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LINGUISTIC DESCRIFTION OF HUMAN JUDGMENTS
IN EXPERT SYSTEMS AND IN THE ‘SOFT’ SCIENCES

Christian Freksa
Department of Biostatistics
Max Planck Institute for Psychiatry
Munieh:, West Germany

A fuzzy—linguistic tool for the representation and analysis of human
Judgments in expert systems and in the ’‘soft’ sciences is presented. The
approach is motivated by fundamental differences between measurements as
they are performed in the ‘hard’ sciences and Jjudgments which form the
basis for decisions in the ‘soft’ sciences. These differences suggest a
representation for human judgments which preserves their fuzziness
instead of a representation in terms of the ‘“measurement and error"

paradigm used in the hard sciences. The paper explains why such a
representation not only is more natural to wuse but also yields more
reliable results. Finally, the interactive construction of semantic

.representations of linguistic descripteors from examples is discussed.

KEYWORDS: linguistic descripters, soft data representation, possibility
distributions, cognitive modelling, information granularity

1~ INTRDDUCTIDN which can be constructed such that they
are free of errovs. It may not be
Research and expert areas like meaningful to think of an error of a
psychology, medicine, Jjurisdiction, etc. soft Jjudgment the same way as of an
deal with ‘soft’ data L[COLLINS et al.. error of a hard measurement.
1975; SKALA, 1978; ZADEH, 1979b]. These
data result from a different type of By developing adequate representations
interpretation process than ‘hard’ data of observations or Judgment§ we may be
in classical physics, chemistry, or able to take advan?age of thglr 1nhe?ent
engineering. Nevertheless,  the same properties, - spechxcal}g imprecision.
research methodology is being wused ¢to fuzziness: and variable . feature
process data of both types. The reason resolution [13. These properties appear
for this must be an implicit assumption disadvantageous in the “measuremept and
that both kinds of data are of the same error* parvadigm mhichti:.conve:tlo:allq
nature, i.e.. have the same conceptual used for the interpretation o obser~—
framework, and therefore should be vations fe.g. GUFLIKSEN & MEBSIQK.
analyzed by the same methods. 19601, A Fuzzq—lingu1st1? represeptgt%on
. in terms of simplified possibility
This paper compares the concepts ‘data- distributions [FREKSA, ] 1931] . is
¥ driven measurement’ and ‘goal-driven proposed. This representat1op is suited
: judgment’ C[NORMAN % RUMELHART, 1975 for the type of ] operat19ns that
@ NILSSON, 19801 by investigating their observations are suited for 1n.nat9ral
o .underlying pTroCcesses., Occasionally. cognition systems: communication,
- thes¢e notions will be abbreviated in the comparison, and judgment.
following by. ‘measurement’ and ‘judg-— o ]
ment’, . respectively. The paper argues We will point to empirical resu?t; which
that- observation data may have suggest that more naturgl (speczflcgl%g:
fundamentally different semantics linguistic) representatlops of cogn1t1ve
depending on the structure of their abservations yield moTe informative aqd
interpretation processes and should be reliable interpreta?lons than ttadz—
represented and interpreted accordingly. tional arithmomorphic representat10n§.
While data-driven processes yield point We will demonstratg_ §ow_ seman?;c
data which are to be interpreted with representations oF. 11ngu1st1c_descr1p~
certain error - tolerances, goal-driven tors L[2) for cognitive obseryat1ons can
interpretation - prOCesses. yield be constructed interactively from

possibility distributions [ZADEH, 19781 - examples.
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2. DATA-DRIVEN AND GOAL-DRIVEN OBSER-
VATIONS

We will contrast two extreme examples of
a purely data-driven and of a purely
goal-driven observation process for our
analysis. In these examples, we consider
some phenomenon that is to be observed
by some device. In the first case, this
device is a measuring instrument, in the
second case, it is a human observer.

2.1 Examples

EXAMPLE 1: Measurement process in the
hard sciences.

Consider the function of a voltmeter.
The physical dimension "voltage" may be
interpreted in terms of elactrical
current that flows in a given conductor.
The current causes a magnetic field
which results in a physical force which
displaces the needle of a voltmeter.

