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Abstract. Qualitative knowledge about relative orientation can be expressed
in form of ternary point relations. In this paper we present a calculus based on
ternary relations. It utilises finer distinctions than previously published calculi.
It permits differentiations which are useful in realistic application scenarios that
cannot directly be dealt with in coarser calculi. There is a price to pay for the
advanced options: useful mathematical results for coarser calculi do not hold for
the new calculus. This tradeoff is demonstrated by a direct comparison of the
new calculus with the flip-flop calculus.
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tion

1 Introduction

Qualitative Spatial Reasoning (QSR) abstracts from metrical details of the physical world
and enables computers to make predictions about spatial relations, even when precise
quantitative information ist not available [Cohn, 1997]. From a practical viewpoint QSR
is an abstraction that summarizes similar quantitative states into one qualitative charac-
terization. A complementary view from the cognitive perspective is that the qualitative
methodcomparesfeatures within the object domain rather than bymeasuringthem in
terms of some artificial external scale [Freksa, 1992]. This is the reason why qualitative
descriptions are quite natural for humans.

The two main directions in QSR are topological reasoning about regions
[Randell et al., 1992], [Renz and Nebel, 1999] and positional (orientation and dis-
tance) reasoning about point configurations [Freksa, 1992], [Clementini et al., 1997],
[Zimmermann and Freksa, 1996], [Isli and Moratz, 1999]. More recent approaches in
QSR that model orientations are [Isli and Cohn, 2000], [Moratz et al., 2000]. For robot
navigation, the notion of path is central [Latombe, 1991] and requires the representation
of orientation and distance information [Röfer, 1999]. Since we are especially interested
in qualitative calculi suitable for robot navigation we developed a positional calculus
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for this task. The calculus is based on results of psycholinguistic research on refer-
ence systems. We compare the new calculus with the simpler flip-flop calculus. We can
demonstrate that even if the flip-flop calculus has stronger formal properties the new
calculus is better suited for certain applications in robot navigation.

2 Qualitative Representation of Relative Position

Positional calculi are influenced by results of psycholinguistic research in the field of
reference systems. These findings are presented by Thora Tenbrink in the article of
Moratz, Tenbrink, Fischer, and Bateman in this volume [Moratz et al., 2002]. The results
point to three different options to give qualitative descriptions of spatial arrangements
of objects which are labeled by Levinson [Levinson, 1996] asintrinsic, relative, and
absolute.

We can find examples for all three options of reference systems in the QSR liter-
ature. An intrinsic reference system was used in the dipole calculus [Schlieder, 1995],
[Moratz et al., 2000]. Relative reference systems in QSR were introduced by Freksa
[Freksa, 1992]. Andrew Frank’s cardinal direction calculus corresponds to an absolute
reference system [Frank, 1991], [Ligozat, 1998].

Qualitative position calculi can be viewed as computational models for projective
relations in relative reference systems. To model projective relations (like “left”, “right”,
“front”, “back”) in relative reference systems, all objects are mapped onto the planeD.
The mapping of an objectO onto the planeD is calledpD(O). The centerµ of this area
can be used as point-like representationO′ of the objectO: O′ = µ(pD(O)). Using this
abstraction we will henceforth consider only point-like objects in the 2D-plane.

Figure 1 shows a simple model for the left/right-dichotomy in a relative reference
system given byorigin and relatum (corresponing to Levinsons terminology). Origin
and relatum define the reference axis. It partitions the surrounding space in a left/right-
dichotomy. The spatial relation between the reference system and thereferentis then
described by naming the part of the partition in which the referent lies. In the configura-
tion depicted in Figure 1 the referent lies to theleft1 of the relatum as viewed from the
origin.

This scheme ignores configurations in which the referent is positioned on the ref-
erence axis. Freksa [Freksa, 1992] used a partition that splits these configurations into
three sets: the referent then is either behind the relatum, at the same position like the
relatum or in front of the relatum. Ligozat [Ligozat, 1993] subdivided the arrangements
with the relatum or in front of the relatum in the cases where the referent is between
relatum and origin, at the same position as the origin, or behind the origin. We obtain
then the partion shown on Figure 2. Ligozat calls this calculus the flip-flop calculus. For
a compact notation we use abbreviations as relation symbols.

