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ABSTRACT

This dissertation presents a model for communicating

about objects by means of verbal descriptions. The

functions of verbal descriptions are to assimilate knowledge

about object features and to convey this information to an

interpreter. The interpreter analyzes the object

descriptions in terms of its own semantic model and by

comparison to reference objects.

»

A hierarchy of object description languages IS

developed to demonstrate the advantages of fuzzy languages

for communication in complex environments. There is a

trade-off between crisp and precise languages suitable for

well-defined, small domains, and fuzzy imprecise languages

suitable for ill-defined, complex domains. Messages in a

language of the former type are determined mainly by

»
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definitions of vocabulary and rules which make up the

language. In contrast, messages in a language of the latter

type are determined by the particular domain and context in

which they are used. A fuzzy language does not describe a

particular object or point in a feature space but rather it

describes a subspace of the feature universe. If this

subspace contains only one element in the particular domain

of discourse, the fuzzy description has crisp denotation.

In our model, information about objects is represented

in terms of linguistic symbols which correspond to

possibility distributions over sets of features and by

relations between linguistically expressed feature values.

Possibility distributions and relations can be manipulated

by linguistic operators. It is shown how the chosen object

representations capture imprecise and incomplete knowledge

and how the intended meaning of the description can be

recovered by the interpreter with the aid of the situation

context. The target object is identified by elimination of

alternative possibilities which are found to be in conflict

with the description.

A central theme of this research is that imprecision in

descriptions can be captured by fuzzy possibility

distributions and can be exploited for effective and

efficient communication in complex environments.

Possibility is treated as a graded concept and interpreted

in terms of II ease of making possible". Linguistic
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information processing methods are proposed as an

alternative to numerical approaches. Methods for

interpreting subjective descriptions are suggested.

For interpretation of linguistic descriptions, adequacy

of and agreement between descriptors are distinguished for

determining their compatibility. It is shown how

possibilistic information can be used to give more

informative responses than "yes" and no to retrievalIt It

requests. The role of linguistic modifiers, determiners,

and quantifiers is discussed.

The implementation of L-FUZZY, a dialect of the

AI-language FUZZY is described. L-FUZZY incorporates

linguistic instead of numerical modifiers and directly

represents fuzzy possibility distributions instead of fuzzy

set elements. The response to a retrieval request is

designed to be more informative in this dialect than in

FUZZY. Examples for applications of fuzzy communication are
»

given. The proposed model explains imprecision, ambiguity,

vagueness, and misunderstanding in human communication as

well as richness, adaptabilifcy, double meaning, conciseness,

efficiency, robustness, expressness, and flexibility.

''S .(; .' ^ ^^. ^ ^''T^A-.-t-^
Lotfi A. Zadeh

(chairman of thesis committee)
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CHAPTER 1

COMMUNICATING ABOUT OBJECTS

"Alice opened the door and found that it led into
a small passage, not much larger than a rat-hole:
she knelt down and looked along the passage into

the loveliest garden you ever saw."

(Lewis Carroll: Alice in Wonderland)

"First find the air cleaner. Through 1972 it is a
large round metal black thing with metal clips on
it and thin and fat hoses going to it. . . .

"Look to a little left of the center of the engine
.

and find a brown or black round plastic thing with
five heavy wires sticking out of it. That s the
distributor cap."

(John Muir & Tosh Gregg:
How to keep your Volkswagen alive!
A manual of step by step procedures
for the compleat idiot)

"He was a very tail, thin man with a long nose

like a beak, which jutted out between two keen,
grey eyes, set closely together and sparkling
brightly from behind a pair of gold-rimmed
glasses."

(A. Conan Doyle:
The hound of the Baskervilles)
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.1 Introduction

The descriptions above have in common that they create

ideas about objects in the reader. These ideas are not

complete or crisp enough to enable the reader to reconstruct

the described objects in such a way that they would closely

resemble their models. However, they may be good enough to

enable the reader to identify the objects in a given

situation. The environment supplies information missing
. .

from the description to make correct identification of the

target object possible

This dissertation develops a family of object

description languages and investigates their properties.

The goal is to explain how communication about objects in

complex environments can take place rather efficiently if

context-adaptive fuzzy descriptions are employed.

Description matching is examined on a local level: rather

than asking how different pieces of descriptions join

together to form a model of space [Kuipers (1977, 1978)], we

look in detail what individual pieces -- which we will call

"descriptors" -- contribute to the denotation of an object.

In particular, we are interested in representations of

linguistic information and in methods for comparing
.

linguistic descriptors with one another.

We will use the term "linguistic matching" for the

process of comparing two linguistic object descriptors or of

comparing linguistic object descriptors with sensory
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information about objects. Linguistic matching is used to

interpret a world of objects in order to select that subset

of the world which corresponds to the description.

The term "linguistic" is used in this thesis in

contrast to the attribute "numerical". Meaning of

linguistic descriptions is determined, in part, by the use

of the descriptions, whereas meaning of numerical

descriptions normally is
» based on precise

.

context-independent definitions. Linguistic descriptions

generally are incomplete and fuzzy. The relevance of an

object descriptor for the interpretation of a description

depends on the fuzziness of the descriptors, on the other

descriptors in the description, and on the set of candidate

objects involved in the matching process. The

interpretation process is guided by the context of given

objects and by the linguistic matcher itself. Suitable

object properties typically are color, size
.

shape, etc.,>

although any other type of characteristics could be used

A basic assumption of this research is that knowledge

can be represented by linguistic descriptions and that

linguistic matching can be modeled by computational

operations on these symbolic descriptions. At the

functional level, linguistic matching can be considered as a

process that receives inputs describing an environment and a

particular object within that environment, and identifies

the object. At a higher level, linguistic matching may
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involve learning. The processor and its ability to

interpret linguistic descriptions, change as a result of the

inputs it receives.

The research reported here deals with linguistic

matching viewed as a functional interpretation process.

Linguistic descriptors are modeled by possibility

distributions over object features [Zadeh (1978a,b)]. These

distributions preserve imprecision and fuzziness which are

inherent in all knowledge about facts or objects [Russell

(1923), Black (1963)]. The learning aspects, i.e., the

question of how meaning of linguistic descriptors can be

acquired, are being investigated in a companion project

[Lopez de Mantaras (1980a)]. This work does not address the

problem of description generation [compare Breeding & Amoss

(1972)].

A result of this research is the PINPOINTmodel, a

computational model of linguistic description matching. The

model shows under what conditions incomplete, fuzzy,

subjective, linguistic descriptions can be interpreted in

such a way that they pinpoint the precise object or set of

objects that the describer intended.
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1.2 Why Are Object Descriptions Worth Studying?

In complex environments, such as the world of physical

objects, conventional computer science approaches for

communication break down. It is not feasible, for example,

to give each object a distinct name or to describe objects

in canonical form. Also, it does not make sense to use all

known features of an object to describe this object. Most

importantly, however, it is disadvantageous to make

distinctions between all possible feature values at all

times

This last point has been neglected in most artificial

intelligence (AI) research in which it is generally assumed

that distinguishable features have distinguishable labels.

One reason for this is that it was not clear how to take

advantage of fuzzy representations. Fuzzy representations

are capable of variable feature resolution. Another reason

.

is that imprecision and fuzziness in perception,

communication, and reasoning have been considered to be

deficiencies that eventually could be overcome rather than

intrinsic properties of any representation of the "real

world" .

These considerations raise two questions: 1) how can,

do, or should we describe objects in complex environments,

and 2) how can do, or should we interpret these>

descriptions in order to identify the target objects.

Answers to these questions will lead to deeper insight into
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communication aspects of descriptions: what makes object

features relevant for descriptions, how is information about

them transmitted, and what does this information mean?

The motivation for this research has been two-fold.

First, we have been interested in devising methods for

communicating in environments too complex and unpredictable

to be tackled by existing approaches. Second, we like to

offer explanations for mechanisms underlying the efficiency
and effectiveness of human eommunicafcion as well as its

drawbacks by providing a model whose behavior exhibits

aspects comparable to human communication.

3 The Problem

The problem which this research addresses now can be

stated as follows: Suppose we are given an arbitrary scene

of objects. We want to have a language to point out any of

the objects we perceive to a "communication partner" having

comparable perception abilities. This is to be done

effectively and efficiently, i.e., the communication partner

should be able to identify the target object with a low

amount of effort. The efficiency criterion constrains the

tolerable complexity of the language: the language must be

acquired and stored by each of the communication partners.

There is a trade-off between specificity and expliciteness

of a language on one-hand and effort for acquisition and

maintenance of the language on the other hand.
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In addition to conventional computer science and

»artificial intelligence approaches in which imprecise and

»
fuzzy information about environments is represented in

* »
.

precise and crisp terms we need ways to capture

imprecision and fuzziness as is inherent in natural

conceptualizations and descriptions of objects and

environments. This is to gain flexibility and efficiency in

manipulating descriptions. In particular, the

representations should not introduce conceptual

discontinuities which are not present in the archetype world

[Tribus (1979)]. In other words, it is preferable that the

representation of a body of knowledge slightly distorts this

knowledge but preserves essential properties, than that it

"idealizes" the knowledge and destroys essential properties.

"Idealization" of knowledge would also distort this

knowledge.

For representation of a given environment, this can be

achieved if descriptors capture distinctions between

features rather than the features themselves. The

descriptions then characterize a feature subspace of the

universe of features rather than a precise feature point.

This feature subspace could denote an infinite number of

different objects, but in a typical context in which such

descriptions may be meaningful, only one or a few objects

*

For definitions of these terms, refer to the glossary in
appendix A
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can be found in this feature subspace. The interpretation

of a description is done by instantiation of the particular

situation context.

Natural language object descriptions fulfill the

desiderata outlined in this and the previous section:

objects which are frequently referenced have names; others

are described in terms of some of their features. Not all

detectable features are used in the descriptions, since a

few features suffice to uniquely distinguish a given object

from other objects in a given environment. Feature labels

can have imprecise and fuzzy denotations.

This thesis discusses the semantics of such type of

linguistic descriptions and presents an approach to their

interpretation. The PINPOINT modelfor interpretation of

object descriptions is presented and a computer

implementation of linguistic representation is described.

1.4 PINPOINT Model

A collection of feature descriptors referring to an

object or a set of objects will be called "object

description". The PINPOINT model illustrates how object

descriptions having common characteristics with natural

language descriptions can be interpreted in such a way that

the target object described can be pinpointed. The model

does not deal with the difficult issue of natural language
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utterance interpretation Instead, a natural-language

object description is translated into a formal .

meaning

representation language for natural languages, called PRUF

[Zadeh (1978b)].

Translation from natural-language expressions into PRUF

usually is performed by humans, although for sufficiently

restricted domains automatic translation is possible [Lopez

de Mantaras (1980b)]. The PINPOINT model refers to a data

base representing the reference environment to interpret the

PRUF representations of object descriptions. The goal is

identification of the target object in its environment. The

paradigm that we use throughout this thesis is the

description of physical objects. The reason is that we can

empirically verify if an object has been correctly

identified

The object identification problem can be viewed as a

pattern matching problem in which a coarse description

roughly characterizes the class of patterns to be accepted

and the situation context supplies information to restrict

the possible matches. In our system, linguistic object

descriptors are represented by fuzzy possibility

distributions. In this representation, imprecision of

linguistic terms is preserved and can be taken advantage of.

Object descriptions are mediated from the describer to the

interpreter by means of PRUF expressions. A dialect of the

programming language FUZZY [LeFaivre (1974a,b)] serves to
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interpret PRUF expressions with the goal of identifying the
described object. This dialect, L-FUZZY, directly

represents fuzzy sets (rather than elements of fuzzy sets)

and linguistic modifiers (rather than numerical ones)

1.5 Related Work

Pattern matching and identification plays an essential

role in virtually all information processing systems. In

this thesis I develop a generalization of the conventional

matching paradigm in which information is viewed as crisp
and absolute. In the following sections I will relate this

work to the fields of Artificial Intelligence, Cognitive

Psychology, Linguistics, Fuzzy Set Theory, and Philosophy.
References to specific issues will be given together with

detailed discussion in the following chapters.

1.5.1 Artificial Intelligence -

The relation of this work to AI three-fold:IS

1) several theoretical aspects overlap with issues that

arise in scene analysis and language processing research,

2) the research methodology is taken from AI, and
3) we are using tools that are products of AI research and

have been developed for AI research.
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1.5.1.1 Scene Analysis And Language Processing -

Scene analysis research is concerned with the problem

of recognizing objects in visual scenes [e.g. Roberts

(1963), Guzman (1968), Winston (1970), Turner (1974), Garvey

(1976), Deering (1980)]. The particular appearance of an

object must be compared with the description of a class of

objects. This requires suitable representation of the

objects [Firschein & Fischler (1971, 1972), Minsky (1974),

Barrow & Tenenbaum (1975)]. The "feature selection problem"

[Duda & Hart (1973), Nagel (1976), Bezdek & Castelaz (1977)]

for generating good object descriptions is too little

understood to offer general solutions [Bremermann (1972)].

Domain-specific knowledge appears crucial for efficient

object recognition [Akin & Reddy (1977), Bajcsy & Tavakoli

(1975), Freuder (1976), Garvey (1976), Harmon & Hunt

(1977)]. Multisensory information about scenes [Tenenbaum

(1973)] and selective search processes [Barrow et al.

(1972), Hanson & Riseman (1974), Bajcsy & Rosenthal (1975),

Ballard (1978)] simplify identification tasks tremendously

by drastic restriction of possible object references.

Language processing is the largest sub-area of AI

Here, I mention only a few systems which use language for

interacting with scenes of objects or object descriptions.

The best known of these is SHRDLU [Winograd (1972, 1973)]

SHRDLU accepts object descriptions in English to manipulate

objects in a blocks world. All concepts in this artificial
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world are clear-cut and therefore there is
.

never a

difficulty of feature matching. Shaket (1975) also uses a

blocks world, but he deals with the fuzziness inherent in

natural-language descriptors. HAM-RPM(Hamburg Dialogue

Partner Model) [Hahn et al. (1979)] is an ambitious project

whose objective is to capture all aspects of natural

language interactions to some degree, rather than single

aspects to a high degree and others not at all. HAM-RPMs

environment is a simulated world allowing for gradable

concepts. SWYS (Say What You See) [Hanssmann (1980)] aims

at interfacing dialogue systems with 2-dimensional natural

scenes. Rhodes & Klinger (1977) describe a system SKETCH

which serves to interactively modify graphic displays by

means of imprecise natural language instructions. An

overview of recent natural language interfaces appears in

SIGART (1977). Wahlster (1977) presents an excellent review

of approaches for representation of fuzzy information in

natural-language AI systems.

1.5.1.2 Methodology -

Emphasis in AI has shifted from developing general

intelligent systems [Newell, Shaw, Simon (1960), Newell &

Simon (1961)] to the development of expert systems for

specific problem domains [Buchanan et al. (1969),

Shortliffe et al. (1973), Feigenbaum (1977), Dud a et al.

(1978)]. Feigenbaum (1980) emphasizes that AI systems
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should model the best knowledge sources available: human

experts. AI is to a large extent an empirical science

[Newell & Simon (1975), Nilsson (1974), Raphael (1976)].

The PINPOINT model is designed to exhibit behavior

comparable to certain aspects of human communication. No

attempt is made, however to obtain this behavior the same

way humans do. This is typical of AI-systems [Boden

(1977)]. The objective is to have a model which becan

tested and explored to gain better insight into fundamental

requirements for flexible communication systems. [Stark &

Dickson (1966)]. The model attempts to provide useful

representations and interpretations of descriptions and at

the same time to adapt to human representations slightly

better than previous systems. It should be viewed as a

contribution to expert systems for limited domains.

1 5.1.3 Tools

AI systems are realized on computers [Nilsson (1971),

Winston (1977)]. High-level computer languages have been

developed [Mccarthy (1960), Hewitt (1969, 1972), Sussman &

McDermott (1972), McDermott & Sussman (1972), Kling (1974),

LeFaivre (1974a, 1977)] which allow for implementation of

rather complex systems [Bobrow & Raphael (1974), Hahn et al

(1979)].
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We take advantage of experience that has been gained

with such systems and investigate how linguistic information

can be represented adequately and integrated into existing

AI-languages. Linguistic symbols have been treated as atoms

in previous AI systems and their detailed denotation has

been neglected in programming languages. As a consequence,

we can refine existing mechanisms and provide additional

tools which may prove useful for the implementation of even

higher level systems.

1.5 2 Cognitive Psychology

Cognitive psychology investigates how people acquire,

organize, and use knowledge [Neisser (1967, 1976), Palmer

(1978)]. Specifically, experiments are performed which

demonstrate how people characterize [Bartram (1973), Rosoh &

Mervis (1975), Carroll (1979a,b), Hoffmann (1980)] and

interpret [Norman & Rumelhart (1975), Palmer (1975, 1977)]

perceived objects.

For our purposes, cognitive psychology research IS

particularly useful if it is concerned with case studies of

cognitive processes [Newell & Simon (1972)] rather than with

statistical evaluation of interindividual observations.

This is, because we want to model a single hypothetical

entity which performs certain cognitive functions well

rather than a non-existing "average entity". Kelly's (1955)

theory, for example, does not assume that comparable
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processes in different individuals must have fche same

structure.

Cognitive psychology also investigates questions of

concept discrimination in connection with memory size
»

considerations [Miller (1967)] and the use of linguistic

means to denote cognitive concepts [Cliff (1959), Kochen &

Badre (1974), Hersh & Caramazza (1976), Zimmer (1980a,b)3.
Research in psycholinguistics investigates how language

develops in humans, how it IS
.

used, and what are its

features and problems for communication [Lenneberg &

Lenneberg (1975)3. Empirical results from this research

help us design a vocabulary and setting up rules for

manipulating descriptions.