The displacement of <the needle is an
indication of the voltage at the
instrument. The instrument yields a
peint wvalue, i.e., the needle points at
one particular position for a given
voltage. A physical model relates each
needle position to an input voltage at
the meter. The position value of the
needle therefore can be interpreted as
an indication of the voltage. It must be
considered an approximation of the
actfuval voltage since certain factors
influencing the correspondence between
voltage and needle displacement have
been ignored in the model (e. g.
mechanical #riction in the instrument,
influence of magnetic field of the
earth, etc. ). The effect of these
factors, however, can be estimated and
the error range of the approximation can
be determined.

EXAMPLE 2: Judgment process in the soft
sciences.

Now consider psychological rating of a
continuous quantity, say the degree of
well-being of a person. This quantity is
not functionally determined in terms of
well~defined parameters as in the case
of the voltmeter. Nevertheless, no one
‘would argue that we have a definite
perception of degree of well-being both
for ourselves and for other beings.. In
certain sitvations we may be able to
distinguish minute differences in
well-being reliably, in other situvations

we can make only coarse distinctions. -

The outcome of an observation may be a
linguistic description like "today she
feels better than yesterday", "this

feels good", "this is slightly worse",
etc.

The description of the observation is an
indication of the degree of well-being
of the observed person. The resolution
(or relative precision [131) of the
observation depends not only on the
observer (the instrument) but also on
the information on which his judgment is

based. The observation process yields a
restricted range of possible states of
well—~being in form of a linguistic

description. A heuristic model relates
each description to a range of possible
states. Although certain indicators for
the state of well-being could not be
taken into account the description may
be & correct indication of the person’s
state of well-being; additional
information could have refined the
answer and thus could have further
restricted the range of possible states
of well-being.

We may view human judgments as cognitive
processes which depend on limited data
and resources -- input information,
processing power, memory -— and thus may
operate with fluctuating resolution
[NORMAN % BOBROW, 19751.

2.2 Analysis

The two examples exhibit two different
processes for feature evalvation

Physical measuring devices like wvolt-
meters generate measurement values by
physical analogy or simulation and yield
point values corresponding to the single
values they simulate. The measurement is
a purely data-driven process L[LINDSAY %
NORMAN, 19771].

Resource-limited cognitive observation
processes are goal-driven interpretation
processes and do not generate values by
functional simulation; they interpret
sensory data by collecting evidence for

a Jjudgment. The more evidence they
collect the finer {preciser? their
Judgment. In case of determining the

state of well-being, a cognitive
observation process initially (without
any evidence) would judge "I don’t know"
which means all states of well-being are
considered possible. The more informa-
tion the observer gathers during the
observation process, the more he may be
able fo refine his answer by restricting
the range of possibilities down to a
level at which no helpful information
can be gathered which would modify or
refine the judgment [33.

The difference in the type of ouvtcome is
a result of the different direction of
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information processing: the data-driven
process synthesizes & result from basic
entities; the goal—driven process
decomposes an undifferentiated whole
into more specific, but still coarse

components. In a sense, the final
outcome of the observation process is
atomic, i.e., it cannot be refined -— at

least not by this particular observer in
the particular situation. The precision
of this observation should not determine
the resolution of the representing
scale. however, since other observers
and/or other situations may allow for a
finer Jjudgment. The observation may be
said to corrvespond to a ‘granule’ rather
than to a point on a fine scale C[ZADEH,
197%a1l.

Since the interpretation process does
not. yield a single point value but a
range of possible -values, it is not
meaningful to speak of a judgment ervor
in the sense of a measurement error
because of the incompleteness of the
utilized information. Data~driven
measuvements per se may be precise but
erroneous while goal-driven judgments
may be correct despite (or: due to)
their inherent imprecision. They only
become incovrrect if the observed feature
value is outside the scope of values
represented by the descriptor.