ForA, B, andC as origin, relatum, and referent, Figure 3 shows point configurations
and their qualitative descriptions, respectively. Isli and Moratz [Isli and Moratz, 1999]
introduced two additional configurations in which origin and relatum have exactly the

1 The natural language terms used here are meant to improve the readability of the paper. For
issues of using QSR representations for modeling natural language expressions please refer to
the article of Moratz, Tenbrink, Fischer and Bateman in this volume [Moratz et al., 2002].
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left

right

origin relatum

referent

Fig. 1.The left/right-dichotomy in a relative reference system

same as origin (so) same as relatum (sr)

behind origin (bo) front (fr)

left (le)

right (ri)

back (ba)

Fig. 2.Adding relations for referents on the reference axis

same location. In one of the configurations the referent has a different location, this rela-
tion is calleddou (for double point). The configuration with all three points at the same
location is calledtri (for triple point). A system of qualitative relations which describe
all the configurations of the domain and do not overlap is called jointly exhaustive and
pairwise disjoint (JEPD).

The simple flip-flop calculus models “front” and “back” only as linear acceptance re-
gions. Vorwerg et al. [Vorwerg et al., 1997] showed empirically that a cognitive adequate
model for projective regions needs acceptance regions for “front” and “back” which have
a similar extent as “left” and “right”. Freksa’s single cross calculus [Freksa, 1992] has
this feature (see Figure 4). The front region consists of “left/front” and “right/front”,
the left region consists of “left/front” and “left/back”. The intersection of both regions
models the left/front relation.

The calculus we will now present is derived from the single cross calculus but makes
finer distinctions. These finer distinctions are motivated by the application scenario
dealing with route graphs presented at the end of our paper. The partition of the calculus
is shown in Figure 5.

The letters f, b, l, r, s, d, c stand for front, back, left, right, straight, distant, close,
respectively. The terms front, back, etc. are given for mnemonic purposes. The use
of the TPCC relations in natural language applications is shown in this volume in an
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BCAA

A, B ri C A, B fr C A, B tri C

B
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C
A

Fig. 3. Examples of point configurations and their expressions in the flip-flop calculus. We use
an infix notation where the reference system consisting of origin and relatum is in front of the
relation symbol and the referent is behind the relation symbol.

left/front

right/front right/back

left/back

Fig. 4.The single cross calculus
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Fig. 5.The reference system used by the TPCC calculus
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article by Moratz, Tenbrink, Fischer and Bateman [Moratz et al., 2002]. They use the
TPCC relations for natural human robot interaction. The configuration in which the
referent is at the same position as the relatum is calledsam (for “same location”). The
two special configurations in which origin and relatum have the same locationdou, tri
are also base relations of this calculus. This system of qualitative spatial relations and
the inference rules described in the next section is calledTernary Point Configuration
Calculus(TPCC). To give a precise, formal definition of the relations we describe the
corresponding geometric configurations on the basis of a Cartesian coordinate system
represented byR2. First we define the special cases forA = (xA, yA), B = (xB , yB)
andC = (xC , yC).

A, B dou C := xA = xB ∧ yA = yB ∧ (xC �= xA ∨ yC �= yA)
A, B tri C := xA = xB = xC ∧ yA = yB = yC

For the cases withA �= B we define a relative radiusrA,B,C and a relative angle
φA,B,C :

rA,B,C :=

√
(xC − xB)2 + (yC − yB)2√
(xB − xA)2 + (yB − yA)2

φA,B,C := tan−1 yC − yB

xC − xB
− tan−1 yB − yA

xB − xA

Then we have the following spatial relations:

A, B sam C := rA,B,C = 0
A, B csb C := 0 < rA,B,C < 1 ∧ φA,B,C = 0
A, B dsb C := 1 ≤ rA,B,C ∧ φA,B,C = 0
A, B clb C := 0 < rA,B,C < 1 ∧ 0 < φA,B,C ≤ π/4
A, B dlb C := 1 ≤ rA,B,C ∧ 0 < φA,B,C ≤ π/4
A, B cbl C := 0 < rA,B,C < 1 ∧ π/4 < φA,B,C < π/2
A, B dbl C := 1 ≤ rA,B,C ∧ π/4 < φA,B,C < π/2
A, B csl C := 0 < rA,B,C < 1 ∧ φA,B,C = π/2
A, B dsl C := 1 ≤ rA,B,C ∧ φA,B,C = π/2
A, B cfl C := 0 < rA,B,C < 1 ∧ 1/2 π < φA,B,C < 3/4 π

