.,
* | partially_occludes(2,3,1510); approachi ht(4,3,1510) : STAIRS, volume 241 of Frontiers in Artificial Intelligence and Applications, 318-329.10S Press.
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ExpCog: An Experimental Cognitive Robotics Framework SPATIAL

www.commonsenserobotics.org COG N lTl 0 N

D SFB/TR 8 Spatial Cognition
Brian Tietzen, Jakob Suchan, Manfred Eppe, Mehul Bhatt Project [DesignSpace]

Motivation

A Generic Domain Description Language

* Usable with arbitrary control approaches within the framework

Multiple Control Approaches

* Based on formalisims for reasoning about action and change

Application Platform Independence

* Should work in diverse real-robotic as well as simulated settings

Experimental and Pedagogical Function

* For use in teaching / courses on robotics and artificial intelligence

The ExpCog Framework

From a conceptual viewpoint, ExpCog architecture consisting of:

A Generic Domain Description Language

* Consistent with standard domain description languages (e.g., Planning
Domain Definition Language (PDDL))

* Uniformly utilisable across all control calculi within the control module

The Control Apparatus - Calculi for Reasoning about
Space, Actions, and Change

* Provides multiple, independently utilisable control approaches that have a
formal basis for reasoning about action and change in general

* Formal logic based approaches - Situation calculus, Event calculus and
Fluent calculus

» Utilise high-level languages that are based on the stated calculi - Golog,
conGolog, FLUX etc

* Reasoning about different aspects of space (e.g., topology, orientation) by

qualitative spatial reasoning in constraint logic programming using CLP(QS)
Controller Communication Interface

* Independent of robotic platform or agent simulation environment

* Defines low-level actions and provides sensing Information

Robot Platforms, Simulators

* the real / simulated robot (platform)

References

Generic Domain Description L
P Controller Communication Interface

Domain Theory Behaviour Specification e.g., sensing, action and event serialisation
Commonsense, Space and Change Robot Platforms, Simulators
Action and Change CLP(QS). Declarative Spatial Reasoner
ROS iCub LEGO
BDI STRIPS FLUX DEC Indigolog ASP @l Rolland Wheelchair

=24

Implemented Platforms

b 'Z i
= . EerE . | =

Lego e Polar Bear ¢ Gazebo e ROS - Robot Operating System e Robotcub - iCub
v-rep e Rolland Wheelchair (in Collaboration with Manfred Eppe)

Collaboration

o Integrating planning and postdiction - BAALL - Bremen Ambient Asistence
Living Lab

o Dynamic spatial relations for embodied robot interaction - Sony CSL, Tokyo

o Spatial reasoning for robot navigation - Warsaw University

e Suchan,J, Spranger, M., Bhatt, M., Eppe, M., (2014) Grounding Dynamic Spatial Relations for Embodied (Robot) Interaction - Integrating Cognitive Linguistic Semantics and Commonsense Spatial Reasoning, in:The 13th Pacific Rim

International Conference on Artificial Intelligence (PRICAI 2014), Queensland, Australia (to appear)

Prague, Czech Republic

Eppe, M., Bhatt, M., Suchan, J.and Tietzen, B., (2014) ExpCog: Experiments in Commonsense Cognitive Robotics, in:The 9th International Workshop on Cognitive Robotics. European Conference on Artificial Intelligence (ECAI 2014),

® Eppe, M., Bhatt, M.(2013) Narrative based Postdictive Reasoning for Cognitive Robotics. COMMONSENSE 2013: 11th International Symposium on Logical Formalizations of Commonsense Reasoning.

@ Bhatt, M..(2010). Reasoning about Space, Actions and Change: A Paradigm for Applications of Spatial Reasoning, in: Hazarika, S. (editor). Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions. Gl

Global (PA, USA).

@ Bhatt, M.(2009). Toward an Experimental Cognitive Robotics Framework: A Position Statement. Proceedings of the Int. Workshop on Hybrid Control of Autonomous Systems: Integrating Learning, Deliberation and Reactive Control.