1.5.3 Linguistics -

In the 1950's information processing by computers was

almost exclusively numerical. Problems of any type were

cast into arithmetic shells and then solved by standard

mathematical methods. In the 60's, symbolic information

processing was advanced when it became clear that many

problems could not be fit in a natural way into mathematical

structures for which adequate computational tools existed

[Newell & Simon (1972)]. When AI moved away from "toy"

problems to "real-world" problems in the 70 s it became

apparent that many situations are not well enough defined to

be captured by symbols, unless the symbols are given an
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interpretation reflecting the nature of the phenomena they
describe [Kickert (1979)]. Research in linguistics

investigates how people use natural language (ND for

communication. NL has characteristics substantially

different from mathematical languages. In particular, NL is

acquired not by definitions but by use. Therefore the

meaning of NL expressions cannot be derived from definitions

but from context. As a consequence, meaning of NL

expressions may not be determined to the same extent as we

expect from mathematical language [e.g. Kempson (1977)]

Traditionally, this indeterminacy has been viewed as a

disadvantage of natural languages compared to mathematical

languages. This view is certainly justified if we want to

use language to describe clear-cut and well understood

phenomena. However, if we want to use it to describe

phenomena which are not as clear-cut, natural language may
be better, since it reflects the knowledge about the

phenomena more adequately [Popper (1965)]. Models of

indeterminate NL expressions have been developed [Zadeh

(1972), Lakoff (1973), Kay (1979)] and applied to artificial

systems [Mamdani (1976)]. The "linguistic approach" to

computer modeling as described by Zadeh was enabled by the

calculus of fuzzy sets [Zadeh (1976b), Bonissone (1980)].
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1.5.4 Fuzzy Set Theory -

Zadeh (1965) proposed to generalize Boolean set theory

in such a way that elements do not have to be either perfect

members or perfect non-members of a set, but can be members

of a set to a certain degree. The full and partial members

form a "fuzzy set" [Zadeh (1965-1979), Bellman et al.

(1966), Gaines (1976)]. Fuzzy set theory and fuzzy logics

have been used to model non-clear-cut situations encountered

in "real-world" problems [Bezdek & Castelaz (1977),

Bonissone (1979a,b), Buckles (1979), Freksa (1980b), Goguen

(1974), Haar (1977), Imaoka & Sugeno (1979), Jain & Nagel

(1977), Kickert & Koppelaar (1976), MacVicar-Whelan (1976),

Mamdani (1976), Rieger (1980), Wahlster (1979), Zadeh

(1976a)]. Extensive bibliographies can be found in Gaines &

Kohout (1977), Kandel & Byatt (1978), and Gupta et al

(1979a).

Computer systems have been developed to represent and

utilize fuzzy sets and to support fuzzy reasoning [Adamo

(1980), Bonissone (1979a), Freksa (1980a), LeFaivre (1974a,

977), Mandic et al. (1980), Shaket (1975), Umano et al.

(1975), Wenstop (1976)]. The approach presented in this

thesis is based on the fuzzy set theoretic interpretation of

linguistic labels and derives general rules which serve to

simplify the "linguistic reasoning" process.



18

1 5.5 Philosophy

A pragmatic approach to representation of and

communication about objects leads to issues which have

concerned philosophers for a long time. Dreyfus (1979)

doubts that thought processes can be formalized to the

extent that artificial intelligence becomes possible His

conclusions are mainly based on empirical "evidence" from

existing implementations and on (partly invalid) assumptions

about neurobiology rather than on logical inconsistencies of

AI approaches. Therefore, his skepticism should not keep us

from looking for more adequate ways of assimilating

intelligent behavior.

Berkeley (1709) distinguished between objects and their

representations, Frege (1892) between "Sinn" (sense) and

"Bedeutung" (denotation) of representations. Russell (1905)

said that denoting phrases never have meaning in themselves,

but the propositions in
.

which they occur have meaning.

Wittgenstein (1922, 1951) argued that the meaning of a word

is the way of its employment such that if talk aboutwe

"different meanings" of a word, we think of different

functions.

With regard to precision of language, Frege (1879)

judged word language to be inadequate and demanded a system

of symbols which is free from every ambiguity. Wittgenstein

(1922) attempted to develop such an ideal language without

vagueness but he conceded later [Wittgenstein (1953)3 that
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imprecision in language can be useful. Russell (1923)

criticized traditional logics for assuming that there could

be a precise language for representing something that is

real. Popper (1976) advocates that we never should use more

precision than the particular situation asks for, but this

view is not universally accepted [Haack (1979)].

1.6 Thesis Overview

Chapters 2-4 deal with theoretical aspects of object

description and interpretation. Chapter 2 develops a system

of seven object description languages starting with a

conceptually simple approach and stepwise revising it to

account for aspects which the previous one could not handle.

The result is a fuzzy object description language L7 on

which the following chapters are based

Chapter 3 discusses the semantics of L? in detail. It

explains the relationship between linguistic descriptors and

their reference objects. It is shown how fuzzy object

descriptors may obtain crisp denotation when they are

instantiated in a particular context and how fuzziness may

be utilized for representation of subjective concepts.

Different types of referential meaning for descriptors are

discussed and a hybrid representation scheme for the
#

descriptors is proposed.
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Chapter 4 deals with the interpretation of fuzzy object

descriptions. Different aspects of compatibility between

descriptors are presented. The object identification

process is discussed as a series
f

of possibility

restrictions. Qualitative feature matching is introduced as

an efficient method for obtaining informative matching

results. A discussion of the interpretation of descriptions

referencing sets of objects follows.

Chapters 5-7 deal with applications of our approach.

Chapter 5 describes how linguistic labels are implemented in

the computer language L-FUZZY, how L-FUZZY queries are

interpreted, and how the system responds to the queries.

Chapter 6 discusses sample applications for linguistic

modeling in the "soft sciences", in person machine

interaction, and as a general communication tool Chapter 7

concludes the dissertation with a summary, a comparison with

other computer systems, and with a comparison to properties

of human communication.

In the appendix, a glossary of terms and an

introduction to the AI-language FUZZY - on which the

dialect L-FUZZY is based -- are presented.
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CHAPTER2

A HIERARCHY OF OBJECT DESCRIPTION LANGUAGES

"All traditional logic habitually
assumes that precise symbols are being
employed. It is therefore not
applicable to this terrestial life, but
only to an imagined celestial
existence."

Russell (1923, p.88f.)

In this chapter, we will construct a language to

communicate about objects in complex environments. As we

will see, complexity considerations make it desirable to

abandon very detailed and precise descriptions at the risk

of inducing ambiguity or inaccuracy. We will develop this

language from a hierarchy of languages whose basic level

requires accurate and crisp descriptions. On the higher

levels we gradually relax these requirements and allow for

approximate and fuzzy descriptions. On the top level,

detailed agreement of vocabulary and context between

communication partners using this language is nofc required.

Thus, fche resulting object description language

"conceptually decouples" issuer and interpreter of a

description. At the same time, a description is coupled to



22

the specific context of the described object and IS
.

meaningful especially in this context. This language is

suitable for much more complex situations than the

lower-level languages.

In essence, the criterion for super or d in at ion of a

language in the hierarchy is the ability to describe objects

in more complex domains while the efficiency of the

communication system can be roughly maintained. Some of the

intermediate levels may appear rather arbitrary and

artificial. They have been introduced mainly as stepping

stones to facilitate introduction of the higher levels and

to facilitate comparison between the top and bottom levels,

by modifying single language features individually. A

different structure could have been used. The higher-level

languages are developed by taking advantage of structure

that is inherent in the world of discourse.

2.1 Notation

We will employ a notation similar to PRUF notation

[Zadeh (1978b)] to describe the object description language

hierarchy. In this notation, an object can be characterized

by means of a property list [Weissman (1967)], i.e.,
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(OBJECT [<property 1> = <value 1>]

[<property 2> = <value 2>]

.

.

[<property n> = <value n>])

The interpretation of this characterization is that it

denotes an object which maintains properties <properfcy 1>,

<property 2>, <property n>. This can be expressed. . .

differently: the possibilities, to which object the

description refers, are restricted by the particularizations

[Zadeh (1978b)] <property x> = <value x>, 1 £ x ^ n.

This representation presupposes that the class OBJECT

is given. Accordingly, we can restrict subclasses of

objects, e.g.,

(HOUSE [<property x> = <value x>])

Subclasses may be obtained by possibility restriction of

superclasses or may be introduced independently. The set of

objects belonging to the reference context will be

characterized by the same notation, 1 .e . »

(CONTEXT [<property 1> = <value 1>]

[<property 2> = <value 2>]

.

.

Kproperty n> = <value n>])
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The types of properties and values that can be used for

particularization will be introduced in the following

discussion of the various levels of the hierarchy.

2.2 Seven Hierarchy Levels

both precision and certainty areIT
. . .

false ideals. They are impossible to
attain, and therefore dangerously
misleading if they are uncritically
accepted as guides. The quest for

precision is analogous to the quest of
certainty, and both should be abandoned.

"I do not suggest, of course, that
an increase in the precision of, say, a

prediction, or even a formulation, may
not sometimes be highly desirable. What
I do suggest is that it IS always
undesirable to make an effort to

increase precision for its own sake

especially linguistic precision -- since
this usually leads to loss of clarity,
and to a waste of time and effort on

preliminaries which often turn out to be
useless, because they are bypassed by
the real advance of the subject: one

should never try to be more precise than
the problem situation demands."

Popper (1976, p.24)

The communication paradigm which we will use for all

seven levels L1 - L7 of this hierarchy is the following: in
.

a given world w, a describer x constructs a verbal»

description of a particular object 0   w; an interpreter Y

analyzes this description to identify target object 0
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In this hierarchy, we will describe first the basic,

most primitive level. On each of the higher levels we will

introduce some features which allow the language to be used

for more complex situations. The objective is to keep

communication efficient with respect to memory requirements

and computational effort. We will show how we can

compensate for ambiguity introduced by more efficient

methods.

2.2. 1 L1: "zero-dimensional" Symbolic Object Labeling

Suppose, X and Y live in a world w of n distinct

objects. X wants to be able to point out to Y any object 0

in W. Both, X and Y can look at the objects in W, but they

only can communicate about the objects by means of words.

The conceptually simplest way [compare Kempson (1977,

pp.12f)] of communicating under these constraints is to have

distinct labels for all objects in the world. We will

assume here that these labels are random, i.e., there is no

known systematic relationship between the labels and their

corresponding objects. Then, X simply utters the label and

Y identifies the object by comparing the label with the

labels corresponding to the objects in W. X's message will

match exactly one object label.
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Using the notation from section 2.1 this object

description has the form

(OBJECT [name = <label>])

The only property that can be used as descriptor in L1 is a

name. An example for an object description in L1 IS
.

[Valentin (1929)]:

(OBJECT [name = Wrdlbrmpfd])

We must assume thafc the links between labels and their

corresponding objects are not elements of W -- otherwise

there was a systematic relationship between the objects and

their labels, For this reason x and Y each must have» a

memory for the labels and must be able to associate with

each object the corresponding label. The size of the

vocabulary (i.e., the number of object labels) is
.

proportional to the number of objects in the world. The

memory required to store the vocabulary is proportional to

the size of the vocabulary. Also, the label selection time

for x and the object identification time for Y are

proportional to the number of objects in the world (since we

assume non-systematic assignment of labels).

L1 allows for perfect communication between x and Y

Each description is accurate and unambiguous by definition.

However, L1 is of practical use only for small worlds

because of memory requirements, vocabulary acquisition
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effort of X and Y, and label search time. Size of memory

label acquisition time, and search time for label and object

could be reduced if there was a systematic approach to the

object labeling process.

2.2.2 L2: One-diraensional Absolute Object Labeling -

In this model we introduce a systematic approach to the

label assignment process Instead of agreeing on a label.

for each individual object, X and Y will agree on systema

(i.e., a rule or a set of rules) by which labels are

assigned to objects. A single feature dimension which .

is

common to all objects in w will be chosen to label the

objects. Then, X can replace his declarafcive data base (the

random vocabulary) by a procedure which generates a label by

measuring the feature value on this feature dimension. The

interpreter, Y, also can replace his vocabulary by a

procedure, provided that there exists an inverse to x s

feature measuring function. This means that he needs a way

of matching the feature value reported by X with the actual

object.

Using our notation, an object description in L2 has the

form

(OBJECT [<feature> = <value>])

where <feature> designates a dimension which is defined for

all objects in W. An example for an object description in
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L2 IS
.

(OBJECT [height = 168 cm]).

The label generation time has become independent of the

number of objects. To set up a common vocabulary, X and Y

only must agree on a rule rather than on each individual

label -- this also is independent of the number of objects.

The object identification time is still proportional to the

number of objects in the world, if we assume that the

objects in W are not arranged in a systematic fashion by

their feature value.

L2 has the advantage over L1 that memory requirement

and label selection time have become independent of the

cardinality of W. This means that it should be more useful

for large worlds. A severe disadvantage is that this

labeling method does not guarantee unique labels for

distinct objects, if we assume finite feature value

resolution. Therefore, Y cannot uniquely identify the

object which x described, in general. He can identify a

class of objects which must contain the object in question.

L5, L6, and L7 will deal with this problem.

The object identification effort could be reduced if

there was more structure in the object arrangement to allow

for a more directed label matching process.
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2.2.3 L3: 1-D Relative Object Labeling -

In this model we introduce the concept of "context" to

.

increase efficiency of communication. In realistic

situations, X and Y do not want to communicate about all the

objects which they are able to communicate about; rather ,

in any given conversation they focus on a specific subset of

objects.

Let us assume, therefore, that X and Y have agreed on a

subset w C W which they refer to. Typically, !W « lw!.x x

This assumption reduces the complexity of the problem if we

describe the object feature in relative terms instead of

absolute. For this purpose, x sorts the objects in w
x

according to their one-dimensional feature value. Now, he

can describe the object simply by referring to its ordinal

number . To decode this message, Y must sort the objects as

well, before he will be able to interpret X's description.

An object description in L3 has the form

(OBJECT [<feature> = rank <ordinal number>])

Implicitly or explicitly, a context must be specified:

(CONTEXT [<subset> = <set descriptor>])

The feature rank refers to this context. Note that the

context feature brings back the advantages of a small world

while maintaining the capability of communicating about all

objects in a large world.
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An example for an object description in L3 is:

(OBJECT [height = rank 3])

with

(CONTEXT [location = room 275])

which denotes the set of objects in room 275 which rank

third with respect to their height.

The sorting process requires 0 (m * log m) comparisons

for m = w and a memory size proportional to m. The
_ I

x

sorting effort pays off if many references have to be made

to objects in the same subset W because the sorting must>x

be done only once. The information which has fco be

transmitted for each object reference from x to Y IS
.

reduced, because less information is required to distinguish

m objects than to distinguish n objects if m < n n = w:.

A disadvantage is, however, that exhaustive comparison of

the objects in the subset is necessary to obtain the

object's ordinal number.

2.2.4 L4: 1-D Context-adaptive Absolute Object Labeling -

To combine advantages of absolute and relative object

labeling we will introduce "context-adaptive object

labeling". Rather than sorting all objects in W we select»x

from W^ the object with highest feature value and the object
with lowest feature value. These two extreme values define
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the end points of an absolute scale on which the object

feature is measured.

An object description in L4 has the form

(OBJECT [<feature> = <class> <scaled value>])

with

(CONTEXT [<subset> = <set descriptor>]

[feature vaLues = <nabural number>])

where <class> refers to a feature dimension with a discrete

set of ordered values and "feature values" specifies the

number of values that <feature> may assume on the

corresponding scale. It is the inverse of feature

granularity.

An example for an object description in L4 is:

(OBJECT [height = size 7])

with

(CONTEXT [location = shelf 4]

[feature values = 10])

Here, the feature value is given in absolute terms as in L2.

However , the scale for this value is given by the context

and the feature scale partitions. Thus, it IS
»

interpreted

as a relative value, in effect.
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The effort of setting up the scale results in the

advantage over the previous model that the objects do not

have to be sorted completely; m comparisons are necessary

to determine the end points of the scale. In addition, we

combine the advantages of measuring in absolute terms with

the small amount of information to be communicated from the

relative measuring method.

All levels of the hierarchy discussed so far are based

on assumptions which are not very realistic for practical

applications:

1. X and Y must completely agree about the situation

context. In applications in which the context is

"the objects in room 275" this may be tolerable;

but if x and Y want to communicate about the

objects in a less well-defined context, e.g the. >

set of visible objects, there may be a slight

disagreement about the members of the set between X

and Y, because X and Y may have different points of

view. If x and Y want to communicate about all

recognizable objects, the disagreement will be even

greater, unless they have identical perception

2. the vocabulary that could be used by X and Y must

refer to precisely defined feature values; this

can make it difficult to describe objects which

were not anticipated during the design of the

vocabulary.
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3. the meaning of X's and Y s vocabulary must be

identical; this means that before being able to

communicate, X and Y must agree on the meaning of

the terms they use.

The next model will introduce some flexibility for the

use of the vocabulary and accommodatedisagreements in

context and vocabulary of X and Y.

2.2.5 L5: 1-D Linguistic Object Labeling

In this model, not the two most extreme feature values

of the objects in
s

the context W must be determined, butx

instead an object with "comparatively high" feature value

and an object with "comparatively low" feature value with

respect to the other objects in W These values serve to.

x

define a "fuzzy scale" on which the feature of the object to

be described will be measured. The scale is partitioned
»

into overlapping fuzzy subsets which correspond to

linguistic labels. This implies that several labels become

applicable for the same feature value. Correspondingly, a

given label may include more possible feature values than

before.

«

For an introduction to the theory of fuzzy sets see for
example, Ragade & Gupta (1977).
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To compensate for lost precision in the intended

meaning of a label due to this relaxation of requirements,

we introduce the concept of modifiers of fuzzy sets [Zadeh

(1972), Lakoff (1973)]. Modifiers act as operators on fuzzy

sets and yield a larger variety of fuzzy concepts.

Modification is done by shifting, sharpening, or

fuzzification of fuzzy sets. Such modification cannot be

done in
f

a natural way for crisp sets or values. A similar

effect could be obtained by enlarging the number of labels

but with modifiers we maintain the advantages of a small

label set.