A, B dfl C := 1 ≤ rA,B,C ∧ 1/2 π < φA,B,C < 3/4 π

A, B clf C := 0 < rA,B,C < 1 ∧ 3/4 π ≤ φA,B,C < π

A, B dlf C := 1 ≤ rA,B,C ∧ 3/4 π ≤ φA,B,C < π

A, B csf C := 0 < rA,B,C < 1 ∧ φA,B,C = π

A, B dsf C := 1 ≤ rA,B,C ∧ φA,B,C = π

A, B crf C := 0 < rA,B,C < 1 ∧ π < φA,B,C ≤ 5/4 π

A, B drf C := 1 ≤ rA,B,C ∧ π < φA,B,C ≤ 5/4 π
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A, B cfr C := 0 < rA,B,C < 1 ∧ 5/4 π < φA,B,C < 3/2 π

A, B dfr C := 1 ≤ rA,B,C ∧ 5/4 π < φA,B,C < 3/2 π

A, B csr C := 0 < rA,B,C < 1 ∧ φA,B,C = 3/2 π

A, B dsr C := 1 ≤ rA,B,C ∧ φA,B,C = 3/2 π

A, B cbr C := 0 < rA,B,C < 1 ∧ 3/2 π < φA,B,C < 7/4 π

A, B dbr C := 1 ≤ rA,B,C ∧ 3/2 π < φA,B,C < 7/4 π

A, B crb C := 0 < rA,B,C < 1 ∧ 7/4 π ≤ φA,B,C < 2 π

A, B drb C := 1 ≤ rA,B,C ∧ 7/4 π ≤ φA,B,C < 2 π

There are cases in which we only have coarser spatial knowledge or in which we are at
the border of a segment of the partition and cannot decide safely due to measurement
errors. Then we use sets of the above defined relations to denote disjunctions of rela-
tions. Figure 6 shows a situation where it is not sensible to decide visually between the
alternativesA, B clbC andA, B cblC. Such a configuration is described by the relation
A, B (cbl, clb)C.

A

C

A, B (cbl, clb) C

B

Fig. 6.Coarser spatial knowlege

3 Deductive Reasoning about Relative Positional Information

In the last section we defined relations between triples of points on the 2D-plane. Now
we define a set of unary and binary operations that allow to deduce new relations about
point sets from given relations about these points. Unary operations (transformations) use
relations about three points to deduce a relation which holds for a permuted sequence
of the same points. Binary operations (compositions) deduce information from two
relations which have two points in common (the set consists of four points). The result
then is a relation about one of the common points and the two other points.

3.1 Permutations

Because we have three arguments, we have 3! = 6 possible ways of arrang-
ing the arguments for a transformation. Following Zimmermann and Freksa
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[Zimmermann and Freksa, 1996] we use the following terminology and symbols to refer
to these permutations of the arguments (a,b : c):

term symbolarguments
identical Id a,b : c
inversion Inv b,a : c
short cut Sc a,c : b
inverse short cutSci c,a : b
homing Hm b,c : a
inverse homingHmi c,b : a

The transformation tables for the flip-flop calculus are presented in Isli and Moratz
[Isli and Moratz, 1999]. We therefore present here only the transformation table for the
TPCC calculus on table 8. In contrast to the flip-flop calculus the TPCC calculus is
not closed under the transformations. That means that results of a transformation can
constitute proper subsets of the base relations. Since we need many sets of relations as
results of transformed relations we introduce here an iconic notation of the relations
which makes the presentation more compact:

dsl

csl

dfl

dlf cfl

dbl

dlb

drf
crf

dfr

cfr

dsr dbr

drb

clf

crb
cbr

clb
cbl

csr

sam csb dsbdsf csf

Fig. 7. Iconic Representation for TPCC-Relations

The segments corresponding to a relation are presented as filled segments. Unions
of relation then simply have several segments filled. The reference axis and the dividing
lines between left, right, front and back are also presented in the icon to make the
visual identification of the relation symbol easier. The iconic representation is easier to
translate into its semantic content (the denoted spatial point configuration) compared
with a representation that uses the textual relation symbol. And unions can be expressed
in a compact way.
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dou

dou

HM

SCI

SC

INV

ID

HMI

Fig. 8.Permutation Table for TPCC-Relations

In order to reduce the size of the table trivial cases fordou and tri are omitted.
Symmetric cases can be derived using a reflection operation (reflection on an axis). The
results ofSc(dsf) andSci(dsf) also includedou as a result.