To vround off the comparison with a
data-driven measuring process, the
cognitive Jjudgment process outlined
above  would correspond ¢o a change of
shape of the needle of the measuring
device: initislly the needle would cover
the entire range of the scale of the
meter ("don’t know the voltage"). During
the observation process, the needle
would become narrower, restricting the
possibilities of the actual voltage at
the meter, This cannaot happen in
analogue simulation - processes since
certain information is required to give
a meaningful reading and additional
information 1is not helpful for refining
the measurement. The effect achieved by
narrowing the needle can be achieved by
widening the srale, of course, In
practice, voltage measuring processes
are frequently supervised by a cognitive
process which selects the scale: if we
do not know the order of magnitude of
the wvoltage to be measured, we will
first select the largest meter range to
obtain an approximate reading. Then we
will restrict the range and expand the
scale to obtain a more precise reading.

2, 3 Summary
In summary, a physical measurement

obtained by an  analogue simulation

process yields a point
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value which may

be interpreted as an approximation %o
some actual value, while a goal-driven
cognitive interpretation process yields
a range of possible point values. The
precision of +this interpretation is
limited by the resources available +to

the judgment process.

In view of this

fact it seems absurd to force imprecise
observations into precise representa-—

tions and in doing so,

adding errors to

the results. It appears desirable to

represent observations

at the level of

precision that has been obtained by the

underlying observation

process  and to

represent them error-free.

3. COGNITIVE ASPECTS OF OBSERVATIONS

If we want to represent
human observers, we sh
cognifive process which
perception +to the des

observations of
ould cansider the
leads  from the
cviption by which

the observation is communicated. We can

view the process
describing, and i
phenomenon as a chain o
on cognitive represen
observed phenomenon.

3.1 Chain of cognitive
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ted point values, the effort would be
eNOTMOUS. To be able to represent an
obyect with reasonable effort using
limited Tresources, the information must
be reduced. It will not be possible to
recover the features completely from
their description alone. However, if the
description serves ¢to select an object
from a given context (i.e., the possible
outcomes are not densly distributed),
‘good’ feature descriptors need not
represent the obgject features as
precisely as possible, they only need to
be able to discriminate between feature
values that exist in the given context

The context then provides the additional
information for object identification.

3.2 Consequences for the representation

The first transformation occurs in the
perception process: due to limited
resolution of any perception system only
a limited number of feature values can
be distinguished. Thus, a perceived
ob ject feature cannot be adequately
represented by a point on a high-
resolution feature scale but rather by
an interval which takes into account the
granularity of +the observation [ZADEH,
197%a1.

Limited resolution also implies that the
"observation granules"”, i.e. the integ-
vals which represent the observations.,
cannot have sharp boundaries. Therefore,

the observation granules should be
represented by fuzzy rather than by
cnisp intervals. To simplify the

specification of -such intervals, we may

object feature value-.\\\

define fuzzy categories for the
classification of the observations

As a consequence of the granularity -—-
which is inherent in any observation of
phenomena in continuous feature spaces
~~ it is impossible to reliably classify
arbitrary observations into single
ctategories, whether the categories are
crisp or fuzzy. Observation granules may
overlap the boundary of a category. For
this reason, their representation must
allow for simultaneous assignment of
several neighboring categories if all
ob ject feature values which are
consistent with the observation are +to
be accounted for.

If we use crisp categories, the feature
resolution cannot exceed half +the
resolution of the category itself
(compare sampling theorem). If we use
fuzzy categories, however, we can regain
precision by a more differentiated
assignment of categories. For example,
we may be able to indicate whether a
given category is

1. definitely applicable,
2. definitely not applicable, or

3. neither definitely applicable nor
definitely inapplicable

In this way: the position of the
observation granule on the feature scale
can be recovered more fully. Fig. 2
depicts the classification of an
observation granule into crisp and inte
fuzzy categaries.

feature dimension

"observation granule"

e 30|
| l l W l crisp feature categories
] 1 i ; : \ }

———mmrf

| |
. s referenced feature ranges

9.0

Fig. 2

fuzzy feature categories

NLITALILWLADD,
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3.3 Iransformations in natural systems’

We return to Fig. 1 which shows the
description generation process as a
chain of transformations on information
about obgyect features. The first
transformation shown (from ‘“object® to
“percept") corresponds to the segmenta-—
tion of ‘input information for the
perception system, e.g. into visual om
auditory channels. This transformation
has been studied anatomically and
neurophysiologically for various senses
in various animals and a great deal is
known about its properties [e.g. LETTVIN
et al., 19591

The second %ransformation (from ‘“per-—
cept"” to "mental description®) corres-—
ponds to the mental organization of this
information in memory. Presently, this
transformation is the subject of much
speculation [e.g. MINSKY, 19801, but
very little is actually knouwn.