An object description in L5 has the form

(OBJECT [<feature> = <linguistic value>])

where <linguistic value> refers to the label of a

possibility distribution. A possibility distribution

denotes an arbitrary element of a fuzzy set. Thus , the

linguistic value "tall" has a possibility of referring to

any particular height value that belongs to the fuzzy set of
»

tall heights. For example, an object description in L5 is:

(HOUSE [height = tail])

»
The notation used here deviates from the PRUF notation

used by Zadeh (1978b). Possibility distributions and their
representation are discussed in more detail in section 3.4.
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with

(CONTEXT [location = vicinity])

Here, "HOUSE" denotes a subclass of the class "OBJECT" in

the previous examples, "vicinity" specifies a fuzzy

location.

This is the first model in our language hierarchy in

which we do not maintain the requirement of total agreement

between the communication partners with respect to their

reference sets of objects and their vocabularies [compare

Bellman & Zadeh (1977)]. If this disagreement gets too

strong, misinterpretations of the object descriptions become

possible. In the next model we will show how we can

compensate for this deficiency.

2 2.6 L6: Multi-dimensional Object Labeling -

Up to now, objects were described in terms of a single

feature, in all models. This was done mainly for simplicity

of presentation -- it is not a very realistic approach. In

practical situations it is not easy or possible to find a

single feature that discriminates well across a large number

of objects, as we know from pattern recognition research.

In our paradigm, the feature would have to discriminate well

across all n objects of W. There is another reason why a

single feature is not attractive for object descriptions:

it requires a label set with cardinality well above m the
»
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number of objects in W to obtain small classes of>x

referenced objects Thus, we will introduce multi-feature

object descriptions in the present model

An object description in L6 has the form

(OBJECT [<feature 1> = <linguistic value 1>]

[<feature 2> = <linguistic value 2>]

.

.

[<feature k> = <linguistic value k>])

For example, an object description in L6 is:

(BOOK [color = red]

[size = quite small])

The objects are described in terms of a variety of

features. In general, not all objects of a set share all

properties by which they can be characterized. Therefore it

does not seem appropriate to replace the feature value of

the previous models by a fixed-format feature vector .

Instead, descriptions will be constructed from a set of

characteristic and well-discriminating features and

represented by a free-format property list

Multi-dimensional object labeling drastically enhances

the specificity of descriptions. The number of objects that

can be discriminated increases exponentially with the number

of feature dimensions. This allows us to maintain a small
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label set and still deal with complex worlds.

A drawback may be that several features have to be

measured and described; this enhances the task complexity,

but not necessarily the description generation and

interpretation times, because all dimensions could be dealt

with in parallel.

2.2.7 L7; Subjective Object Labeling -

In L5 we accounted for the fact that many feature

descriptors are applicable to different objects to a higher

or lower degree. We did not require a rigorous method for

defining the fuzzy scale for the linguistic labels, and in

fact, the fuzzy sets corresponding to the same linguistic

labels could be slightly different for x and Y. The

reference concepts for X and Y have become subjective, or in

other words, X and Y have become "conceptually decoupled".

Because of this and because of the fact that objects

are not distributed horaogeneously in their multi-dimensional

feature space, we need a method allowing for correct

identification of the described object. The object

description must provide information for a correcting

mechanism which allows the interpreter to identify the

target object even if some of the object descriptors do not

completely agree with the interpreter's concepts.
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In L7, this is done by redundant object descriptions

[compare Critchley (1975), Reball (1978)]. Similarly as in

coding of messages, where we can correct for noise in the

transmission of a message [Shannon & Weaver (1949)] by

increasing the Hamming distance of a code [Hamming (1950)],

we can compensate "conceptual distance" between describer

and interpreter by enriching the descriptions. The

interpreter then can be less rigid in the interpretation of

single descriptors but relies on the coincidence of several

more or less applicable descriptors instead.

A description in L? has the form

(OBJECT [<feature 1> = <fuzzy linguistic value 1>]

[<feature 2> = <fuzzy linguistic value 2>]

.
»

[<feature k> = <fuzzy linguistic value k>])

An example for such a description would be

(BOOK [author = Mao Tse Tung]

[title = bible]

[color = red]

[size = quite small]

[cover = plastic])

Thus, we trade conciseness and crispness of description

for flexibility in interaction and variability in background

of the communication partners
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2 3 Example Comparing L1 - L7

This example demonstrates the use of L1 - L7 for the

description of single objects. The same scene of objects, a

fish scene, is used in all cases for comparison purposes.

This makes the example somewhat artificial, since we have to

use a simple scene to demonstrate L1. The advantages of L7,

on the other hand, come to bear only in more complex

situations. The basic effects should become clear, however.

Occasionally, L1 will serve as meta-language for explanation

of the examples.

^

.

^.

<fr«
^

'.
A

0^ 0

Fig 2.1: Fish scene W
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L1: Let W be a set of a dozen fishes of different length.

They are labeled (randomly) with unique labels from the

set of letters {a, b, z}.. »

»

^ i m

p

^
u

n

00 ^
a<^?3f

z

ae

0 ^ r4s

w

Fig. 2.2: Labels corresponding to fishes in Fig. 2.1

X wants to point out the fish labeled e to Y. HeII II

"looks up" this label and utters e or, moreI» n
>

formally,

(FISH [name = e])

Y looks up the fish corresponding to the label and thus

identifies the fish pointed out by X.
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L2: x measures the length of the fish and reads the

measurement "55 mm to Y, ortt

(FISH [length = 55 mm])

Y generates a template of length 55 mm and compares

this template with each fish. One of the fishes which

match the template's length is the target fish.

<<>.

</^
0

A
^

-».
0 :

^template

Fig. 2.3: Subset W of scene and reference scale
x
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L3: Let W C W be the subset of fishes in the right lower
x

part of the scene W (Fig. 2.1) and let's assume, X and

Y have agreed to converse only in the context of W x.
x

sorts these fishes in his representation in increasing

order of length and refers to a particular fish in
f

terms of its ordinal number in this sequence, "the

4th",

(FISH [length = rank 4])

Fishes of the same length obtain the same ordinal

number. Y sorts the fishes in his representation

accordingly and matches x s description against the

ordinal numbers in his system. One of the matching

fishes is the fish described by X.

^> <»

^
.<

\
^»

^» \
^>

s -^
0 \

A. ^ \ -^ I:-<
^ ->
,-> .

4 -
. .

& \ - .^-
. .

' 1 '2'3'4 5'
rank

Fig. 2.4: w is sorted, its elements are ranked.x
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L4: X selects the shortest fish (fish "r") and the longest

fish (fish "z"). Their end points become pivot points

for a linear scale (say from 1 - 10), such that fish

n IIr corresponds to size "1" and fish .I e II corresponds to

size "10". Now he compares the target fish II e 11 to this

scale and obtains "size 7".

(FISH [length = size 73)

Y creates a scale accordingly and obtains a range of

lengths for which "size 7" applies. The target fish is

one of the fishes whose length is in that range.

^>
»

.s>
s
\
^ rank m

0 ^ rank 1
A /

.

/
.

\/ size B .'».! I t Ill 3I 23/
\^- *» size 70 ^

.

Fig 2.5: Context-adaptive scale for objects.



44

L5: x selects a "relatively short" fish ("a") and a

"relatively long" fish ("z"). Their lengths become

reference values for a fuzzy scale of 3 overlapping

fuzzy sets, labeled "short", "medium", "long". Two

modifiers, "slightly less than" and "slightly more

than" serve to shift these fuzzy sets to the left or to

the right, respectively.

X's fuzzy scale a\
- - -><^

^ ->
->

\ ^ *

7^\v
/

/ \
0

A \
short.. medium lone

\ x x -^x
^ ^.

<s. -^
0 I*

ym\
short.. medium lone

y y ~^y

^Y s fuzzy scale

Fig. 2.6: Fuzzy feature scale for W .
x

x selects the label of the fuzzy set which best fits

the target size
. in our case "slightly more than

medium", i.e., fuzzy set "medium" modified by a right

shift:
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(FISH [length = slightly more than medium])

Y also selects a "relatively short" (fish "r") and a

"relatively long" fish ("z") - which are different

from the ones which x selected and constructs a

fuzzy scale with the same labels, but with different

possibility distributions. Y then selects the

possibility distribution denoted by the label "slightly

more than medium" and obtains a fuzzy set of possibly

referenced fishes which will include the target fish,

unless Y s selection of a "relatively short" or a

"relatively long" fish differ substantially from X's

selection.

L6: Now let W be the set of all fishes on earth and w c w
x

the subset of the dozen colored fishes which we called

w up to now (Fig. 2.1). Suppose that besides

measuring the length of a fish, X and Y are able to

determine color and diameter. Thus, x can use up to

three dimensions to describe the target fish. Figures

2.7 and 2.8 show how the fishes are arranged in a

subspace of in this 3-dimensional feature space.



/
y/':. 'I

I '^.'

^.^~\» /
/

/ ^ ^
/

/
t

/'. . rf
I

'^ -̂. Î

/'
/ ,/

.- ^.r /f "-,~, ^./ / ./. /^ /', V. ~T,'; 4-,' \ / / //
.

//
f

,- \.* y' / I I/ / A
/. //

-, I." '*>.

m .; '^^/M'm'//.

i-ws. ..'
^ .J,/ ^

^~^f- » *
^ .^ ^h"

'I f,'n ,-' ». k

\; *t- / ^:.:" .I / ,^ WM m
.V :>. / ^- /;

. » . a,

-I / 771.^'/ 4f.. f//::. .^ Y,
f ( ?( tf <

^: 'r^ i .V*

b ,' . / »/ t

ms. m%^.-; s'
./'I /.

y... v' %Id ^s ,rf* ^ ,*rf / I

^^ "i'^-
^ I

w/.
7. w,y.

I .I \ '//,^

^

^ mm-,\ * "^\ ,' t.\ il 1
'. . <

re
I\ f; 1*..

...^ ^ v-mv. f^ *.
K1,

\ <

'1 t 1 >.tf

\ i ^ I
. \ \ \ «

t>
.1

.'\ / r ..* < y^

Vi .r/.y /.-'" .' tlIT . 'h-I ft .I^' ' ..' < f \ ^
< ^ .' ^ ^ <</<<\ I <

^ /* s f h ^

^ ,r *^ fr / I . </ 'A,
.', I. '//. ;'./,..

...* ^ ^

Y.,v-^ ^ Y.

f\ /\, f /
r <,-

'(yw.' ^

:v, \ ^ ' .. .>-,-
^

I

Iw
i1

"I >*< ^^ *
v i.

.:^\* tt
^ t\ »., ,1- '. '<\ }...< l»

/\
.\ <K 1^

»
* . »

I th

rr.,''.\ . ^
^,^ a_

A ^M A.%

'.',''. »

I \ - #^ \

.^ / / /
I \

'- '. '

s-4^ \
^

'.^VN ^

l\
I

,.»:1-\\vi ^

0 If

si^

7/L ~L^L
7

z L z ^
0 ^

/M
0
4

/ 7 7? 7 7 7 / 7 ^̂
&<

/ »̂length -'--> ?>I

Fig. 2.7 Fuzzy feature descrlptors in a 3"dlmensional feature space.
The spheres represent 3-dlmenslonal fuzzy sets;
the shaded circles represent their projections onto 2-D feature planes.

-t=
Ot



47

G
0 G 0
0 G u
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Fig. 2.8 Object names corresponding to fuzzy feature
descriptors in Fig. 2.7

All feature dimensions are treated independently in the

same way as in the previous example for L5. x utters

(FISH [length = medium]

[color = orange])

and Y constructs a 2-dimensional feature space for his

fuzzy scales of length and color and obtains a fuzzy

subspace which contains the objects of W to which x s
x

characterization can possibly refer.
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L7: w is not any more the well-defined, crisp set ofx

fishes; instead, it is the fuzzy set of fishes "in the

vicinity of X and Y" Now, x uses more features for

his object characterization

(FISH [length = slightly more than medium]

[color = red]

[diameter = thick])

Y may have a different understanding of "less than

medium" length, "red" color, and "thick" diameter in

this fuzzy context, than X, but he agrees with x that

"slightly more than medium" length denotes a shorter

length than "long" and that "red" is closer to "orange"

than to "green", etc. Thus, he will be able to find

the target object (or a superset) if there are no

objects to which this description would fit better

according to his own conception,

2 4 Summary And Conclusions

The following table summarizes comparative performance

values for L1 - L7 and states the main trade-offs involved:



vocabulary memory label
acquisition requirement searc matching advantages disadvantages

^

LI: 0(n) 0(n) 0(n) 0(n) accurate, prohibitive for
unambiguous large worlds

L2: const. const. const. 0(n) only small single property
memory required for all objects.

ambiguity possible

L3: 0(m*1og m) 0(m) 0(m) 0(m) able to deal with objects must be
very large world sorted

L4: 0(m) const. 0(1og m) 0(m) objects don't more ambiguity
have to be sorted possible
completely

L5: 0(m) 0(m) 0(1og m) 0(m) no common refe- misinterpreta-
rence of vocabula- tions possible
ry necessary

»

L6: 0(k*'y'rrT) 0(k* k/m~) 0(k* %') 0(k*lym') small vocabulary several dimen-
complex world sions to deal

with

L7; 0(r*k* k/m~) 0(r*k* lym-) 0(r*k* k/^) 0(r*k* !ym~) avoids ambiguity, longer message
enhances flexibi- required
lity

Fig. 2.9 Comparison of performance criteria as for LI - L7 as functions of size of domain n, size of con-
text m, number of feature dimensions k, and redundancy factor r.

-t?
vd
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The hierarchy of object description languages L1 to L7

contains various levels of communicating about objects:

from a very rigid language which is unambiguous independent

of the context in
t

which it is used and suitable only for

small domains and well-coordinated communication partners to

a non-rigid language for ill-defined domains which can be

disambiguated only by the context and which allows for some

discrepancy in
.

interpretation between the communication

partners. Proceeding from L1 to L7 can be viewed as

"conceptually decoupling" the receiver from the transmitter

of a communication message. At the same time, descriptions

on higher levels become less meaningful when considered out

of context. Thus , descriptions become "conceptually

coupled" to a particular context, in the higher-level

languages.

The few constraints on feature labels that must be

accommodatedin L7 allow that one of the communication

partners is a person, even if we cannot determine the exact

denotation of his or her linguistic labels. Only the

relative order of feature labels must be known. Thus, the

use of linguistic labels from human language in our model

does not presuppose that any person has the same

interpretation of that label.

The approach is based upon the contention that no two

individuals have identical representation (and therefore

interpretation) of a linguistic label and that one
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individual may have different interpretations of a

linguistic label in different situations [Critchley (1975)].

Nevertheless, communication between individuals by means of

linguistic labels is possible.
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CHAPTER3

SEMANTICS OF DESCRIPTORS IN L7

In chapter 2, we developed a family of description

languages L1 - L7 without stating in detail what the

descriptors mean. In the present chapter we will explain

what the descriptors represent and how they are to be

interpreted. From now on we will mainly consider L7, since

L7 includes all interesting aspects of the lower-level

languages L1 - L6. Our discussion will be limited to the

relationship of reference between an object description and

the object (or set of objects) which it denotes [Russell

(1905)]. This IS important for identification of the

described object (the "target object"). The reference

relationship is introduced as a gradable, relative concept.

We discuss how graded reference is defined, represented, and

manipulated in our approach.
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3.1 Descriptors Indicate Possibility

Suppose you are asked to pick up a person at the

airport whom you have never seen before. You are given a

verbal description of that person which you will use for his I

or her identification. If you are lucky, the description

suffices to discriminate your "target person" from the other

people you see at the terminal. Perhaps it is even

redundant, i.e., it contains more features than you would

need to identify the person These extra features are.

useful to increase your confidence in the result of the

inference process thafc lead to the identification of the

person.

What is the nature of descriptive information? As we

have seen in chapter 2, feature characterizations have

different effects from object labels. The information they

carry does not code the associated objects but it selects a
»

subset of the universe of discourse.

A universe of discourse can be segmented according to a

variety of criteria. In particular, we may have

probabilistic information about object features and we may

have po^s^b ilistic information [Gaines & Kohout (1975)3

about object features. In the following discussion we will

argue that in the absence of probabilistic information, an

»
Some codes are designed in such a way that they exhibit

properties of feature descriptions.
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object description conveys information about possible

feature values that the target object may exhibit. We will

first investigate characteristics of crisp descriptions and

subsequently generalize to account for the fuzzy case.

3.1 Restriction Of Reference Set -

*
Consider the following person description .

.

"A man who is between 180 and 190 cm tail

and weighs between 60 and 80 kg."

$We can precisiate this description in terms of the

intentional meaning representation

(PERSON [sex = male]

[height = >180,190< cm]

[weight = >60,80< kg])

Here, >x.pX^< denotes an unspecified crisp value fr om the

interval [x x ].2»

»
We shall use the term "description" to mean more

accurately "denoting phrase" . We shall use the term
"characterization" if we want to emphasize the fuzzy or

incomplete nature of a denoting phrase.

$ Compare Gaines (1976), Zadeh (1979d)
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What does this description denote? The three

descriptors restrict the possibilities of persons which the

description may refer to. They have the effect of subset

selection from the set of all persons in the given context

as indicated in this Venn diagram:

all persons

between
male

180 &

190 cm

between 60 & 80 kg

Fig 3 1 crisp restriction of possible object references

The features of the actual object --ie. person, in this

example will correspond to exactly one point in the
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shaded area of the Venn-diagram. The description does not

specify to which point it refers, but in the absence of

additional information (e.g. about the objects in the

domain) each point in the shaded area is equally possible.

3.1.2 Possibilistic Vs. Probabilistic Information -

The difference between possibilistic and probabilistic

data stems from the different origin of their underlying

observations [Zadeh (1980a)]. First of all, if a descriptor

may correspond to several possible instances, this means

that it is underspecified or imprecise. If a probability

value is associated with each of the possibilities, this
»

means that additional knowledge about the possible instances

IS available or that some law governing the assignment of
.

particular instances is assumed to hold. Second, a

prerequisite for using probabilistic (or statistical)

information is that the different possibilities are known,

whereas conversely no probabilistic information is required

for analyzing various possibilities.