3.2 Composition

With ternary relations, one can think of different ways of composing them. However
there are only a few ways to compose them in a way such that we can use it for enforcing
local consistency [Scivos and Nebel, 2001]. In trying to generalize the path-consistency
algorithm [Montanari, 1974], we want to enforce 4-consistency [Isli and Cohn, 2000].
We use the following (strong) composition operation:

∀A, B, D : A, B (r1 � r2)D ↔ ∃C : A, B (r1)C ∧B, C (r2)D

The composition table for the flip-flop calculus is presented in Isli and Moratz
[Isli and Moratz, 1999].

Unfortunately, the TPCC calculus is not closed under strong composition. For that
reason we can not directly enforce 4-consistency. But we can define a weak composition
operationr1✸r2 of two relationsr1 andr2. It is the most specific relation such that:

∀A, B, D : A, B (r1✸r2)D ← ∃C : A, B (r1)C ∧B, C (r2)D

While using the weak composition we can not enforce 4-consistency we still get use-
full inferences. We use this weak composition for inferences in the application scenario
in section 4.

The table for weak composition of TPCC relations is shown in figure 9. The first
operand determines the row, the second operand the column. Again the table omits
entries which can be found by reflection in order to reduce the size of the table. And the
trivial cases fordou andtri are omitted.
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Fig. 9.Composition of TPCC-Relations
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3.3 Constraint-Based Reasoning

The standard method for reasoning with relation algebras is to use Ladkin and Reine-
feld’s algorithm [Ladkin and Reinefeld, 1992] that uses backtracking employing the
path-consistency algorithm as forward checking method. This scheme was extended
by Isli and Cohn [Isli and Cohn, 2000] for ternary relation algebras. It can then easily
be applied to the flip-flop calculus.

A prerequisite to using the standard constraint algorithms is to express the calculi in
terms of relation algebras in the sense of Tarski [Ladkin and Maddux, 1994]. But since
the TPCC-Calculus is not closed under the transformations and under the composition
we can not use this scheme. However, simple path-based inferences can be performed
using the following scheme. The two last relations of a path are composed. Then the
reference system is incrementally moved towards the beginning of the path in form of a
backward chaining.

For the detection of cyclic paths a reference system consisting of a path segment in
the middle of the path is appropriate. Then the relative position of the points in both
directions is derived and compared using an inversion operation (see appendix A for an
example).

It can be proven that reasoning with the TPCC relations is inPSPACE. The idea of the
proof sketch is as follows. The algebraic semantics of the relations implies that reasoning
problems in the TPCC calculus can be expressed as equalities over polynomials with
integer coefficients. Systems of such equalities can be solved using polynomial space
[Renegar, 1992].

4 Path-Based Reasoning in Route Graphs

The flip-flop calculus and the TPCC calculus can be used to integrate local and survey
knowledge about the spatial environment of an agent. Local knowledge can be sensor-
ically acquired from one fixed point in space. Survey knowledge is an abstraction that
integrates a number of local perceptions into a coherent whole. The local perceptions are
typically acquired in a sequence during an exploration process. The accumulated local
assessments of qualitative configurations have local frames of reference. The integration
process needs to reason about the position of the salient objects in a global reference.
Path integration can serve as a means to achieve the accumulation of local orientation in-
formation. The problem of detecting cyclic paths in a route graph is a sample application
which we present to compare the coarse and the finer calculus in a typical application
scenario.