The third transformation (from “"mental
description" to "verbal description®) is
of particular interest in this paper.
Since we do not know the structure of

the mental description, we cannot
evaluate this <transformation directly.
However, we can study some of its

properfies by analyzing the correspon—
dence betiween different descriptions of
features of the observed obgject.. In
particular, we can examine the
consistency between various verbal
descriptions of the same features. The
degree of inconsistency between those
descriptions gives us an indication of
the distortion introduced into the
information during the cognitive
perception process. The verbalizations
which introduce the least amount of
distortion are suited best to recover
the observed object feature

4. COMPARISON OF THREE REPRESENTATION

SCHEMES

4.1 Goal

To illustrate different degrees of
distortions which we may get by
different representation schemes, we
describe a simple empirical experiment
which will be reported in detail
elsewhere, In this experiment we
compared three cognitively processed
description types with feature measure-
ments, namely of the height of persons
[41. The experiment consisted of three
independent parts. 23 medical students
were asked to judge the height of their
colleagues by various methods. The

"obyects" of observation were asked in
non-systematic order to present
themselves in front of the observers
(the remaining 22 students). The
observers noted their judgment of ¢the
height on a prepared sheeft containing
the names of the "obgjects".

4.2 Experiment

PART 1: The observers were asked ¢to
estimate the height of the objects in
centimeters.

PART 2: The observers were asked %o
indicate four values (in centimeters) to
express their judgment:

1. the minimum height value  which
they considered possible as an
estimate of the actual value;

2. a pair of two height wvalues +to
specify a range in which they
expected the actual height value
to be;

3. the. maximum height wvalue which
they considered possible as an
estimate of the actual value.

PART 3: The observers were asked ¢to
select from an ordered vocabulary of
seven terms (very small, small, rather
small, medium, rather tall, tall. very
tall), all those terms which described
appropriately the actual height of the
“ob jects". In case they selected several
terms they could indicate preferences of
some terms over others.

After completion of these judgments, the
height of the objects was measured (in
centimeters) conventionally.

4.3 Results

In part 1 of the experiment: the maximum
mis—-judgments of the observers ranged
between 8 and 13 centimeters. The
mis~judgments were non-systematic, i.e.,
all observers sometimes overestimated
and sometimes underestimated the actual
height in a given wvicinity of height
values.

Part 2 of the experiment did not yield
better results. . Most observers
apparently did not have a good feeling
for the accuracy and precision of their
own centimeter jJjudgments. Frequently.
the ‘observers overestimated their
ability by indicating too narrouw
possibility ranges for the height valvue.
In many instances, the measured height
value +fell into the ranges which were
considered entirely impossible by the
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observers.

Part 3 of the experiment avoided +the
problem of erroneous label assignment by
letting the labels denote just what the
ocbserver wused it for. But surprisingly,
the ranges of referenced height valvues

rarely became larger than for the
centimeter labels and frequently +he
specificity was even higher. In

addition, by multiple assignment of
labels with overlapping reference ranges
the specificity of a description could
be further increased.

The foregoing experiment shows that
human judgment ability may be better
than it appears from numerically
expressed judgments. I# we allow
observations to be expressed in a more

-appropriate language, higher precision

may be obtained. At first glance, this
may appear contradictory. since a
centimeter scale suggests higher
resolution than a set of seven
linguistic labels for a range of about
40 centimeters. However, by permitting
simultaneous assignment of several
labels we increase rather than decrease
the potential of resolution. In
addition, if these labels are applied in
a more consistent manner than the
centimeter values, they may resolve
specific height values particularly
well.

For interpretation of these results it
may be helpful to consider again the

information transformation model
dgpicted in Fig. 1. The distortion of
information introduced in the third

transformation (mental description to
verbal description) appears to depend on
the +type of verbalization that is used.
Numerical verbalization seems +to let
rather precise observations appear
imprecise, in many observers, while
linguistic verbalizations seem to
preserve more information from these
observers.