We can obtain possibilistic information even if we do

not know anything about the process that decides about

various alternatives or if we are unable or unwilling to

capture some event with high precision. On the other hand,

we obtain prqbabilistic information if we capture events

precisely but are unable or unwilling to describe the

different observations analytically.
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As an example, consider that we are interested in

predicting the outcome of throwing a die. A possibilistic

analysis would result in the finding that the elements of

the set (1, 2, 3, 4, 5, 6} are possible outcomes. A

probabilistic analysis, on the other hand, would assume that

this are all the possibilities and would require a

non-deterministic model which would predict the die sI

behavior in a statistical sense. Clearly, fche two

approaches answer different questions: the possibilistic

analysis describes what can happen if the die is thrown, or

in the case of object descriptors, which object may be

referenced; the probabilistic analysis describes how likely

an event is going to occur, or in the case of multiple

events, how frequently we can expect the different types of

events to occur [compare Gupta et al. (1979b)].

As a consequence of these differences, possibility and

probability have different properties. In particular ,

possibilities are superadditive, i.e., the existence of one

possibility does not automatically influence the existence

of another. In contrast, probabilities are additive, i .e. ,

if one event becomes more likely, one or more other events

automatically become less likely. Superadditivity is a

desirable property for systems dealing with incomplete

knowledge, since addition of knowledge does not necessarily

involve revision of all related knowledge.
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In summary possibilistic information requires a»

minimum of assumptions and is suitable for analyzing unique
.

situations involving incomplete or imprecise information

while probabilistic information requires a statistical model

and is suitable for analyzing repetitive situations

involving unreliable information.

In this dissertation, we focus on possibilistic aspects

of descriptions and PRUF descriptions are assumed to convey

only possibilistic information. Thus, we are concerned with

the question which interpretations of descriptions are

possible, although for a good understanding of reasoning it

will be important to ask which interpretations are probable,

plausible, reasonable, applicable, relevant, consistent, and

adequate, as well.

It should be pointed out here that possibilistic

information usually represents general rules or knowledge

and therefore is more easily available than probabilistic

information [compare Zadeh (1978b, p.402)]. A possibilistic

statement may not appear as strong as a comparable

probabilistic statement, because it may be quite fuzzy; on

the other hand, it may be more useful in each particular

situation in which it is employed, because it allows for

predictions that can be validated by individual instances

[compare "incompatibility principle", Zadeh (1973, p.28)]
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3.2 Possibility Comes In Degrees

In the lasfc section, we dealt exclusively with

imprecise but crisp descriptors and a descriptor - feature

reference either was possible or not. In this section, we

will investigate what happens if descriptors are fuzzy

rather than crisp. We will use the concept of a

"possibility distribution" [Zadeh (1978a, 1979c)] to extend

the more conventional view of a dichotomy between possible

and impossible reference. Specifically, if we are dealing

with incomplete information, the dichotomy between all or

none possibility becomes useless, since the missing

information could make the difference between "entirely

possible" and "entirely impossible". This would be

incompatible with the "principle of graceful degradation"

[Norman & Bobrow (1975), Goguen (1976)] which calls for a

gradual degradation of inferences if knowledge degrades

gradually.

3.2 1 Fuzzy Descriptors Vs. Crisp Descriptors -

all language is more or less vague."It
. . .

Russell (1923, p.90)

In this section, we replace the crisp person

description of section 3.1.1 by a fuzzy description, for

example,
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"A tall man"

or

(PERSON [sex = male]

[height = tail])

Now, "tall" denotes an unspecified value from the fuzzy set
»

FS (height) = tail rather than from a crisp interval. The

most important difference between the fuzzy descriptor

"[height = tail]"

and the crisp deseriptor

"[height = >180,190< cm]"

is that there is no sharp boundary between height values

which conform with the description and those which do not.

Some height values conform better with the description than

others.

3.2 2 Types Of Uncertainty

We should note at this point that, if one value

conforms better with a descriptor than another, this does

not mean that we are less certain whether or not this value

conforms with the descriptor than we are about the other, as

Schefe (1980) suggests. The reason is that "tail" is an

«
The notation used here deviates from the notation in

t

Zadeh (1978b). Details are given in section 3.4.
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intrinsically fuzzy concept suitable to characterize the

height of an object in each situation in which it is used,

sometimes better, sometimes worse [Black (1963)]. For this

reason it is inadequate to ask "whether or not" the value in

question conforms with the deseriptor, but we can ask to

what degree this value conforms. Asking yes non It

questions about fuzzy data cannot elicit the full content of

this data, it only can help obtain a crude approximation by

reducing the size of the answer label set to 2. Note

however , that in many cases, the resulting "yes" or no11 »1

answer still must be considered a fuzzy answer. This

.

implies that in some cases, in which a "yes" answer is

given, a no answer may have been possible as well.II n

As an example, consider two detailed descriptions of a

person in which there is pairwise agreement for each

descriptor, except for one: in one description it may be

"height = tail" , in the other "height = not tail". Both

descriptions may refer to the same person, if the person is

neither particularly tail nor particularly small. The law

of contradiction does not hold for fuzzy concepts in a rigid

sense [Black (1937), Goguen (1969), Lenneberg (1975), Gaines

(1976)].

On the other hand fuzzy data leave uncertainty about

precise values [Goguen (1967)]. This uncertainty could be

analyzed statistically if a model about statistical

distribution of values in the corresponding fuzzy sets was
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available However, we must not forget that fuzzy sets and

corresponding probability distributions are distinct. In

general, there is only a weak relationship between the two

.

which indicates that something IS improbable if it is

impossible. The inverse relation does not hold. This

connection between possibility and probability has been

expressed in the "possibility - probability consistency

principle" [Zadeh (1978a)].

3.2.3 Fuzzy Laws Of Excluded Middle And Of Contradiction

The view that "something either is
. possible or

impossible", where "either - or" and "possible - impossible"

are viewed as absolutely exclusive, appears not to be useful

for reasoning in a world in which we are bound to rely on

incomplete and imprecise knowledge. A piece of additional

information or slightly improved precision
t could alter

conclusions about the possibility of an event drastically.

We are looking for a model that acknowledges that

incompleteness and imprecision are unavoidable and which

reflects this fact in its knowledge representation and in

its reasoning processes. Then, slightly improved or

degraded information only should result in slightly refined

conclusions as stated in the "principle of graceful

degradation" [Norman & Bobrow (1975), Bobrow & Norman

(1975), Goguen (1976)].
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The law of excluded middle of classical logics can be

generalized for the fuzzy case if we interpret "either x or

(not x)" in the following way:

"if x is entirely possible then (not x) is entirely

impossible; if x is less than entirely possible,

then (not x) is less than entirely impossible."

This can be expressed more formally by

Poss (x ! v) + Pass (not x v) = 1 v v  D,

where v is a free variable in the domain D. This means that

the principle of contradiction generalizes to a "principle

of trade-off" between the consistencies of a label and its

negation with a given feature value. Note that the law of

contradiction is a special case of the principle of

trade-off as stated above, whereas in Black (1937, p.55) the

crisp case is not defined [Hempel (1939)]

As an example, consider that we have x is tall" andII

nx IS not tail" in the same context. According to the
t

"trade-off principle", this means that x definitely has some

height, but the height value cannot be expressed precisely

with either the label "tail" or the label "not tail". But

.

since both labels are applicable to some degree, x's height

must be between "tail" and "not tall".
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3 2 4 Concepts Can Be Stretched -

A fuzzy concept capable of representing a collection of

values can be likened to a piece of rubber capable of

assuming a variety of shapes some by forceless deformation,

some by stretching. The more the concept must be

"sfcretched" to assume a certain value, the less adequate IS

this concept to characterize the value. The less "force" is

required, the more easily it is possible that the concept

refers to a particular value.

Following Zadeh (1978a), we deviate from the modal

logic model [Hughes & Cresswell (1968)] in which events

either are possible or impossible. Instead, we view

possibility as a gradable dimension. This view is in.

harmony with natural language usage of the concept of

possibility. For example, we say an event is easily, quite,

entirely, marginally, absolutely, hardly possible, or there

is a slight, great, small, or very real possibility for a

given event to occur.

For example, a detective or a judge uses graded

possibilistic information to determine to what extent a

suspect's alibi is in conflict with an action of which he IS

accused. This can be done by examining physical constraints

for getting from the location of the alibi in the time

between action and alibi. Incidentally, the art of solving
»

criminal cases or other problems exhibiting exceptional

circumstances may be rooted in the ability of manipulating



65

possibilistic information while neglecting probabilistic

information.

3 3 Descriptors Are Subjective

Descriptor definitions are not assumed to be universal

with respect to different describers and interpreters. This

means that the same descriptor may be defined in different

ways (as discussed in section 3.5) and even if defined by

the same method, the feature values of a descriptor do not

have to agree for two individuals. In the case of purely

artificial communication systems, "subjective descriptor"

means that different parts of the communication system may

use different denotations for the same descriptors.

For the purposes of this thesis, we will assume that

the feature dimensions on which the feature values are based

(the left hand sides of the PRUF descriptors) are universal

to the communication partners. This means that the same

criteria are taken into account to determine a particular

feature value in a given communication situation. In order

for two individuals to communicate successfully (i.e., "to

get an idea across") even if the communication medium (the

object description) denotes different things for the two

individuals, there must be "circumstances" which make the

describer's idea appear on the interpreter's end. How this

is done will be elaborated in chapter 4.



66

3.4 The Concept Of A Possibility Distribution

Zadeh (1978a) defines the concept of a possibility

distribution as a "fuzzy restriction which acts as an

elastic constraint on the values that may be assigned to a

variable." He elaborates, "if F is a fuzzy subset of a

universe of discourse U = {u} which is characterized by its

membership function v then a proposition of the formF

"X is F," where X is a variable taking values in U, induces

a possibility distribution n^ which equates the possibility

of X taking the value u to PpCu) -- the compatibility of u

with F. In this way, X becomes a fuzzy variable which is

associated with the possibility distribution n in much the
x

same way as a random variable is associated with a

probability distribution."

Russell (1923, p.87) states: "The fact is that all

words are attributable without doubt over a certain area,

but become questionable within a penumbra, outside which

they are certainly not attributable. Someone might seek to

obtain precision in the use of words by saying that no word

is to be applied in the penumbra, but fortunately the

penumbra itself is not accurately definable, and all

vaguenesses which apply to the primary use of words apply

also when we try to fix a limit to their indubitable

applicability."
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Recognizing that the penumbra is not accurately

definable, we must be aware that a possibility distribution

as defined above, can only be a first approximation to

modeling fuzzy descriptors [Watanabe (1978)]. A more

adequate model would be ultra-fuzzy sets [Zadeh (1980b)].

However , since we admit interindividual differences in the

definition of possibility distribution functions, we treat

the definition of the penumbra as fuzzy, in effect.

Having this method of representing imprecise

information we can enrich descriptions with imprecise

knowledge, since "a vague belief has a much better chance of

being true than a precise one, because there are more

possible facts that would verify it", as Russell (1923,

p.91) poinfcs out. This does not imply, of course, that we

should fuzzify precise knowledge, since
»

precise knowledge

may have more power in
.

restricting possibilities than

imprecise knowledge. The informativeness of a given

descriptor depends on the related features in the context.

3.4.1 Possibility Distributions Vs. Fuzzy Sets -

To clarify the concept of a possibility distribution it

may be helpful to relate it to the concept of a fuzzy set.

A fuzzy set is a collection of pairs of set elements and

associated fuzzy set membership values, whereas a

possibility distribution represents a fuzzy restriction on

the elements (or values) that can be assigned to a variable
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In other words, a fuzzy set represents a conjunction of

elements while a possibility distribution represents a

disjunction.

To distinguish the two concepts, Zadeh (1978b) uses the

notation

x = F

to indicate that the variable X is assigned the fuzzy set F,

and

n = F
x

to indicate that the possibilities of the values that the

variable x may assume are restricted by the fuzzy set F.

Zadeh proposes to write " y-F" to indicate conjunction and

to write " 6 -F" to indicate disjunction. For example,

" y-warm" would indicate fche fuzzy set of temperatures that

can be considered warm while " 6-warm" would indicate a1

particular temperature whose value is constrained by the

restriction that it must be from the fuzzy set y-warm".II

Since we are mostly concerned with possibility

distributions, in this dissertation, we will interpret

"warm" by default as disjunctive value. This has the

advantage that we can treat crisp values and fuzzy values in

a uniform manner. For example, we will write

temperature = 30'C
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and

temperature = warm

to indicate that something has a (particular) temperature

value which is compatible with the set of temperatures

denoted by the descriptor on the right hand side of the

equation. Actually, as we have discussed in chapter 2, we

do not want to interpret "30'C" as absolutely crisp, but

merely as more precise than "warm".

In the present study, we use a restricted set of

possibility distributions. Values that are fully compatible

with a given linguistic label will constitute the "core" of

a possibility distribution and have a possibility value

of 1; values that are fully incompatible with the label

have a possibility value of zero; in between, we will

require a monotonic transition from 0 to 1 which constitutes

the "penumbra" . The fundamental distributions are assumed

to be unimodal, and can be combined to form more complex

distributions, in principle. Here, we will deal only with

fundamental distributions and their complements, however.

Details of possibility distribution representation will be

discussed in chapters 4 and 5.



70

penumbra core penumbra
^possibility

7T 1

/
0 ^I

feature
s. y dimension

^^

support
V. /

domain of discourse

Fig. 3.2 fundamental possibility distribution

3 4 2 Acquisition And Refinement Of Knowledge

We can use the concept of a possibility distribution to

distinguish between two types of learning. "Incremental

learning" can be modeled by the process of defining concepts

in terms of possibility distributions and by the process of

gradually adapting possibility distributions according to

constraints which the "student" successively experiences.

This process is being studied by Lopez de Mantaras (1980a).

The other type of learning can be viewed as having

"gestalt" character: it corresponds to the process of

precisiation (or de-fuzzification) of knowledge. No

knowledge means: everything is possible and additional

knowledge suggests that some values are more easily possible

than others. Thus, the denotafcion of descriptors refined in

this way may successively become clearer.
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3.5 How Are Descriptors Defined?

A descriptor may denote several different levels of

meaning. These levels correspond to a "depth of

understanding" of the underlying concept. Not all of the

levels must be defined in order for the descriptor to be

used in a meaningful manner. It is conceivable that a

descriptor adopts increasingly deeper levels of meaning

through use.

For the purpose of object descriptions we will limit

the discussion to five semantic levels. These are

sufficient for object denotation, but they cannot capture
»

deeper forms of understanding of the objects they denote.

The levels correspond roughly to the languages L1 - L5,

although they have not been motivated by complexity

considerations.

3.5.1 Descriptors As Tags

The most fundamental and primitive use of a descriptor

IS to use it merely as a name tag for an object, without.

giving it any interpretation. In this case, the descriptor

»
"Understanding" sometimes is assumed to be an

all-or-nothing event The viewpoint taken in this thesis is
that understanding must be determined relative to the goal
for which the understanding process is undertaken. A
statement can be called "completely understood" when all
intended semantic levels have been grasped by the
interpreter according to the intentions of the statement
issuer.
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stands for itself and the only meaningful question an

interpreter can ask is whether or not this tag is identical

to a given object label.

3.5.2 Ostensively Defined Descriptors -

A descriptor obtains some meaning if we specify a

feature dimension which it elucidates and a way to measure

values along this dimension. A feature dimension can be

specified in terms of a procedure which yields

one-dimensional feature values or by enumeration of

partially ordered objects. A particular descriptor can be

defined ostensively by associating it with the instance of a

feature to which the descriptor applies [Russell (1948)].

At this point, the only meaningful inquiry about the

descriptor is an identity test. However, by defining a

descriptor in terms of a set of values and defining a set of

descriptors which characterize the same feature dimension,

we open the way for relating various descriptors and feature

values to one another. This corresponds to a deeper insight

into the meaning of a descriptor.

3 5 3 Descriptors Defined In Terms Of Relations -

If we have a way of measuring feature values along a

given dimension, we can define a descriptor in terms of this

feature dimension plus an indication of a feature value
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relative to other descriptors which are defined on the same

feature domain. This allows us to order feature descriptors

partially and to compare them with one another. The ability

of comparing meaning is a prerequisite for a calculus for

descriptors

3.5.4 Descriptors Defined By Instances And Relations

If both, absolute instances of and relations between a

set of descriptors are known, a descriptor becomes more

meaningful yet: not only can a feature be compared with a

descriptor in relative terms, but it also can be tested in

absolute terms.

3.5.5 Descriptors Defined By Possibility Distributions -

Finally, if a descriptor can be defined in terms of

possibility distributions over the entire domain of

discourse, both absolute and relative information is

available for any feature value. This is the deepest level

of direct referential information about an object that we

can expect.
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3.5.6 Example -

As illustration for gradual acquisition of several

levels of meaning consider this model of a person who learns

a new adjective in a foreign language by experience:

1. Our subject hears the adjective being used in an

assertion in connection with a noun. He does not

know what the adjective describes but he would be

able to repeat the assertion.

2. From the context, our subject is able to infer

which quality is characterized by the adjective and

he notices the feature value of the corresponding

object but he cannot infer the scope of this value.

Now he would be able to use the adjective in
.

an

identical situation but he could not apply it to

similar situations.

3. The adjective is contrasted to other adjectives

describing different values of the same quality.

Now he learns a multitude of situations in which

the value may be applied but he would be unable to

exceed the range of the examples that were

presented to him.

4. The subject learns a partial definition of the

adjective which allows him to use it in situations

which are beyond the scope of the examples which he

has learned.
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5. The subject learns a complete definition and gains
*

full control over the use of the word.

3 6 Linguistic Labels

We describe objects in terms of linguistic labels and

linguistic operators. "Linguistic" is contrasted here to

"numerical". Linguistic symbols are not axiomatically

defined as numerical symbols (numbers) are. For this

reason, we can not develop a calculus for linguistic symbols

in the same way as for numerical symbols. We must

manipulate linguistic symbols through approximations as long

as we do not have learning systems which are able to grasp

the meaning of linguistic labels by active experience.