From a qualitative viewpoint a path can be viewed as a sequence of qualitative
positions. The positions are discriminated with respect to the environment. Therefore
both calculi can be used to describe and to reason about paths. Qualitative positional
reasoning about paths is used for robot navigation in the approach of Sogo and in the
approach of Musto [Sogo et al., 1999] [Musto et al., 1999]. In our sample application
the environment consists of a route graph [Werner et al., 1998]. The task is to derive a
global map from locally perceived information. Reasoning from perceived local spatial
arrangements about the underlying global layout of an environment is a form of abductive
reasoning [Remolina and Kuipers, 2001] [Shanahan, 1996].
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D G1
A

B

G2

C

t0

t1

t2

t3

R2

R1

R3

G3

Fig. 10.A route graph

We focus here on a deductive subproblem. The problem is to decide whether two
landmarks reached during an exploration can be identical due to a cyle in the path.
The observations are collected at timepoints t0, t1, t2 and t3 (see figure 10). The local
observations are expressed in both calculi. Then we test which landmarks G1 perceived
from A, G2, G1 perceived from t3 and R1, R2 can be deduced to be distinct. The
observations and the deductive inferences are listed in appendix A.

The result is that both calculi can deduce that G1 and G2 are distinct. Both calculi
are correct and therefore do not deduce that G1 perceived from A and G1 perceived
from t3 are distinct. But only the TPCC calculus can deduce that R1 and R2 are distinct.
Using the same reasoning scheme the TPCC calculus can also deduce that R1 and R3
are distinct which needs not only orientation but also distance-based reasoning. This
example shows that differentiations which are useful in realistic application scenarios
are supported by the new TPCC calculus. These finer (but still coarse) distinctions can
not be dealt with in the mathematically more elegant flip-flop calculus.

There are applications in which even finer qualitative acceptance areas are helpful.
The techniques described here can still be used. But there is obviously no way to design
icons that can express these finer distinctions. And the computation of the composition
table can become difficult. Then an approximation of the composition results can be
used. The possibility to use even finer qualitative distinctions can be viewed as a stepwise
transition to quantitative knowledge which is the topic of the next subsection.

4.1 Comparison with a Quantitative Approach
for Interval-Based Spatial Reasoning

The simplest and most common strategy to deal with coarse knowledge is to treat it
as if it were precise metrical knowledge. Then the user has to rely on his good luck
that all derived conclusions are valid. Compared to that unsafe approach qualitative
spatial reasoning issafebecause it only derives correct information as long as the input
information as correct. This technical argument for QSR leads to the question whether
QSR is the only way to do safe spatial reasoning. In scalar or one-dimensional domains
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max
rmin

r

Reference
Point

Reference
Direction

max

min

Fig. 11.A distance/orientation-interval and its parameters

interval-based reasoning serves the purpose of a safe quantitative alternative to qualitative
reasoning. Therefore we now present a straightfoward quantitative approach which is
based on distance/orientation-intervals.

A distance/orientation-interval (DOI) uses a point and a reference direction as anchor
and has four additional parametersrmin, rmax, φmin andφmax (see figure 11).

These quantitative intervals can be propagated along pathes analogous to the quali-
tative counterparts. The respective reference directions then are determined by adjacent
points on the path. The technical details of the interval propagation can be found in
[Moratz, in preparation] . The quantitative calculus can solve all presented problems of
the last section about the route graph when the observed intervals are sufficiently small.

Now we look at an example were we need a more expressive calculus. In the route
graph depicted on figure 12 an agent travels fromD to E via A, B, C. We model
the perception of the agent like in the previous example. The agent can only perceive
locations to which a direct straight link exits. Then it can not use the propagation of
measured intervals to distinguish betweenD andE if the distance betweenD andE is
sufficiently small.

D G1

B

C

t2

A

E FG2

Fig. 12.Reasoning about the absence of features

We need to represent the information that seen fromD toA there is no road junction
at a direction differing fromA. Because QSR can be seen as reasoning about space
within first order logic [Isli and Cohn, 2000] [Renz and Nebel, 1999] we havenegation,
disjuctionandconjunctionalready built in. So we can use the TPCC-Calculus to express
our knowledge about the absence of a feature:
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∀x∈J,g∈G ¬ ((g, D x) ∧ cn(E, g) ∧ cn(E, x))

The symbolcn stands for the predicateconnected(via a direct straight link).J ist
the set of all road junctions,G is the set of all green landmarks. Adding this logical
constraint to the observations we can distingish the road junctionsD andE. We can
not express this in the quantitative calculus because we have no logical operations. To
extend a quantitative calculus in that direction is not a trivial task and would make it
much more complex.