International Joint Conference on Artificial Intelligence (IJCAI-09), Pasadena, USA.
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SignTrack: Signage, Eye-Tracking &

Airport Navigation

SPATIAL
COGNITION
T3-[SignTrack]

Simon Biichner, Lars Konieczny, Bernhard Nebel, Christoph Holscher

Project Overview

Strategic project with a total duration of two years

Project Partners
1. the Center for Cognitive Science, University of Freiburg,

2. the Department of Computer Science (lIF), University of Freiburg, and

3. the operator of Frankfurt Airport (Fraport AG), Frankfurt
Primary Goals

205
-2 G;apon /
4 4

* Validate results of eye tracking lab studies with results of mobile eyetracking studies in the real environment

* Advise Fraport with respect to signage placement and design

* Explore and model sign use in wayfinding behavior

Results and Achievements

Multi Agent Simulation

* Development of a multi-agent approach in Unity:
implementation of sign fixation and interpretation (Becker-
Asano et al. 2014)

VR Model

* Virtual model of airport parts in Unity for interactive VR
experiments with Oculus Rift (Leymann et al. 2014).

Lab Studies and Consulting

* Evaluation of signage alternatives

—~>Redesigned signage improved confidence and decision
making in a lab study (Blichner et al. 2012)

* Pretesting of signage alternatives for planned terminal

—~>Improved sign placement, additional signs where
necessary, dispensing unnecessary signs

Field Studies with Mobile Eye Tracking

» Comparison of eye tracking results in lab and field
(Schwarzkopf et al. 2013)

* Analyses of wayfinding behavior with different signage
alternatives

Method Development

* Using sight vectors to analyze the relation of body
movement and gaze behavior (Miiller-Feldmeth et al. 2014)

References:

Becker-Asano, C., Ruzzoli, F, Holscher, C., & Nebel, B. (2014, accepted). A Multi-Agent System based on Unity 4 for virtual perception and
wayfinding. In Pedestrian and Evacuation Dynamics 2014 (PED2014).

Biichner, S., Wiener, J,, & Hélscher, C. (2012). Methodological Triangulation to Assess Sign Placement. Proceedings of ACM ETRA 2012, Eye-
tracking Research and Applications, Santa Barbara, CA, March 2012.

Leymann, S., Hélscher, C,, Becker-Asano, C., & von Stiilpnagel, R. (2014). Der Einfluss einer Speed-Accuracy Manipulation auf
schildergeleitetes Navigationsverhalten in einer virtuellen Umgebung. 56. Tagung experimentell arbeitender Psychologen, GieBBen.
Miiller-Feldmeth, D.*, Schwarzkopf, S.*, Biichner, S.J.,, Holscher, C., Kallert, G., von Stiilpnagel, R., & Konieczny, L. (2014, accepted). Location
Dependent Fixation Analysis with Sight Vectors. Locomotion as a Challenge in Mobile Eye Tracking. Paper to present at the 2nd
International workshop on eye tracking for spatial research, ET4S 2014, Vienna. *equal contribution, alphabetical order

Schwarzkopf, S., von Stiilpnagel, R., Biichner, S.J,, Konieczny, L., Kallert, G., & Holscher, C. (2013). What Lab Eye Tracking Tells us about
Wayfinding. A Comparison of Stationary and Mobile Eye Tracking in a Large Building Scenario. Paper presented at the 1st International
workshop on eye tracking for spatial research, ET4S 2013 (in conjunction with COSIT 2013), Scarborough.
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Multi agent simulation with
sign usage
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Fixation maps on VR-screenshots of planned terminal with
different signage alternatives

Trajectories and sight vectors of two participants, one using the
stairs, one using the escalator
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Trajectories and sight vectors of participants using the stairs
(left) or the escalator (right).
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Proposed Transfer Project: Tracking and

SPATIAL
Modeling Sign Use Behavior

COGNITION
T3-[SignTrack]

Simon Buchner, Lars Konieczny, Bernhard Nebel

Project Overview
A transfer project with a duration of two years (2015/16) submitted to DFG.