In order to use linguistic symbols in such a way that

we can relate them to one another in a systematic fashion we

must give them relatable interpretations or we must

associate them with an axiomatic system for which rules

already have been developed.

Both options have been provided for in the PINPOINT

model: 1) two linguistic descriptors can be related to one

another by indicating their relative position along the

feature axis, and 2) a descriptor can be given an absolute

interpretation in terms of a possibility distribution.
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3.7 Linguistic Operators

The reference set of a linguistic label can be modified

by linguistic operators [Bolinger (1972)]. Cliff (1959)

proposed to represent each adjective and each adverb by a

number. If an adjective is modified by an adverb their

respective numbers are multiplied to obtain a new value on

the feature dimension of the adjective. For example, if

"bad" were represented by a negative number, "pleasant" by a

positive number, and "very" by a number greater than unity,

"very pleasant" would obtain a higher value on the "bad -

pleasant" dimension than both "bad" and "pleasant".

Zadeh (1972, 1975a) and Lakoff (1973) represent

adjectives by fuzzy sets and adverbs serve to modify fuzzy

sets. Fuzzy set modifiers may precisiate or fuzzify their

associated descriptor, they may shift the emphasis of the

descriptor, or they may cause a combination of these

effects. Some controversy arose about which modification

should be associated with a given adverb in English. The

standard paradigm for this question is the linguistic

modifier "very". Does "very" shift a fuzzy set [Zimraermann

(1979)] or does it modify the shape of the membership

function, as Zadeh (1972) suggested?

To find an answer to this question, we will look in
d

detail at a particular example. Consider the statements
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"the water is warm" (1)

and

"the water is very warm" (2)

What is the difference between (1) and (2) ? Assuming, the

statements refer to the same context, say to water in a lake

and the description's purpose is to help the interpreter

determine whether he or she will gain pleasure from taking a
.

swim

CASE 1: Suppose, "warm" restricts the possible water

temperatures as indicated in this possibility distribution:

< 7T

1 -

v>0
^

0 15 30 100'C

Fig. 3.3 possibility distribution defining "warm"

This distribution signifies that, in the given context,

water that is described as "warm" cannot have a temperature

below 15'C, without difficulty it can have a temperature

above 30'C, and between 15'C and 30'C for any temperature

tg > t^ the reference of "warm" to t^ would be more easily
possible than to t The absolute possibility value is not1 .
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of significance here; only relative possibility values are

considered.

The label "very warm" denotes higher temperatures than

the label "warm". Or, in terms of possibilities, for a low

temperature, there is a lower possibility to assign the

label very warm" than to assign the label "warm". Then

resulting possibility distribution for "very warm" would be

a subset of the distribution for "warm" as shown in the

figure

TT
-^

»

r

/.-vrarm /
A
'A/ -s

very warm
/

/ *»,
0 t ^

t [°C]

Fig. 3.4 possibility distribution defining a subset veryIt

warm"

This means that all temperatures that can be labeled very11

warm" can be labeled "warm" as easily, but the label veryII

warm" is less fuzzy since it indicates more precisely which

temperature the water actually has.

.

CASE 2: There are situations in which II very warm"

temperatures are not considered a subset of "warm"

temperatures, as in the question "is the water COld , warm

or very warm ?" Possibility distributions corresponding to

these labels are shown in this figure:
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7T
^

cold warm very warm
1

XX
0 r

tI°G]

Fig. 3.5 "cold", "warm", and very warm" as contrastingII

labels

Here, the modifier "very" does not have the effect of subset

selection; it acts as a shift operator on fuzzy sets and

does not make the description more precise.

Does this mean that the same linguistic modifier can

have very different effects in very similar contexts? It

does not seem so. The label "warm" in the second case can

be viewed as an abbreviation for the label "warm but not

very warm", with "warm" and "very warm" having the meanings

of the first case as indicated in this figure:

^ff,

warm, but not^vecy wazvi _ __
1- /~

/ very viarm
/^

/

/

/ ^.

0
t [°C]

Fig 3.6 "warm but not very warm" in case 10
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Similarly, modifiers of linguistic labels, the support

of whose possibility distributions is not located at the

beginning or the end of their domain interval, can have

multiple interpretations. For example, we can fuzzify or

precisiate the description "standard-sized pencil" with the

descriptors "approximately standard-sized" and "exactly

standard-sized", respectively. The interpretation of these

descriptors according to case 1 above is depicted here:

^.v standard-sized^1- r-t -N

\/more or less exactly
/.St \

/ \

\

0 / / \ ^
length

Fig 3.7 fuzzification and precisiation

3 8 Hybrid Representation Of Linguistic Deseriptors

We provide three ways of representing linguistic

descriptors to reflect the different meaning levels outlined

in section 3.5:

1. representation by label

2. representation by relations

3. representation by possibility distribution

This hybrid representation scheme corresponds to the
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different ways a descriptor may be defined. Not all three

representations must be present simultaneously, but they can

coexist.

Representation of descriptors merely by their labels is

trivial, but sufficient for trivial matching tasks.

Relational representation is suitable to express an ordering

of linguistic labels along a feature dimension; to express

subset and superset relations between linguistic labels to

account for precisiation and fuzzification; to express

right shift and left shift of linguistic values to account

for emphasizing and deemphasizing the associated concept

Representation of a possibility distribution, finally,

corresponds to detailed "bottom-up" concept definition.

The next chapter discusses how these representations

are used for description interpretation.
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CHAPTER4

INTERPRETATION OF OBJECT DESCRIPTIONS

This chapter discusses how PRUF descriptions are

compared against a data base on objects in order to yield

meaningful responses to object identification requests. We

will discuss under what circumstances two object

descriptions can be considered consistent with one another.

We distinguish between object descriptors, 1 .e.
»

descriptors»

which refer to features of individual objects, and set

descriptors, 1 .e. descriptors which characterize sets
.

»

containing those objects.

The important aspects which make the interpretation

task non-trivial are imprecision and fuzziness of the

descriptions. Imprecision and fuzziness are relative

properties: we call a descriptor imprecise if we can

resolve the corresponding object feature to a higher degree

than the descriptor itself. A descriptor is considered

precise if feature resolution for the two representations

agree. A descriptor can be called overprecise if the object

features cannot be verified to the same degree of precision
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[Popper (1976)]. Correspondingly, a descriptor can be more,

equally, or less fuzzy than a given reference feature [e.g.

Kochen (1979)1.

4 Compatibility = Adequacy + Agreement

To determine compatibility between object descriptors

and actual object features, we consider two aspects: is the

descriptor adequate in the given context and if so, to what

extent do the features in question agree? The adequacy of a

descriptor influences the weight that a particular

descriptor should be attributed and possibly the effort that

should be taken to determine the feature agreement.

Consider, for example, an object world containing

several sticks of differing length. It appears adequate to

describe one of these sticks as "the longest". In addition,

this feature will agree with one of the sticks, so we can

say the description is compatible with one of the objects.

Now suppose, we look for a "long" stick, but all the

sticks around are short. The description still appears

adequate, since length is a feature which applies well to

sticks . However the feature value "long" does not agree

with any of the candidate objects. The description is not

compatible with any of the objects.
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Let us come back to the first example, but let the

sticks have approximately the same length. Now the

description of a particular stick in terms of length ("the

longest") has become much less adequate, even though

"length" is a feature which applies to sticks. Again, the

description is not well compatible with any object. I am

suggesting that a descriptor of this kind in such a context

should be given less significance (weight) even though one

of the sticks is "the longest". Similarly, if we look for

"the long" stick and there are several sticks which qualify

as "long".

Of course, we can have descriptors which are neither

adequate nor agree with respect to their feature values, for

example, if there are only short sticks and we look for "the

long" stick.

Adequacy and agreement are related to sense and

denotation of descriptions, respectively. Frege (1892)

discusses their significance in detail. As Frege, we will

not consider connotations that might be associated with

particular words in a description. For example, we will not

distinguish between name and nickname for a given object,

but we will use them interchangeably as labels to reference

the object. We will use "adequacy" of a description in a

given situation to determine a measure of confidence of the

interpreter in its interpretation.
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4.2 Object Descriptors

The object descriptions we deal with are human created.

They can be represented either in PRUF notation, elucidating

the significant aspects of the description, or they can be

in English if the intended meaning can be extracted
.

automatically and be converted into PRUF notation. Lopez de

Mantaras (1980b) developed an ATN-based parser capable of

translating simple object descriptions from English into

PRUF representation.

In interpreting object descriptors, we firsfc look for

adequate feature references, then we compare feature values.

As result of the comparison we obtain two measures

describing the quality of the match: a measure of agreement

between description and object and a confidence measure

qualifying this interpretation. The confidence measure

indicates to what extent the overall description is adequate

to describe the object in question.

4.2. 1 Candidate Set Selection -

A PRUF descriptor has the form

[<property> = <value>]

<property> serves as key for comparing corresponding object

features in the description and the data base. We can

distinguish three cases:
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1. the data base contains a feature slot identical to

<property> or can be transformed into a slot which

IS identical. Then a comparison of the
.

corresponding feature values will be adequate.

2. the data base contains a feature slot which is
.

related to <property>, but a precise correspondence

cannot be established (e.g. <property> = tail,

<feature slot> big). A comparison of the

corresponding values becomes less adequate (but not

meaningless) . The confidence in the result of the

comparison is reduced

3. no related feature slot can be found in the data

base . It is unknown whether or not the feature in

question is meaningful for the object, i .e., the

descriptor is not adequate, in the given situation.

There is no confidence in information from this

descriptor.

Feature values referring to <property> of case 1 can be

compared directly. To compare feature values of case 2, we

generate a new slot in the data base which describes the

requested feature and the confidence in this description.

Then the feature values can be matched. If we admit

incomplete data bases, case 3 objects cannot be excluded

from the candidate set, but feature values in
.

question

cannot be compared. This results in a lowering of
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confidence that those objects are in fact good candidates.

4.2 2 Feature Matching -

The candidate set selection process provides us with a

set of objects which contains the target object. Now the

feature values have to be screened for compatible

candidates. In the following discussion, we will analyze

the possibilistic content of descriptors with respect to

reference objects. Initially, we will assume that the

descriptors are represented by possibility distributions;

subsequently we will show how this prerequisite can be

relaxed. We will define some labels to refer to possibility

distributions:

tail head
penumbra core penumbra

.A,possibility ^d

^ »< II
a

7T 1-

0 ^
featureA B c D R
dimension

I
v

support
.y

domain

Fig. 4 1 terminology for possibility distributions0
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The domain of a possibility distribution is an interval

or an ordered set of discrete points. In our discussion, we

represent both cases by continuous intervals with the

understanding that in the discrete case, only the domain

points are defined. We denote the left and right extreme

points with "L" and "R", respectively.

The interval on which the possibility distribution

assumes non-zero values, is called the support of the

distribution and is referred to by "[A,D]".

The interval on which the distribution assumes unity,

is called core and labeled "[B,C]".

[A,B] and [C,D] constitute the penumbr a of the

distribution. If one of the penumbral intervals coincides

with the starting point or with the end point of the domain

(L or R), it is called head, the other penumbral interval is

called tail. If none coincides, the right hand interval

will be referred to as "head", the left hand interval will

be referred to as "tail". Descriptors associated with the

object description will be abbreviated ROD ("request object

distribution"), those associated with the target object,

will be abbreviated TOP ("target object distribution"). In

the description of relationships between TOD and ROD, we

will investigate equality relationships between intervals

(denoted by "="), subinterval relationships (denoted by

"c"), and overlap relationships, (denoted by the percent

symbol "^").
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We will now consider the situation in which an adequate

feature slot has been found in the candidate selection

process and investigate how we can determine agreement

between descriptor and target object. We will start at a

point of no knowledge and stepwise try to find some evidence

to refine the judgement.

4.2.2.1 Initial Probing Of Matching Hypothesis -

The core of a possibility distribution indicates the

range of feature values that can be achieved without

stretching the associated concept. If the core of the TOD

IS a subset of the core of the ROD, we have positive

evidence that the descriptor may refer to the target

feature

An example for this situation is a query containing the

descriptor for some water temperature

ROD = lukewarm water

if the target object is described by

TOD = water of 30'C.

If we assume that the cores of these descriptors relate to

one another as shown in Figure 4.2, the matching hypothesis

is supported
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^-c
H core (30 °C)

core (lukewarm)

?
tanperature

Fig. 4.2 core (TOD) contained in core (ROD)

On the other hand, if the cores of the two descriptors

do not overlap at all, we have a first indication that the

object descriptor may not refer to the target object. An

example for this situation is:

ROD = warm water

TOD = cold water

if their respective cores are related like this:

core (cold) core (warm)

a

^

temperature

Fig. J4.3 core (TOD) and core (ROD) do not overlap

If the cores of TOD and ROD overlap partially, the

match is inconclusive: parts of the descriptors agree

fully, other parts do not. These parts all describe the

same feature; thus, partial incompatibility between the

descriptors indicates that the descriptors per se denote a
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different range of feature values. It does not indicate

that they may not have an identical reference. An example

for this situation is

ROD = very warm water

TOD = hot water

with the following cores:

» ccsre (hot)
core (very warm) I

^
fcanperature

Fig 4.4 core (TOD) and core (ROD) overlap partially

In summary, we can make a preliminary decision on the

matching hypothesis by looking at the cores of their

distributions only and distinguish three conclusions, "yes",

II IIno "perhaps".»
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"don't know"

yes core(TOD) no
c

ore (ROD)

Sore(TOD) no

yes %
ore(ROD)

ft It tl It
yes "perhaps" no

Fig. 4.5 decision tree for initial hypothesis

4.2.2.2 Qualification Of Hypothesis Support -

We consider the case in which the initial probing of

the hypothesis resulted in a "yes" answer. We compare the

heads of ROD and TOD. The heads are those parts of the

possibility distributions which may coincide with the

beginning or the end of the feature domain and thus may

correspond to emphasized feature values. Thus, if the heads

of the two distributions agree, we have further evidence

that the same feature value may be referred to by both

descriptors, and we can emphasize the response to the

matching request by "yes, indeed". For example,

ROD = warm water

TOD = very warm water
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have coinciding heads, if they are represented by the

following distributions

head (ROD^
Aff head (TOD)^

1-^

ROD TOD

\^
0 ^

tanperatu-T'2

Fig. 4.6 head (TOD) agrees with head (ROD)

In this particular example, the head of TOD and the

head of ROD coincide with the end point of the feature

domain.

If, on the other hand, the heads do not agree, we may

de-emphasize the matching result by yes but", indicatingtl
>

that it still may be possible that both deseriptors refer to

the same feature, but that they emphasize different

prototype values. An example for this situation is:

ROD = hot water

TOD = water of 84'C

and is depicted by these distributions:
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/ 7T

1

/
n

rs
I\
[\
l\
^

ROD te- TOD
:\
:\
;s

0 \

0 8^ I~F^

Fig. 4.7 head (TOD) does not agree with head (ROD)

4.2 2.3 Qualification Of Hypothesis Rejection

Now, we consider the case in which the initial probing

of the hypothesis resulted in a no answer We compare theII tl

support intervals of ROD and TOD. The support intervals

designate the portions of the possibility distributions to

which a corresponding reference value possibly may refer.

Thus, if th-e support intervals of ROD and TOD do not

overlap, we can confirm the rejection of the hypothesis by

no indeed not". An example for this situation would beII
>

ROD = hot water

TOD = cold water

with the corresponding support relationship:
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support (cold) support (hot)

^

tanperature

Fig. 4.8 support (TOD) and support (ROD) do not overlap

»

If, on the other hand the supports of ROD and TOD do

overlap, then there is a remote possibility that the

corresponding descriptors refer to the same feature value.

We can qualify the "no" answer by no but". At least one11
>

of the associated concepts has to be stretched to achieve

this agreement. For example,

ROD = hand warm water

TOD = very warm water

if the corresponding possibility distributions look like

this:

7T/^

1 .

WAm.ROD TOD

// %.
0

^

temperature

Fig 4 9 support (TOD) and support (ROD) do overlap
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4.2.2.4 Conclusion For Emphasized Hypothesis Support

We return to the result of section 4.2.2.2 in which the

matching hypothesis was emphasized by "yes, indeed". In

that case, the heads of the distributions were found to be

equal. At last we can check whether the tails do agree as

well. If they do, the two distributions agree completely.

The matching hypothesis is supported "absolutely". For

example,

ROD = warm water

TOD = warm water

If, on the other hand, only the heads agree, but the tails

do not, the response will be "indeed".

4.2.2.5 Conclusion For De-emphasized Hypothesis Support

The "yes, but" case of section 4.2.2.2 can be further

qualified , as well. If the support of TOD is completely

included in the support of ROD, then the entire distribution

of TOD is included in ROD (since the core of TOD was

included in the core of ROD). Thus, all objects referenced

by TOD are also referenced by ROD. The question regarding

the agreement of the two descriptors is answered by "yes".

If, on the other hand, the support of TOD is not

completely included in the support of ROD, there is a

marginal possibility that TOD refers to an object which is
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not covered by ROD. For this reason, the affirmative

response will be weakened to "quite possibly".

4.2 2.6 Conclusion For De-emphasized Hypothesis Rejection

We now revisit the result of section 4.2.2.3 in which

the matching hypothesis was de-emphasized by "no, but". In

this case the support intervals of the two distributions

were found to overlap. At last we will check whether the

core of TOD overlaps the support of ROD. If the twoso,

descriptors come rather close in their reference values, the
matching result will be "not quite".

If the core of TOD and the support of ROD do not

overlap, the response will be II noIT
.