We can explain this phenomenon by
‘cognitive distance’. A linguistic
representation of an observation may
require a less complicated trans-—

formation than a numerical representa-
tion, and therefore less distortion may
be introduced in the former than in the
latter [PALMER, 19811. We could say that
the linguistic representation is ‘“cog-
nitively closer” to the mental descrip—
tion than the numerical representation.
This theory is supported by the
impression that the observers can make
linguistic - judgments more spontaneously
than numerical judgments.

3. REPRESENTATION OF SOFT OBSERVATIONS

5.1 Desiderata

On the basis of the arguments brought
forward in the foregoing sections we
develop a representation system for
"soft observations® which should have
the following properties:

1. the resolution of the representa-—
tion should be flexible to account
for varying precision of

individual observations;

2. the boundaries of the representing
objects should not necessarily be
sharp and should be allowed to
overlap with other representing

obgjects;
3. comparison between different
levels of resolution of

representation should be possible;

4. comparison between subjective ob-
servations of different observers
should be possible;

S. the representation should have a
small ‘cognitive distance’ to the
observation;

&. it should be possible to construct
representing objects empirically
rather than from theoretical
considerations. :

5.2 Gimplified possibility distributions

Feature descriptors contain, for the
most part, possibilistic information
[GAINES & WKOHOUT, 1975; ZADEH, 19781.
Thus: a low-resolution descriptor allows
for many possible interpretations while
a high-resolution descriptor restricts
the range of possible interpretations.
Imprecise observations correspond to a
wide range of possibilities while
precise observations correspond to a
comparatively narrow range of possibili-~
ties. Toe allow for unsharp boundaries,
we express the observations by
quadruples representing simplified fuzzy
possibility distributions LFREKSA,
19813, These possibility distributions
are semantic representations . of
linguistic descriptors and can bhe
graphically depicted as shown in Fig. 3:
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}Npossibility
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The interpretation of +the quadruple
(A,B.C.D} is: it is entirely possible
that the actual feature value observed
is in +the range (B,Cl); it may be
possible that the actual value is in %the
ranges [A/ Bl or [£C.D1, but more easily
closer to [B,CJ than further away; an
actual value outside of [A Dl is
incompatible with the observation. [B,C1
is called ‘“core", LA, Bl and EC, D1 are
called “penumbra" of the possibility
distribution.

5.3 Construction of semantic
representations

OQur demand for a ‘cognitively close’
representation of descriptors requires
that the human observer determines the
applicability of a descriptor according
to his intuition-guided judgment. This
is in contrast to the possibility of
defining the meaning of descriptors by
external critevia as is usually done in
applications of fuzzy sets LZADEH,
19701

A consequence of this demand is that
semantic representation of descriptors
will be subjective; each observer may
choose his own ranges of applicability
of a descriptor. At first glance, ¢this
may appear disadvantageous. However, as
~the experiment above suggests, an
external definition would only serve to
introduce errors into +the observation.
Therefore the apparent simplifications
for comparing observations would be paid
for by loss in informativity. For this
reason we prefer subjective semantic
representations which necessitate
semantic translations for inter-observer
comparisons. Such ¢translations are not
very difficult to perform with the
representation scheme we have chosen.

The construction of a repertoire of
semantic representations for linguistic
descriptors is done in the following
way:

1. the observer selects a set of
linguistic labels which allows for
referencing all possible values of
the feature dimension te be
described:;

2. the repertoire of linguistic
labels is arranged linearily or
hierarchically in accordance with
their relative meaning in the
given feature dimensions;

3. a set of examples containing a
representative variety of feature
values in the given feature
dimension is presented to the
observer. The observer marks all
linguistic labels which definitely
apply to the example feature value
with “"yes" and +the labels which
definitely do not apply with "no".
The labels which have not been
marked may be applicable, but to a
lesser extent than the ones marked
llgeslli

4. from the data thus obtained we
construct simplified possibility
distributions by arranging the
example objects according to their
feature values (using the same
criterion +to which the linguistic
labels had been arranged). These
values form the domain for the
assignment of possibility values;

5. fimnally, we assign to a given
label ¢the possibility value “yes"
to the range of examples in . which
the given 1label was marked "yes"
for all examples and the
possibility wvalue ‘'"yes" to the
ranges in which +the given label
was marked "no" for all examples
The break—-off points between the.
regions with possibility wvalue
“no” and "yes"™ are connected by
some continuous, strongly
monotonic function to indicate
that the possibility of label
assignment increases the closer
one gets to the vregion with
possibility assignment "yes®.