Project partners

1. the Center for Cognitive Science, University of Freiburg,

2. the Department of Computer Science (IIF), University of Freiburg, and
3. the operator of Frankfurt Airport (Fraport AG), Frankfurt

Primary goals
* Improve Fraport’s passenger flow simulator (CAST): integration of a signage module

* Transfer knowledge about spatial navigation and cognitive models of human wayfinding to the prediction
and simulation of passenger flow in Frankfurt Airport terminals

* Advance and validate theories and methods on spatial cognition and wayfinding in the highly relevant real-
world setting "airport" as well as in a multi-agent simulation of this environment

Methods

We use multiple methods in order to gain empirical knowledge, transfer it to modeling parameters and to
pretest them in our Unity model before implementing them in Fraport’s passenger flow simulator:

* Mobile eye tracking studies at the airport

* Multi agent modeling in Unity for interactive VR-eyetracking studies
* Observation and analysis of passenger behavior at the airport

* Pretesting agent and sign parameters in the Unity multi-agent model
* Evaluating the success of the signage module

Project Plan

WP1 - Passengers’ reactions to signs

* When is a sign perceivable?

* Which sign types are fixated with which probability?

* How does gaze behavior affect walking behavior?

WP2 - Complexity and semantics of signs

* How does semantic complexity of a sign influence its interpretation?
* How is directional information re-mapped to the environment?

* Which influence has time pressure on confidence and performance?
WP3 - Social influences on attention and wayfinding

* Does group navigation support or impede wayfinding?

* How does the social context influence attention?

* How does the crowd influence individual behavior?

WP4 - Passengers and agents getting lost

* When do passengers notice that they are lost?

* How do people behave after getting lost?
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Affect Simulation in >
SPATIAL

Crowd Environments COGNITION
D  T3-[SignTrack]

Jan Mortensen, Christian Becker-Asano, Bernhard Nebel

Objectives

* How does affect influence the behavior of single persons in a crowd?
* Integrate affect simulator WASABI into a simulation of an airport terminal

* Test in simulation how events change the emotional states of the agents ‘/(L-
and how emotions, in turn, impact agent behavior iip W Topat
Affect simulation with WASABI
* Three dimensional PAD space for emotions (pleasure, arousal, dominance)
* Emotions and each agent’s emotional state are defined in this space
* Emotion intensity is calculated by a distance measure in this space - @W

* Emotional change induced by positive or negative impulses

Integration into Crowd Simulation

* Visualization of emotions achieved by color-codes, for example:
* Happy: green
* Fear: red
* Sadness: blue

* Only emotion with highest intensity is displayed

* Emotional state of single agents and cluster of emotions at a certain location can easily be determined.

First Results

Very simple tests delivered promising results.
The following rules for emotional impulses were implemented:

* Negative impulses when an agent is surrounded by many other
agents

* Negative impulse when the agent fails to read a sign

* Positive impulse when the agent successfully reads a sign
These trigger the following change in behavior:

* Change the chance to read a sign successfully

Results in behaviors comparable to real world behaviors, e.g.:
* Stressed people in a full airport hall

* Spread of panic

Future Research

* Evaluation of WASABI, applied to crowd simulation

* WASABI to be compared to an implementation of an established
model of emotion psychology, namely OCC

* Perform empirical studies to evaluate the reliability of WASABI
* Compare simulated passenger behavior with real world data
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SIL — Spatial Interaction Lab
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Spatial Interaction Lab (SIL) Tcggﬂm%m
T

Jasper van de Ven (jasper.vandeven@informatik.uni-bremen.de)

Creating an ambient intelligence and smart environment laboratory

(Jasper van de Ven, Falko Schmid, Christian Freksa)
18 smart doorplates S*I

.1.2GHz VIA-C7
.1 GB RAM

-8GB flash HDD Spatial Interaction Lab
«12" touchscreen

.camera, microphone,
speakers

-

Enabling spontaneous and informal communication in spatially distributed groups

(Cognitive Systems, University of Bremen and Media Informatics and Multimedia Systems Group, University of Oldenburg)
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Martin Brosamle:
Image, Text, Trajectory
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