4.2.2.7 Conclusion For Emphasized Hypothesis Rejection

In the case in which the support intervals of the two

distributions do not overlap ("no, indeed not") we also c an

distinguish two situations. We will check whether the heads

of TOD and ROD are located at the ends of the domain

interval. If so, they must be located at opposite ends of

the interval and the response on the contrary" will beII

.

given. Otherwise, the response will be "not at all".
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4.2 2.8 Summary Of Matching Procedure -

The complete decision tree for the feature matching

procedure is shown in
»

Figure 4.10. In Figure 4.11,

relationships between the corresponding possibility

distributions are represented graphically

Fig. 4.10 decision tree for qualitative matching

Fig. 4.11 possibility distribution and corresponding
matching results



I
^

don't know

y
core (TOD) c core(ROD) n

TOre(TOD) % core(RODy n

yes perhaps no

pport(TOD)
y head(TOD) ^ head(ROD) n y % n

upport(ROD)

I yes yes, but perhaps no, indeed notjindeed no but
» s

^tail(TOD)\^ ^/^upport(TODS^ Ecore (TOD) ^fiead(TOD)=^
ny n y c n y '!-. n n & y

\^fcail(ROD)^^ SISsupport (ROD^/^ \head(ROD) =^/support (ROD \

3Equite not not on the
absolutely Indeed yes osslbly no

possib quite at all contrary y?
\0



100

fr

I
»

absolutely
%

indeed
^ '%.

/ It y<?s

quite
possibly

m possibly

m\ not

quite
fr

D^. ^/~ no

r\ A /~ not
at all

^ m r on the

contrary



01

Notice that we have obtained a gradual scale of

matching results even though we have a finite number of

possible responses [Bellman & Zadeh (1977)]. Each

linguistic answer could be replaced by its neighbor and

still would quite well reflect the result of the matching

process This behavior is called "graceful degradation".

[Norman & Bobrow (1975)] and is very desirable in order to

prevent the matching process from being sensitive to small

perturbations in the data

4 2.3 Possibility Distribution Modifiers

In section 2.2.5, we introduced operators which serve

to modify possibility distributions. We distinguish three

basic types of possibility distribution modification

shifting, sharpening, and fuzzification.

4 2.3.1 Shift Operator -

^
Tt

7 \
I

/ \
/ \

/ \
/ \ ^

Fig. 4.12 the possibility distribution indicated by the
dotted line is shifted to the right.
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Shift operators serve to generate feature descriptors

whose support values are higher or lower on the feature axis
.

than those of the base distribution. These operators may

correspond to linguistic modifiers like "not quite x",

"almost x or "very x" . In our approach, we first definetl
>

the desired effect of operators and then we associate

mneraonically suitable linguistic labels.

4 2.3.2 Sharpening Operator -

Sharpening operators are used to precisiate the

reference of a descriptor. This is done by selection of a

subset of the base distribution.

7T ^

-V
/

\/
\/

/ \
/ \

/ \ )

Fig. 4 13 sharpening of a possibility distribution

Corresponding linguistic modifiers may be "exactly xn
»

"perfectly x", "precisely x"



103

4.2 3.3 Fuzzification Operator -

Fuzzification operators make descriptors less specific.

This is done by creating a superset of the base

distribution.

it /N

/ \
-\

/
\

/

^.

Fig 4 14 fuzzification of a possibility distribution

Corresponding linguistic modifiers may be "more or less x ft
»

"sort of x tl "approximately x", "around x".>

4.2.4 Relational Descriptor Matching

The qualitative distinctions made in sections 4.2.2 and

4.2.3 suggest a simplified approach to feature matching:

instead of detailed comparison
.

of the possibility

distributions associated with the descriptors, we can

inspect relationships between possibility distributions

directly. This is where the hybrid representation of

linguistic labels comes into the picture. Useful

relationships to be represented include equality, subset,

superset, overlap, disjunctness, and "opposite of"

relations
.
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These relations may be useful for several reasons:

1. they express qualitative properties which may be

more easily described than a possibility

distribution. For example, it is much simpler to

state that "cold" refers to lower temperatures than

"warm" and "warm" to lower temperatures than "hot"

than it is to state that a particular temperature

value is a typical or a marginal instance of

"warm". Thus, there may be situations in which

only relational information is available and it may

suffice to answer a given request;

2 the effect of linguistic modifiers may be more

easily described in terms of qualitative relations

than by quantitative operators. In many cases

this information may be sufficient to answer a

request in a meaningful manner. For example,

suppose we view the linguistic modifier It very in an

given context as a subset selecfcor and dataour

base contains the assertion

"the water is very warm"

and we want to answer the request

"is the water warm?"

then our system will respond "yes", since all water

that IS
.

"very warm" can be labeled "warm", as a
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consequence of the subset relationship

4 3 Set Descriptors And Quantifiers

The previous section was concerned with reducing a

candidate set of objects whose features correspond to a

given object description. In this section, we will discuss

how the resulting set is matched against combinations of

indefinite or definite set determiners and crisp or fuzzy

quantifiers. Object descriptions may denote single objects

or sets of objects and they may refer to specific objects or

to unspecific ones. In natural language, this difference is

expressed by the use of definite or indefinite articles.

Examples are given below:

1. a big dog

2. the white cafc

3. Johnny

4. three Chinese men

5. the 3 Cs

6. several cups

7. the bunch of people

The following table classifies deterrainers and quantifiers
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into seven categories:

1 > 1

unlabeled labeled crisp fuzzy

xa thpee
indefinite several

an 3

the
the "Johnny" definite the 3 bunch of

Fig. 4.15 seven different set quantifiers

In our notation for descriptions, determiners and

quantifiers are specified by descriptors, namely

[determiner = definite]

or

[determiner = indefinite]

where "indefinite" is assumed by default, and

[quantity = <quantifier>]
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where <quantity> can be a crisp or a fuzzy number II .] II is
.

assumed by default.

In the following sections, we will present methods for

the interpretation of simple and composite set descriptions.

4.3.1 Singular Indefinite Descriptor -

The feature matching process provided us with a set of

objects which conform with the corresponding object

description to a higher or lesser degree. In this and in
.

the following sections we will assume that the objects are

sorted in decreasing order of agreement with the

description. The objective now is to select a subset which

satisfies bofch the feature description and the set

description as best as possible.

An example for a singular indefinite object

identification request embedded into an instruction is:

"find an x It

where x is an object from the sorted list. This instruction

is satisfied best with an objecfc from the top of the list,

since this object satisfies best the features of the.

description and satisfies completely the singular indefinite

set reference. The agreement between response and

description corresponds to the agreement between the object

and the feature description. In case the object list is
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empty, the description does not only disagree with the

objects, but it also is inadequate.

4.3 2 Singular Definite Set Reference

An example for this reference category embedded into a

retrieval instruction is:

"find the x tt

The difference to the previous
9

category is that the

description presupposes that there is only one object which

satisfies the feature description since it contains a

definite determiner. If we are to determine degree of

compatibility for the complete object description and the

response , we must verify that only one object conforms with

the feature description. Thus, rather than looking for the

first object on the list, we will look for the next best

occurrence as well. If a second object does not exist or if

it has low agreement with the description, compared to the

first object, then the description can be considered highly

adequate and we may have high confidence in the result of

the description matching process. If a second object does

exist, however, we compare its degree of agreement with the

object descriptor with that of the first object. The

greater the difference in agreement, the higher is the

adequacy of the descriptor and the greater is the confidence

in the matching result.
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4.3 3 Singular Labeled Descriptor -

A retrieval instruction of this category is:

"find » x I 11

where » x is the name of a specific object. Here, not the
t

object on the top of the list, but the object with

corresponding name is requested. As in the indefinite case,
the agreement with the description depends on the feature

agreement and the adequacy of the description depends on the

existence of an object with the correct name.

4 3.4 Crisp Plural Indefinite Descriptor -

An example for this category is

"find n x s II

where n is a natural number . We will assume, for the

moment, that the request asks for "exactly n x's", although

there are situations in which the interpretation "at least n
IIx s may be intended. This issue is discussed in the

section on fuzzy cardinality. As in the singular case, the

best candidates are on the top of the object list. Thus,

the top n objects are selected. The agreement with the

overall description is taken to be the minimum of the

individual agreements. The adequacy of the description

depends on the existence of n objects.
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4.3 5 Crisp Plural Definite Descriptor

An example is

"find the n x s n

Here, the first n objects are taken from the top of the

list. To determine the adequacy of the descriptor, the

n+1st object is compared with the nth object with respect to

its feature agreement. If the difference between their

agreement with the descriptor is
*

substantial, the

description is considered highly adequate.

4.3.6 Fuzzy Indefinite Quantifier

Consider the instruction

"find several x st II

Here, for the first time the quantifier is not crisp
.

How.

many cups are "several cups"? The view that we will take

is that it depends on the particular situation context what9

is the best answer to this question. As in the crisp case,

we will assume here that the intended meaning of "several"

is "exactly several" rather than "at least several" or "at

most several".

We can define what we mean by "several" in the context

of cups by means of a possibility distribution. For

example:
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^ IT (several)
1-

^

0 I I I

0 1 4 6 2

Fig. 4.16 possibility distribution for quantifier "several"

This distribution signifies that a single cup or more

than 20 cups cannot be referred to as "several cups". On

the other hand, 4, 5, or 6 cups would make up sets to which

the label "several cups" fits perfectly.

Now suppose, in the given data base there are many

objects which agree perfectly with the concept of a cup. In

this case, the answer to the question above is simple: 4,

5, or 6 of these objects would satisfy the request best.

But what is the best response if the data base contains less

than four perfect cups plus a few objects which can be

considered cups to a lower degree. Can the lack of perfect

cups be compensated for by responding with a larger set of

less perfect cups to satisfy the request? Hardly. Instead,

we should maximize the agreement with both concepts: with

the concept of cup and the quantifier "several". We do this

.

by arranging the candidate cups in
. decreasing order of

"cupness" and return as many cups from the top of the list

as will maximize the minimum of the two individual
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agreements This maximum mutual agreement value then can be

taken as the adequacy value for the request

max [mln (TT (several^), v (object,)]
f cup 1

k7T

iti
.

.

^
e> ©' &© 0 ?^»

Fig. 4.17 joint possibility distributions for response
optimization

4.3.7 Fuzzy Definite Quantifier -

An example retrieval instruction for this case is:

"find the bunch of spoons"

Here, the number is left fuzzy, but it is presupposed that

the features distinguishing spoons from non-spoons describe

a rather crisp set, in the given context. To determine the

best response to the retrieval request, we want to maximize

adequacy and agreement of the response The adequacy is.

influenced by the difference of agreement between the

objects in the response set and the agreement of the next

object in the list and by the maximum agreement of the

"worst" response object and the quantifier agreement.
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7T max [p (object^) - p (objectj^)]ff^ spoon spoon
<

9

Fig. 4.18 joint possibility distribution for response
optimization

4.3.8 Higher-order Quantification -

Interaction between multiple set quantifiers can be

treated in much the same way as a combination between set

descriptors and object descriptors. Consider, for example,

the following instruction'

"pick several bunches of pretty flowers"

Here, we have interaction between three descriptors. Each

bunch of flowers is supposed to be characterized by a

particular appearance of its elements which may restrict the

number of flowers in each bunch. So far, there is no
.

difference to section 4.3.6. But if we ask for several

bunches, we may have to take into account an additional

trade-off, if the resource of pretty flowers is limited. In

the absence of additional information as to which property

or quantifier is the most important to satisfy, we will

maximize the minimum of all agreement values for a given

constellation while maximizing each individual agreement
. . .
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value within the above stated constraint. In case of the

example above, we would have a set of constellations which

satisfy the description "bunches of pretty flowers" to a

higher or lesser degree. From this fuzzy set of sets we

select the one which maximizes both its membership in the

fuzzy set and the quantifier "several"

4.4 Note On Fuzzy Cardinality

As alluded to earlier , different interpretations of

natural language descriptions from the ones discussed above,

are possible. Here, we will review the concept of fuzzy

cardinality and point out a variety of interpretations of

fuzzy quantifiers. The search for an appropriate measure of

the cardinality of a fuzzy set boils down to the question

how we can best characterize the intuitive notion of the

magnitude of a fuzzy set. At first glance, the sum of the

individual membership values of the elements of a fuzzy set

[Zadeh (1977d)] provides an appealing measure, but in many

cases it yields undesired results.

For example, the cardinality of the fuzzy set of very

rich people would be rather large if everybody who owns

something contributes to the measure. More appropriately,

cardinality of a fuzzy set is characterized by a fuzzy

number, as we did in the foregoing sections. Then the

meaning of a quantifier can be related directly to the

domain to which it is applied.
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As in the non-fuzzy case, fuzzy quantifiers in natural

language may have an implied meaning deviating from the most

straightforward interpretation. Specifically, a quantifier

Q may be intended to mean [Zadeh (1979c)]:

1. at least Q

2. exactly Q

3. at most Q

Examples are:

1. can you lend me c? dollars?

don't worry, I have another pen

2 she has two jobs

he has several children

he can do fifteen push-ups

yes I can handle a few more students in my class»

In our work, we assume that the appropriate interpretation

has been obtained in the translation process from natural

language and is made explicit in the meaning representation.
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4.5 Integrated Search For Best Response

In the preceding sections, we presented the different

aspects of matching separately, for easier
.

conceptualization. In practice, the steps we have presented

will not be carried out entirely sequentially. In

particular, candidate sublists do not always have to be

determined entirely. The lists must only be long enough to

satisfy the quantifiers, since all the elements are taken

from the top of the list.

The result of an object description interpretation may

reflect the adequacy and the agreement measure obtained

during the matching process: the adequacy may be manifested

in a summarized, qualitative answer and the agreement

measure may be reflected in the detailed matching result.

This point is discussed in more detail in the discussion of

L-FUZZY.



117

t

CHAPTER5

FROM FUZZY TO L-FUZZY

This chapter describes a computer implementation of

some of the ideas presented in the previous four chapters.

This implementation IS based on the AI-language FUZZY.

[LeFaivre (1974b, 1977)] which presented a first step

towards the integration of fuzzy sets into programming
*

languages. We describe a dialect of FUZZY, called L-FUZZY

which substitutes linguistic modifiers for numerical

modifiers. This allows for direct representation of fuzzy

sets and possibility distributions instead of representation

of (crisp) elements of fuzzy sets.

This method of "linguistic representation" is an

alternative to "linguistic approximation" [Zadeh (1975c),

Bonissone (1979a,b)]. In linguistic approximation,

numerical values or distributions of high resolution are

identified with linguistic labels of low resolution. In

contrast, in linguistic representation, we delay reference

to high-resolution information as long as possible. By

relying more heavily on higher-level relationships between
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linguistic labels than on low-level definitions, the

computational effort can be reduced.

Weare using the language FUZZY as basis for our

implementation since FUZZY provides a rich system of control

mechanisms that have been tested elaborately and stand the

test [Wahlster (1978), Hahn et al. (1979)]. FUZZY runs

under control of the LISP interpreter. Therefore all

procedures and interactive debugging tools of the LISP

language are available to the FUZZY user. The FUZZYsource

code is well-structured and transparent. It can be

understood by FUZZY programmers with the help of the LISP

interpreter even though no program code documentation is

available.

5.1 Descriptors In FUZZY

A summary of design considerations and language

features of FUZZY is given in Appendix B. In the present

section, we will compare the representation of descriptors

in FUZZY and L-FUZZYin some detail.

FUZZY deseriptors may contain both a "value" and a

numerical value modifier, called "Z-value". The Z-value

typically is used to associate a fuzzy set membership value,

a degree of possibility, probability, certainty, etc., with

the value. In this way, a fuzzy set can be characterized by

a collection of fuzzy set elements. The fuzzy set elements
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are represented by a pair «value> <Z-value» . If we view
.

.

the numerical membership value of a fuzzy set element as
«

representing a point on a 1-dimensional scale then the»

descriptor of a fuzzy set element in FUZZY is crisp.

The information we would like to represent is not well

enough defined to allow this rigid representation, in
.

general. Rather than representing fuzzy sets and

possibility distributions in terms of well-defined

instances, we like to directly represent linguistic

descriptors which can stay by themselves, without definition

of their meaning in precise terms. If more precise

interpretation of a given descriptor is required, its

meaning can be approximated in terms of a possibility

distribution, for example. In this way, the higher-level

concept, namely the linguistic label, serves as primary

reference and its interpretation in terms of a more precise

representation is an approximation. (In contrast, in
f

linguistic approximation, the possibility distribution

serves as primary reference and the linguistic label is

viewed as approximation.)

Representations of this type are necessary if we

believe that higher-level reasoning is possible without

understanding of underlying lower-level mechanisms or that

lower-level mechanisms can be inferred from higher-level

»
this appears to be the most natural interpretation which

is commonly used.
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observations. For example, we may talk about movement of

airplanes without understanding the forces that make

airplanes fly. Thus, to predict a movement of the plane

without this detailed knowledge, we need a high-level

representation for airplane movements. In the process of

understanding the underlying forces, we build models which

constitute lower-level approximations to actual forces, but

the high-level knowledge may still accurately describe the

movements.

5.2 Linguistic Modifiers In L-FUZZY

The conversion from numerical modifiers in FUZZY to

linguistic modifiers in L-FUZZY involves the introduction of

some conventions. This is to maintain advantages that stem

from the well-defined structure of the number system. In

particular, we want to be able to compare unequal linguistic

modifiers, without over-interpreting their meaning. In our

view, representing linguistic modifiers by real numbers is

an over-interpretation, even if the particular numerical

value is not considered very significant

In FUZZY, data base entries are ordered according to

the value of their numerical modifier (Z-value). This

allows for efficient information retrieval. Linguistic

modifiers are not sequenced as rigidly as numbers are;

however, they can be partially ordered according to their

relative effect on the descriptors they modify. For
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example, the linguistic modifiers

»
absolutely, very, somewhat, not,.

. >

not at all, on the contrary

are ordered according to strength of amplification of their

associated base statement [compare Lenneberg (1975,

PP.29f.)]. By arranging linguistic modifiers in this way

the data base can be pre-screened for an appropriate

descriptor . To determine the compatibility between two

descriptors with different modifiers, further analysis is

necessary.

Substitution of linguistic modifiers (L-values) for

numerical Z-values requires replacement of the rules

governing these values. In L-FUZZY this is done as follows:

1. L-values are LISP atoms made up by lower case

characters and digits. Blanks are written as

hyphens.

2. L-values evaluate to themselves (like LISP

numbers).