5 Conclusion and Perspective

We presented the new TPCC calculus for representing and reasoning about qualitative
relative position information. We identified a system of 27 atomic relations between
points and computed the composition table based on their algebraic semantics, which
allows to apply constraint-based reasoning methods. It was demonstrated that reason-
ing with the TPCC relations is inPSPACE. Potential applications of the calculus are
demonstrated with a small navigation example in route graphs.

In a comparison with a coarser calculus known in the literature we noticed that
helpful mathematical properties are unfortunately not satisfied by the TPCC calculus.
It is a matter of further studies how the framework of constraint satisfaction especially
with respect to path consistency can be transferred to the new calculus.

Acknowledgement

The authors would like to thank Amar Isli, Jochen Renz, Alexander Scivos and Thora
Tenbrink for interesting and helpful discussions related to the topic of the paper. And we
would like to thank Sven Kr̈oger for computing the composition table. This work was
supported by the DFG priority program on Spatial Cognition.

References

Clementini et al., 1997. Clementini, E., Di Felice, P., and Hernandez, D. (1997). Qualitative rep-
resenation of positional information.Artificial Intelligence, 95:317–356.

Cohn, 1997. Cohn, A. (1997). Qualitative spatial representation and reasoning techniques. In
Brewka, G., Habel, C., and Nebel, B., editors,KI-97: Advances in Artificial Intelligence,
Lecture Notes in Artificial Intelligence, pages 1–30. Springer-Verlag, Berlin.

Frank, 1991. Frank, A. (1991). Qualitative spatial reasoning with cardinal directions. InProceed-
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Appendix A: Inferences for the Route Graph Example

First we use the flip-flop calculus for representation and reasoning in the route graph
example. We have the following observations at timepointst:

t0 : e2(B), e1(A) ri g1(G1) (1)

t1 : e3(C), e2(B) ri e1(A) (2)

t1 : e1(A), e2(B) ri g2(G2) (3)

t2 : e2(B), e3(C) le e4(D) (4)

t3 : e3(C), e4(D) le g3(G1) (5)

The observed crossing points are denotede1, e2, e3, e4. The corresponding points on
figure 10 are appended in brackets. Please note that landmarkG1 gets a new internal
labelg3 by the exploring agent when observed the second time. Using these observations
we make the following inferences on a syntactical basis using the operations defined in
section 3:

We apply the inversion tranform to equation (1):

e1(A), e2(B) le g1(G1) (6)

Now we test whetherg1 and g2 can be the same landmark. Therefore we make
the assumption thatg1 andg2 are the same point. The intersection operation between
qualitative spatial relations about the same points is simply the set theoretic intersection
about the sets of atomic relations associated with each of the two relations. Since we
made the assumption thatg1 andg2 are the same we can apply the intersection operation
an equations (3) and (6). The intersection is empty. The empty set as qualitative spatial
relation corresponds semantically to an impossible spatial arrangement of points. Then
we can deduce a contradiction from our assumption thatg1 andg2 are the same point.
It follows thatg2 is different fromg1.

For comparism we use the TPCC calculus for the same example. The observations
and the inferences are:
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t1:     e3 (C) , e2 (B)           e1(A)                    (2)

t2:     e2 (B) , e3 (C)           e4(D)                    (4)

t3:     e3 (C) , e4 (D)           g3(G1)                  (5)

t0:     e2 (B) , e1 (A)           g1(G1)                  (1)

t1:     e1 (A) , e2 (B)           g2(G2)                 (3)

(1)    
inversion

(7)

(4), (5)                        
composition

composition

e1 (A) , e2 (B)           g1(G1)     (6)

(2), (1)                         e3 (C) , e2 (B)           g1(G1)      (7)

empty intersection

(8), (9)                         g3 potentially identical with g1
non−empty intersection

inversion

 e2 (B) , e3 (C)           g1(G1)      (9)

 e2 (B) , e3 (C)           g3(G1)       (8)

(3), (6)                         g2 different from g1
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