/}possibility
1

1 )
| i
1 1
1 1
1 !
1 1
| t
T {

label
0 set
Ll L2 L3 L4 L5 L6 L7 L8 L9&
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6. CONCLUSIONS

We have described some characteristics
of human Judgments, investigated their
cavses, and proposed a method far
representing judgments such that we can
take advantage of these characteristics.
In ¢this last section we will discuss
applications of the system and
extensions being planned. Finally we
will make a short comparison with
related approaches.

6.1 Applications

The meaning representation system
described appears useful for a variety
of applications. First, it is a method
for representing qualitative information
and may aid in developing a semantic
theory of descriptors as well as a
theory of acquisition of imprecise
concepts. Second, it is a +tool for
representing complex data which can be
tharacterized best by humans.

At present, we wuse the approach for
representing psychological judgments in
clinical diagnosis. The method is
suyitable for semantic interpretation of
subjective judgments both by graphical
methods and by an interactive computer
program. The semantic interpretation
leads to an objectivization of
descriptions and may be wuseful for
person ~ machine communication as well
as for person - person communication.

6.2 Interactive meaning adaptation

In an associated project CAGUILAR-MARTIN

& LOPEZ DE MANTARAS, 1982; FREKSA &
LOPEZ DE MANTARAS, 19821 learning
algorithms for interactive meaning

adaptation of linguistic descriptors by
means of examples are being developed

In conjunction with a classification
program. these algorithms will be
helpful for custom tailoring individual
descriptor languages for specific
context situations. MWith the asid of
these algorithms it will be no longer
necessary that different observers wuse

the same vaocabulary for their
descriptions. The denotation of the
different descriptor labels is

determined by the algorithms during a
learning phase.

6.3 Comparison with other approaches

The representation scheme presented
combines advantageous features of a
variefy of -scaling and representation
methods [LINDSAY % NORMAN, 19771

- ease of label association of a
nominal scale;

- ease of comparison of an ordinal

scale;

- meaning consistency of absolute
scale;

- non—-numerical scaling of direct
scale;

- intuitiveness of cross-modality

matching;

- naturalness of natural
approach.

language

From a methodological point of view
fuzzy classification of perceptually
processed information is preferable over
crisp classification. Conventional fuzzy
set approaches use a priori definitions
of fuzzy sets which apply universally
for all observers. The advantage of our
approach is increased consistency due to
subgjectiveness and small cognitive
distance of the representation.
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NOTES

L1] We use the term ‘precision’ as a
measure of relative specificity: a
descriptor is called ‘precise’ if it has
only one denotation in the given
context, and ‘imprecise’ if it allows
for a variety of interpretations

A descriptor is called “‘fyzzy’ if its
applicability varies gradually with
respect to a variation of the reference
feature and ‘gcrisp’ if it is either
fully applicable or fully inapplicable.

‘Variable feature resolution’ refers to
flexibility in the reference range of a
feature descriptor: depending on the
particular situation context, the same
linguistic descriptor may be  taken ¢to
refer to a more specific range of
feature values.
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For more details, see FREKSA (1981).

£23 We use the term ‘descriptor’ if we
refer +to a single feature dimension and
the ferm ‘description’ if we refer to a
general feature space.

[3] This 1is an idealized Judgment
process in which no premature conclusion
is drawn.

£4]1 Height was chosen 1) since it can
easily be measured, 2) since most people
have some experience in judging height,
and 3) since height has served as
standard example in fuzzy set theory
te.g. ZADEH, 1978; BALDWIN, 19791 and
has been wused in other psychological
studies [e.g. HERSH & CARAMAZZA, 19761.
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