3. L-values may have qualitative properties in a

property list. These relate them to other

L-values. These properties include equivalence,

subset, superset, emphasizing, and weakening

»
The colon (":") is used in L-FUZZY to denote the neutral

modifier called "unitor" [Zadeh (1978b)].
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relationships.

4. L-values may have context-adaptive procedures

associated which modify possibility distributions.

In this way, absolute references of descriptors can

be manipulated.

Since L-values do not correspond to points, but rather to

fuzzy ranges, they are treated in the language more like

ranges of Z-values than like Z-values themselves. We have

not provided for ranges of L-values, in L-FUZZY. The effect

can be achieved, however, by defining a new L-value whose

reference extends over the range of the two original

L-values.

5 3 Possibility Distributions In L-FUZZY

As in FUZZY, provisions for semantic interpretation of

assertions are left up to the user, in L-FUZZY. A standard

format is used to specify possibility distributions in

accordance with section 4.2. A 5-tuple

(F, U, S, E, LIST)

sets up specifications for the distributions: F designates

the feature dimension that the distribution refers to,

U designates the units that are used on the abscissa, s

indicates whether the possibility distribution has standard

representation (S = 'P) or is inverted (S I). In thet
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inverted representation, the possibility values 0 and 1 are

interchanged so that we obtain an "impossibility

distribution", in effect [Sanchez (1978)]:

ff
^

1-

^ S= T

0 >I

A B c D R

ff
^

1

S= 'I

0 ^.

L A B D R

Fig. 5.1 standard and inverted representations of
possibility distributions

E refers fco the environment or context in which the

distribution is applicable. LIST is a 6-tuple:

(L, A, B, C, D, R)

EL R] denotes the discourse interval. In standard

representation, A marks the transition point of the

possibility, n, from n = 0 to n > 0, B the transition from

n < to n = 1, c from n = 1 to n < 1 , and D from n > 0 to
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n = 0 when proceeding through the discourse interval fr om L

to R. In the inverted representation, n = 0 and n = 1 are

interchanged. If S = p and n (D or s = I I and»

n (R) = 1 then we set A:=B:=L, and if S = p and n (R) = 1

or s = I and n (R) = 0 then we set C:=D:=R.

As an example, the possibility distribution indicating

warm water temperatures, which is depicted in Figure 3.3,

could be represented by

(TEMPERATURE CELSIUS P WATER (0 15 30 100 100 100))

This representation allows for unimodal possibility

distributions, or in the case of inverted distributions, for

unimodal "impossibility distributions".

5.4 Fuzzy Matching

The multiple representation of linguistic modifiers

allows for matching of assertions on various levels.

Suppose, the fuzzy associative net contains assertions of

the following form:

«basic assertion> <linguistic assertion modifier»,
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for example:

((JOHN IS TALL) very),

((BOB IS TALL) :),

((TOM IS MEDIUM-SIZED) more-or-less).

A request to the data base has the following form:

(GOAL <basic request> <linguistic request modifier»,

for example'

(GOAL (BOB IS TALL) very).

The request modifier has the function of specifying the

range of possibilities which should be searched to arrive at

the answer to the request. We can distinguish three types

of requests to the data base:

1. basic assertion = basic request

assertion modifier = request modifier

2. basic assertion = basic request

assertion modifier 4= request modifier

3. basic assertion 4 basic request

In the first case, the request can be satisfied by

"trivial matching" , 1 .e.
.

only the labels must be compared,>

the possibility distributions involved are irrelevant.
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In the second case the relative effect of modifiers

must be considered. For example, in
.

Figure 3.4, the

modifier "very" has the effect of precisiation (or selection

of a fuzzy subset of possibilities) with respect to the

unitor (i.e., the identity modifier). Thus, an assertion

which holds when modified by "very" also holds when not

modified . Conversely, an assertion which holds when not

modified , possibly may hold when modified by "very". The

following table shows the compatibility between four

modifiers in linguistic terms:

<

request
very more or less not.

.

assertio

very absolutely indeed no not at all

on the
possibly absolutely indeed contrary.

.

more or less not quite possibly absolutely no

on the
not not at all contrary no absolutely

In the third case, where the basic assertion does not

agree with the basic request, the possibility distributions

must be analyzed in detail. For example, given that the

data base contains the assertion
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((TOM IS MEDIUM-SIZED) more-or-less),

the answer to the request

(GOAL (TOM IS TALL) :)

requires a comparison of the possibility distributions of

"medium sized" and "tail" over the height of a person. In

this case, the comparison yields the answer "not quite".

Ten standard answers can be generated this way:

"absolutely", "indeed", "yes", "quite possibly", "possibly",

"not quite" , no "not at all", on the contrary", andn It II

"don I t know". These answers are obtained according to the

decision procedure for qualitative matching which .

IS

described in section 4.2.2 and depicted in Figure 4.10.

Observe that there is
.

relatively little qualitative

difference from one possible response to the next. This is

an indication of "graceful degradation" of performance when

program data degrades gradually.

5.5 Informative Output

In FUZZY, a retrieval request returns an assertion

which best fulfills the request specification, or it fails.

In L-FUZZY, the quality of the match between the request

descriptor and the target descriptor is returned in

linguistic terms [compare Tong & Bonissone (1979)]. For

example, if request descriptor and target descriptor are
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related as in Figure 5.2,

mediumsized tail
Aff * ^approx.

mediLimsized^

Bi '/. .
0

Fig. 5.2

the request

(GOAL (TOM IS TALL))

yields

(not-quite: ((TOM IS MEDIUM-SIZED) approximately))

(compare with Figure 4.11). Thus, the qualitative matching

result indicates to what extent the response fulfills the

request. This information can be useful to decide whether a

search process can be stopped (if the request IS
.

sufficiently satisfied), whether a better response should be

searched for, or whether a different goal should be pursued.
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5.6 Implementation Of L-FUZZY Procedures

The integration of L-values into the control structure

of FUZZY was done by systematic replacement of Z-values by

L-values. The default ZHIGH and ZLOW have been replaced by

LDEFAULTand LCONTRA, respectively, and have linguistic

values of (unitor) and "_" (antonym of unitor),II II.
.

respectively. ZRANGEis replaced by LRANGEand has a

default value of n It as well. The variables in the fuzzy.
. >

source code which require numerical Z-values are typically

prefixed by "Z". The prefix of these variables has been

changed to "L" where the underlying operations had to be

changed to deal with linguistic values. Also, procedures in

the FUZZY source which were affected by the changes have

been relabeled accordingly. The code modification was done

in such a way that the logical control flow of the

procedures was not affected. Instead, if additional

operations are required in the linguistic reasoning process,

an additional procedure level was added which roughly

corresponds to the decomposition of possibility

distributions into qualitative statements.

The following language primitives require L-values in
.

place of Z-values: ACCUM:, ADD, ASSERT, BACK, EXIT, NEXT,

SUCCEED, SUCCEED?, SUCCEED!, LVAL:(formerly ZVAL:). The

following primitives require L-values in place of Z-ranges.

DEDUCE, FETCH, FOR, DEDUCE:, FOR FETCH, FOR GOAL,FOR TRY,

GOAL, TRY.
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5 7 Future Developments

At this point, L-FUZZY only contains the structure for

representing and manipulating linguistic information. This

has been done in such a way that numerical values can be

treated as a special case of linguistic values. What is

missing is a system of linguistic labels, linguistic

modifiers, and linguistic inference rules.

L-FUZZY has lost the conveniently structured system of

numerical modifiers which FUZZY has available. For this

reason, we need a tool for defining linguistic values,

preferably by interaction with a computer, by means of a

dialogue. As one of the next steps, we intend to implement

a knowledge acquisition component in L-FUZZY [Lopez de

Mantaras (1980a)].

As a next step, we can implement inference rules, both

on the level of possibility distributions and on the

relational level. The deduction capabilities of L-FUZZY

should turn out to be useful for deriving heuristic rules

from low-level possibility inference and to derive

possibility distributions from high-level relational

inferences.

As a step towards further development of L-FUZZY, we

may generalize the concept of linguistic modifiers in
.

L-FUZZY in such a way that they can modify various

dimensions, e.g truth values, degrees of certainty,.
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degrees of importance, etc. It appears more natural and

efficient to do this by expressing the referenced dimension

implicitly in the linguistic modifier than by implementing a

vector of modifiers, as LeFaivre (1974a) suggested.
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CHAPTER6

EXAMPLES AND APPLICATIONS

We have described ways of describing objects by means

of linguistic descriptors and of interpreting these

descriptions for object identification. In the present

chapter, we will give some examples of practical

applications for the described techniques. To this end, we

will summarize the features of linguistic descriptions:

- linguistic descriptors are imprecise and fuzzy

- linguistic descriptors are incomplete

- linguistic descriptors are context-adaptive

- linguistic deseriptors are subjective

These features suggest that this type of object descriptions
t

may be useful in situations in which

- a relatively large set of features is required to

describe all objects
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- the feature values cannot all be distinguished

clearly

only a relatively small subset of features is

required to uniquely designate most of the objects

In the following sections we will give some examples.

6 "Soft Sciences"

In the so-called "soft sciences", namely social

sciences psychology, linguistics, but also in fields like

economics, meteorology, medicine, systems analysis, research

results are viewed to be significant to a much lower degree

of precision than they can be measured . Theories and

findings in these areas are commonly communicated and taught

by words -- as compared to by mathematical formulations as

in the "hard sciences". In order to use these theories and
t

research results in a scientific manner , the meaning of

these words must be established , to a certain extent.

Traditionally, this is done by translating somewhat crude

observations into precise terms (usually points on a scale)

and by giving error bounds indicating the precision of the

observation. Imprecise observations then are treated as if

they were precise and are used in calculations to yield

precise results. The error bounds are used to indicate that

the actual result may differ, but this is taken merely as a

lack of perfection, not as an intrinsic necessity. Very
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much care has to be taken not to over-interpret the results

of such calculations when it is translated back into terms

that are commensurable with the original experiments.

An alternative approach is linguistic modeling. Here,

somewhat crude observations are represented by somewhat

crude linguistic terms, namely words, which correspond to

fuzzy possibility distributions rather than points on a

scale and directly reflect the precision of the observation.

Reasoning processes which make use of these observations

then take into account the characteristics of the

distribution, rather than merely the extreme error bounds.

The result of the reasoning process will correspond to a

possibility distribution which may be more crisp or more

fuzzy than the original distributions. It will directly

reflect the sharpness of the result.

6.1.1 Example: Coding Of Facial Expressions -

A facial action coding system (FACS) has been developed

[Ekman & Friesen (1978)] to describe human facial

expressions. This is to relate facial expressions to

various emotional conditions or different social situations.

Obviously, it is not meaningful to describe facial

expressions by measuring distances between well-defined

points on the faces of the subjects. This is, because it is>

not possible to agree on well-defined points which are

significant for all human faces and because it is not
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possible to find rules which would use these measurements to

allow for comparison of facial expressions of different

people in a meaningful way. This is on top of the fact that

the effort in determining these measurements would not be

justifiable for anything they might be used for, unless

perhaps, it would be part of an automatic face description

process .

Instead, facial expressions are described in linguistic

terms, in this coding system. Aspects of a facial

expression are described in terms of "Action Units" which

have a strong correspondence to the muscular structure of

the face. The facial expression then is described in terms

of the contribution of these Action Units to the

"distortion" of a "neutral" face:

"An Action Unit can be totally uninvolved, or it can

be: trace slight marked pronounced. . . . . . . . . . . .

severe extreme maximum. The meaning of this. . . . . .

scale will become apparent as you study the FACS

illustrations in each chapter. And you will learn what

IS meant by trace, slight, etc., in practice scoring

where you will apply this scale II
. . .

Scoring requirements for a particular Action Unit are

expressed by rules as follows:
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(1) Lateral portion of brow pulled upward

slightly, changing the shape of brow.

and (2) Lateral portion of eye cover fold stretched

slightly.

If you did not see the brow move, then the

additional requirement below must be met, and at least

one requirement (1), (2) or (3) must be marked with the

other two slight.

(3) Horizontal or curved wrinkles above lateral

portion of brow. If these wrinkles are in

the neutral face, they must increase either

sl^gjrbly or markedly.

In a child, you might never see requirement (3).

In such instances, if you did not see the brow move,

then you must rely just upon requirements (1) or (2),

but one of them must be marked and the other slight.

6.1.2 Medical Consultation -

A better known example for use of imprecise knowledge

in artificial intelligence is the MYCIN system. In MYCIN,

qualitative information about biological cultures is

evaluated to obtain a measure of evidence for or against the

existence of certain microorganisms. Degrees of evidence

are expressed in numerical terms which are translated for

the user into linguistic terms. Measures of belief and of
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disbelief can be combined by numerical rules to yield

"certainty factors".

Similar as in the previous example, the linguistic

labels are represented by points rather than by fuzzy

ranges, in MYCIN [compare Wechsler (1976)]. A problem with

the numerical inference rules in MYCIN is that they require

independence of pieces of evidence. In a complex system, in

particular in a system whose underlying mechanisms are not

completely known, this assumption never can be guaranteed to

hold. For example, if the same MYCIN rule was applied twice

during the diagnosis process, the resulting diagnosis were

different than if it were applied only once.

With possibilistic information we can develop inference

rules which do not require independence of observations. If

a rule that already was used is applied a second time, the

range of possible results is not further restricted.

Initially, it will be more difficult to set up inference

rules and they will nofc be as general as in the MYCIN

system. However, they may be more acceptable to the user >

since they can be written in terms of examples as they
.

appear in a text book. Different variables can be used as

entries of a table which takes linguistic values. The

expert can specify (in linguistic terms) by how much a given

variable must change such that a given diagnosis does not

apply any longer. Such a diagnosis system can be programmed

in such a way that it gives very conservative advise, i.e.,
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it rather answers "don't know" than speculate erroneously

6.2 Person - Machine Interface

In developing expert systems, we bridge the gap between

high-level knowledge and low-level consequences. The first

step of formulating high-level knowledge can be by words.

Relationships between fuzzily described causes and uncertain

consequences can be loosely specified [compare Ragade

(1976)]. A computer system as described as described in

this thesis can be used to gain better knowledge about what

we mean if we use certain linguistic terms. This can be

done most efficiently by interactive systems which give

feedback about the interpretation of the descriptions to the

user and allow him or her to modify either the description

or its interpretation. In such a way an artificial>

language can be constructed which uses English labels and

has a fairly straightforward interpretation to the human

user.

6.2.1 Robot Control

An interactively agreed-upon language can be used to

commanda manipulator or a robot [Munson (1971), Uragami et

al. (1976)]. This can be done in much the same way as we

tell a car driver who is unfamiliar with the particular

surroundings how to get to a certain destination. If we sit
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in the car we can use feedback and modify our instructions»

interactively. Accordingly, we can direct a robot or

interact with a scene analysis system with linguistic

commands instead of formulating mathematical procedures to

achieve the task.

6.2.2 Identification Of Natural Products -

.
Consider the description of different kinds of wood.

It appears impossible or at least extremely impractical to

classify different grains of wood in numerical terms.

However, a wood expert may be able to distinguish two

different kinds of wood easily by comparing grain, texture,

hue, hardness, efcc. in linguistic terms. These linguistic

descriptors can be used for automatic classification

procedures. In the interactive approach, denotation of

descriptors can be taught by examples by presenting typical

and marginal combinations of feature values together with an

expert classification.

6 2 3 Route Finding

Suppose, someonegives you instructions to find a

certain place. Typically, these instructions are given in

linguistic terms, rather than by means of precise

»

This example was suggested by Professor L.A. Zadeh.
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coordinates or measurements Nevertheless, in many cases we

are able to find exactly the place we have been looking for

[Riesbeck (1980)]. We do this by combining constraints from

the linguistic description. Accordingly, we can implement

linguistic decision procedures which use fuzzy constraints

to identify a sequence of landmarks.

6.2.4 Process Automation -

Consider a complex system like a power plant or a

production facility. Typically, many of the component

processes are understood well-enough that they can be

controlled by means of a mathematical model. The

interaction of these processes frequently must be supervised

by a human expert, however, because they are unfit for

mathematical formulation. The expert uses heuristic rules

or intuition to decide on specific control actions [Mamdani

& Assilian (1975), Mamdani (1976), Kickert & Mamdani

(1978)]. These rules and intuitions can be put into words

and linguistic algorithms. This may be very useful 1) for

t »

gaining better understanding of the process interaction, 2)

for training new "to-be experts" 3) for further automation

of the control process.
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6.3 Communication

Consider the transmission of a television image. Great

bandwidth is required to transmit a TV image in terms of

low-level features, i.e., black and white image points. For

the transmission of more specialized information, this

bandwidth can be greatly reduced. For example, if we limit

our system to transmit text only, we do not have to send

information describing the shape of characters in the

alphabet. Instead, we can transmit codes representing the

characters and give the receiver some general knowledge

about text, namely the shape of characters represented by

each code, the sequential nature of characters in a text,

left to right and. top to bottom arrangement of text. This

is done in computer terminals capable of displaying text: a

character generator interprets the transmitted code and

displays the corresponding character in its appropriate

position. Observe that transmitter and receiver become

"conceptually detached" (as discussed in section 2.2.7) by

providing the receiver with "world knowledge". This general

principle can be extended by providing the receiver with

higher-level knowledge. For example, we may want to build a

system which specializes in transmission of cartoon figures.

The receiver will be equipped with a cartoon generator

instead of a "character" generator. Different facial

expressions and spatial relationships between the figures,

etc. may be given by a linguistic description which is

decoded by the receiver for cartoon generation. We may have



142

receivers with different cartoon generators (as we have

computers with different character generators). Thus, one

linguistic description may invoke different images
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CHAPTER7

DISCUSSION AND CONCLUSIONS

This chapter summarizes the main features of the object

characterization and interpretation approach that has been

presented. The approach is compared with existing computer

implementations. A comparison with human descriptions is

made and an outlook for future work in this area IS

presented.

7.1 Summary

We developed a family of object description languages,

beginning on a primitive unambiguous level and subsequently

introducing additional features to deal with increasingly

complex situations. This leads us to L7, the most advanced

level we discuss. L7 incorporates linguistic descriptors

for multi-dimensional feature spaces. They are designed to

be context-adaptive and allow for successful communication

even if they have subjective denotafcion within the

communication cortext.
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The semantics of L7 is discussed in detail: the

descriptors specify a fuzzy range of possible feature

values. The concept of graded possibility is discussed and

contrasted to the concept of probability. The advantage of

fuzziness in sparsely occupied feature spaces is shown. The

role of linguistic labels and operators is discussed.

Different methods of specifying the meaning of linguistic

descriptors are given and it is explained how these methods

can be combined for comprehensive feature representation.

It is discussed how object descriptions in L7 can be

interpreted with reference to the given situation context.

For comparison of two descriptions, adequacy of the

comparison and agreement of the descriptors are

distinguished to determine a compatibility value. Matching

of two descriptions involves comparison of object

descriptors and of set descriptors. It is shown how

qualitative matching results can be obtained which can be

refined successively and how this matching process can be

integrated into a search process to yield the best response.

Design considerations and implementation of linguistic

modifiers into the programming language FUZZY are discussed.

The objective was to make maximal use of existing control

structures while substituting fuzzy possibility

distributions for fuzzy set membership values. Examples for

this system are suggested. They include applications for

research in the "soft sciences" and alternative methods for
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person-machine and machine-machine communication.

7.2 Comparison With Other Systems

The best known computer system for identification and

manipulation of objects is SHRDLU [Winograd (1972, 1973)].

However, since SHRDLU operates in a well-defined, clear-cut

artificial blocks world , the problems emphasized in this

thesis do not appear In particular, SHRDLUdoes not.

address the issues of a suitable language for complex

environments, context-adaptability, and fuzzy descriptors.

For this reason, no feature matching problem exists. SHRDLU

is implemented in PLANNER [Hewitt (1969, 1972)3 one of the

crisp models of the language FUZZY.

Shaket (1975) picks up on the SHRDLUparadigm and

accounts for the fact that features are determined by fuzzy

values, in real applications, rather than by completely

crisp ones. His blocks world is described by fuzzy

deseriptors. Shaket represents linguistic labels by fuzzy

set membership functions and determines compatibility of

descriptors merely by comparing the membership functions

involved. His approach is the "classical" fuzzy set

approach in which it is assumed that membership functions

for linguistic labels are available in all cases. Shaket

deals only with crisp object set descriptors. Thus, his

system may yield a definite answer to a retrieval request

even if the request is not very well put. The quality of
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the match is not transparent to the user. The system is.

implemented in APL, a programming language which invites.

representation of fuzzy sets as number vectors [compare

Wenstop (1976) and Bonissone (1979a)]. A PL has built-in

operations to manipulate vectors and arrays .

The HAM-RPM system [Hahn et al. (1979)] aims to deal

with a multitude of aspects of natural language on a

homogeneous level. One of these aspects is fuzziness of

referential meaning in adjectives, another is the complexity

of real-world problems with respect to number of features

and number of objects in the world. Meaning of adjectives

is represented and compared much the same way as in Shakefc's

system, the complexity of the environment is dealt with by

focussing mechanisms and spatial arrangement of data, such

that only relevant data must reside in main memory of the

computer at any given time. HAM-RPM is implemented in FUZZY

and the fact that it succeeded very well in becoming a

rather flexible, well-segmented system with complex

structure and fast response times contributed to the choice

of FUZZY as base language for the implementation of

linguistic modifiers.

The SWYS system [Hanssmann (1980)] IS
.

designed as a

natural language interface for real scenes or photographic

images. It is also implemented in FUZZY and distinguishes

"applicability" and "truth" of descriptors (compare section

4.1).
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SOGI [McDermott (1980)] is a program which represents

imprecise knowledge of the relative position of objects

using a low-resolution, crisp map. McDermott calls this a

"fuzzy map", but in fact locations are represented by crisp

intervals and his spatial inference system cannot

distinguish positions within the interval or recognize that

two neighboring locations, one inside the interval and one

outside, actually may be very close together, unless the two

relations are explicitly related to one another.

7.3 Comparison With Human Approach

An important characteristic of human object

descriptions appears to be the fact that in many cases, a

description is not intended to represent a precise concept

and would serve its purpose better if it were more specific.

This becomes apparent if we replace one linguistic

descriptor by another without changing the reference of the

whole description. We may feel perfectly comfortable with

both descriptions even though we would not consider the two

descriptors identical with respect to their denotation.

Instead, we seem to have reached a limit of resolution in

the given context. The precision and crispness of the

description is limited by the knowledge about the object and

the domain. In order to give a more detailed description,

more knowledge has to be taken into account.
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On the other hand , linguistic descriptors in human

language are not homogeneous entities which can be arranged

to form a homogeneous "space of language" . This becomes

apparent if we take two linguistic deseriptors which have

similar reference in one context and compare their reference

in a variety of contexts. Numerous different aspects may

distinguish the two descriptors.

This suggests that reference of linguistic terms has

many different levels some are rather crude, some are

rather fine with respect bo a given situation context. We

have attempted to accommodatethis aspect of human

descriptions in a very modest way by allowing the reference

of linguistic descriptors to be indicated by reference to

related linguistic descriptors rather than exclusively by

low-level definitions.

Another aspect of human communication is that so-called

"yes no questions" only rarely are answered by "yes" or

« Ttno Nevertheless, the response that is actually given may.

be much more meaningful than a yes - no response could be.It tl

This is, because an approximate question can be given a more

precise reference by an appropriate qualifying answer. This

allows the questioner to modify his or her model of the

environment of the responder, rather than merely filling in

an empty slot.
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We account for this aspect of the "human approach" with

"qualitative linguistic matching" described in chapter 4.

Enough answers along the gradual "yes - no axis areIt

available to reach the limit of "linguistic resolution",

i.e. for any answer given by the system, the neighboring
.

answer would be acceptable as well.

7.4 Outlook

Two important aspects of communication about objects by

means of linguistic descriptions have been left out in the

present study: D acquisition of meaning of object

descriptors [e.g. Winston (1970), Nevins (1978)], and 2)

generation of "good" object descriptions.

In terms of our representation of referential meaning,

"meaning acquisition" refers to the process of establishing

relations between linguistic labels and modifiers and of

setting up meaning approximations in terms of possibility

distributions. These relations and approximations may have

fco be revised as part of a continuous adaptation process.

Ideally, we would like to have computer programs which would

adapt referential meaning from examples. Lopez de Mantaras

(1980a) is working on such a system which is to be

implemented in L-FUZZY
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Automatic generation of good object descriptions in

complex environments is a very hard but very interesting

task. A comprehensive model of common-sense knowledge is

required to pick from a large number of features a

combination of those which effectively denote the target

object in the given situation. This must be done by taking

into account features of other objects in the context,

preferably without exhaustive search
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APPENDIX A

GLOSSARY

This appendix serves to clarify the exact usage of

terms in this dissertation and to point out a different use

of the same terms by other authors. The terms that will be

exposed are those related to description characteristics,

that is to say, to aspects which characterize the relation

between a representation and that which it represents. We

will define five basic aspects, namely precision, fuzziness,

accuracy, descriptiveness, and brevity. First we will

discuss each of these aspects and their opposites

separately, then we will define our use of terms whose

meaning is composed of the five basic aspects, and finally

we will point out how the meaning of some of the terms is

defined differently in the literature.



153

PRECISION - IMPRECISION

The terms "precise" and "imprecise" are used in this

dissertation to denote a relative degree of granularity. A

descriptor is called precise if its feature resolution

capability agrees with the feature resolution of its

reference data and it is called overpreoise if it has higher

resolution capability than could be meaningful for

referencing corresponding data. Thus, precision is treated

as a measure of specificity, in our work.

FUZZINESS - CRISPNESS

The labels "fuzzy" and "crisp" are used to denote the

rate of change of applicability with respect to a variation

of the reference feature. A descriptor is called crisp (or

clear-cut) if there is an abrupt transition from the feature

range to which the term applies to the range to which it

does not apply. It is called fuzzy, if this transition is

gradual. A crisp description does not have to be precise,

but a fuzzy descriptor requires a certain degree of

imprecision to allow for the gradual transition.
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ACCURACY - INACCURACY

We use the terms "accurate" and "inaccurate" to express

whether a description is correct or incorrect, respectively.

In our usage of the concept, a descriptor can be accurate

without being either precise or crisp. This implies that a

very general descriptor with ambiguous denofcation will be

considered accurate if it covers the actual reference

features.

DESCRIPTIVENESS - AMBIGUITY

We call a description descriptive if it has definite

(or unambiguous) reference in the given domain of discourse.

To be descriptive, a reference does not have to be precise,

crisp, or accurate.

BREVITY - ELABORATENESS

Brevity of a description has to do with the number of

descriptors it contains. A description is called brief or

short if it contains few descriptors and it is called

elaborate or on if it contains many descriptors.
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We view the five aspects discussed above as gradable

rather than absolute concepts. They can be combined to form

composite aspects, namely sharpness, exactness, vagueness,
t

conciseness, and redundancy. The meaning thafc we relate to

these terms is given below.

SHARPNESS

We call a description sharp if it is both precise and

crisp. An extremely precise descriptor always is sharp,

since precise descriptors are bound to be non-fuzzy.

EXACTNESS

.

We call a description exact if it is both precise and

accurate, and we call it inexact otherwise.

VAGUENESS

We call a description vague if it is both fuzzy and

ambiguous [compare Zadeh (1978b, P.396)]. A fuzzy

description per se may be completely descriptive, 1 .e.
<

unambiguous, with respect bo its reference object if the
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situation context allows for only one interpretation.

CONCISENESS

We call a description concise if it is both descriptive

and brief.

REDUNDANCY

We call a description redundant if it IS
. descriptive

and elaborate, i.e., if a shorter description could be found

which would be descriptive as well.
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Our terminology for characterizing descriptions is

summarized in the following table:

PRECISION
SHARPNESS

IMPRECISION

FUZZINESS
EXACTNESS

CRISPNESS

ACCURACY
VAGUENESS

INACCURACY

DESCRIPTIVENESS
CONCISENESS

AMBIGUITY

BREVITY
REDUNDANCY

ELABORATENESS

On the left, we have pairs of contrasting basic aspects

Within each pair, the terms refer to the same aspect

dimension. On the right you find composite aspects which

are derived from the basic ones.
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Of particular interest are the following relationships

between some of the characteristics:

(D vague c fuzzy c imprecise

and

(2) ambiguous < concise < redundant

(1) indicates that each vague descripfcor is fuzzy and each

fuzzy descriptor is imprecise, and (2) indicates that by

enriching a description, an ambiguous descriptions may

become concise, and a concise description may become

redundant.

Russell's terminology

In his paper on "vagueness", Russell (1923) employs a

different terminology which we can translate into the terms

above. Russell states (p.91), a belief is precise whenII

only one fact would verify it; it is accurate, when it is

both precise and true." His concept of precision agrees with

our concept, but he calls accurate what we would call exact.

Russell's concept of accuracy does not allow for ambiguity

of reference, but ours does.
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Russell uses the term vague to indicate that a

representation IS
. not (Russell-) accurate (p.89), which in

his terms would mean, that it is either imprecise or untrue,

or both, i.e. "inexact" , in our terms. In addition,

Russell states that in a vague representation, "there is not

one definite fact necessary and sufficient for its truth,

but a certain region of possible facts, any one of which

would make it true. And this region is itself ill-defined:

we cannot assign to it a definite boundary. This is the

difference between vagueness and generality" (p.88). Thus,

what Russell calls "vague" we would call "fuzzy", if it is
.

imprecise and does not have clear-cut boundaries, and we

would call it "vague" if it is ambiguous in
»

reference, in

addition

The reason that Russell does not discriminate between

general fuzziness and the special case of vagueness stems

from the fact that he relates descriptions to conceivable

features in a universe of discourse rather than to actual

features in the particular domain of reference. Thus, an

imprecise description IS
.

for him automatically ambiguous,

since it could refer to several conceivable instances while

we would consider an imprecise description ambiguous only if

in the given context several features actually exist to

which the description could refer.
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APPENDIX B

INTRODUCTION TO FUZZY

8.1 Central Ideas

»FUZZY is an attempt to synthesize many of

the good ideas' of previous AI languages while

providing facilities for the efficient storage,

retrieval, and manipulation of knowledge which is

vague and uncertain in nature. The language was

constructed in such a way that it could be

directly embedded in LISP (unlike previous
.

systems), and is therefore much more efficient

than languages such as MICRO-PLANNER which require

a run-time monitor. LISP and FUZZY primitives may

be freely intermixed, and FUZZY functions may be

called from compiled LISP code if desired.«

[LeFaivre (1977, p.2)].
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FUZZY was motivated by the theory of fuzzy sets [Zadeh

(1965-1973)]. Fuzzy set theory is a generalization of

Boolean set theory and allows for graded membership of

elements in a set rather than all-or-none set membership..

This is to account for the fact that many concepts dealt

with by natural language are unsharp in the sense that there

is no sharp boundary between situations for which the

concept applies and situations for which it does not apply.

Consider, for example, the concept "young". If we talk

about people, we may say that persons of less than 10 years

of age are young and persons above 70 years are not young.

However , there is no particular day at which a person's age

switches from 'young' to 'not young'; rather , this is a

gradual transition. In fuzzy set theory the concept "young"

in this context could be expressed by a "membership»

function" representing the degree to which a person of a

particular age can be considered to be young:

<

1

p (young)
^

0 ^

10 70 age (person) [years]

Fig. B.1 Membership function for the fuzzy set of young
people
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Several AI systems deal explicitly with unsharp

information (see for example MYCIN [Shortliffe et al.

(1973)]) and with incomplete information (heuristic

programs). The language FUZZY is designed to relieve the

user from explicitly dealing with both, the available

information and its associated modifier (be it a degree of

set-membership or certainty, a possibility or probability

measure, or an indication of confidence in a decision).

FUZZY has been implemented on a UNIVAC1110 [LeFaivre

(1974a)], on DECsystem-10 [LeFaivre (1977)] DECsystem-20

computers [Freksa (1977)], and most recently on a CDC

CYBER 73computer [Okseniuk (1980)]. It is in use for

various AI projects, for example for the AIMDS/BELIEVER

system at Rutgers University and for HAM-RPM,a

knowledge-based conversationalist at the University of

Hamburg.

8.2 Description Of The Language

8.2.1 Fuzzy Expressions And Local Control

As in PLANNER and other AI languages [Bobrow & Raphael

(1974)], expressions in FUZZY may either succeed or fail.

In case of success, however, a FUZZY expression may not only

return a value , but also a so-called Z-value. This is to

allow for the representation of vague concepts by means of

implicitly weighting expressions. Internally, a FUZZY
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expression is represented by a LISP dotted pair, e.g.,

((CHANCE OF RAIN) 0.3).

may represent a 30% chance of rain. Failure of an

expression is indicated by simply returning FAIL instead of
.

the dotted pair. Functions are available to extract the

value portion or the Z-value portion of an arbitrary
.

expression. In order to make use of standard LISP

predicates, a value of either FAIL or NIL is interpreted as

failure.

Like PLANNER, FUZZY has automatic backtracking

facilities However, in many cases, automatic backtracking

is undesirable. Therefore, FUZZY allows the user to specify

where automatic backtracking should occur and where not.

Language primitives are available to compute union,

intersection, and complement of fuzzy sets.

8.2 2 The Associative Net -

FUZZY maintains an associative network of assertions

quite similar to PLANNER or CONNIVER.Any arbitrary LISP

list structure may be entered into this net. In addition,

an assertion may have a Z-value associated with it, if

desired . The Z-value of the assertions can be used to

control success and failure of the FETCH statement or

subsequent actions.



164

8 2.3 Pattern Matching -

As in PLANNER/CONNIVER, a FUZZY variable is assigned a

value via pattern matching. For example,

(MATCH (?X ??Y) ((A B) c D))

binds the FUZZY variable !X to (A B) and !Y to (C D). A

greater variety of functions than in PLANNER/CONNIVER is

available to place restrictions on the structure of the

pattern or the set of items which can match successfully.

For example,

(*R 70BJECT (FETCH (RED !OBJECT)))

will only match an object which is known to be red

8 2.4 Contexts And Backtrack States

It is often convenient to maintain several different

contexts with the ability to easily switch from one to

another. FUZZYhas such a "context mechanism" which

activates and deactivates associative nets of assertions.

It is also possible to save the state of the entire system

in order to allow for later restoration. Functions area

available to compute differences between states and to add

differences to a state. State changes can be finalized such

that they cannot be undone by a subsequent restoration.

This feature is useful to prevent backtracking getting out

of control. Several FUZZY primitives exist in backtrackable
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and in finalizing versions to give the programmer easy

control over the global control mechanism.

8 2 5 Procedures -

Similar as a MICRO-PLANNER theorem ora QLISP QLAMBDA

function, a FUZZY procedure takes an argument which is

matched against a procedure pattern. If the match is

successful the procedure is entered, otherwise it fails. A

FUZZY procedure may be called by name or may be invoked by

pattern (-> section 8.2.7). All FUZZY variables are assumed

to be local to the procedure in which they appear unless

they are declared to be global in the procedure head or by

an external GLOBAL declaration. With each procedure there

is a procedure demon associated (-> section 8.2.6). A -FUZZY

procedure either succeeds or fails; in case of success, the

procedure pattern is returned as value along with a Z-value

supplied by the procedure demon unless specified otherwise.

Any other pattern may be returned with or without Z-value .

8.2.6 Global Control -

FUZZY procedures have a more general global control

mechanism than PLANNER theorems. The procedure demons are

given control not only upon failure of an expression (as in

MICRO-PLANNER)but also upon successful termination of a

(top-level) expression. This makes it possible to globally
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evaluate the results returned by the expressions of a

procedure. With each procedure a variable is associated

which maintains an "accumulated Z-value" for the demon's

calculations. The procedure demon is called a last time

when the procedure is exited in order to make any necessary

final computations (for example concluding statistics).

8.2.7 Deductive Mechanisms -

There are several levels of accessing information in a

knowledge base:

1. request of explicitly available information

2. invocation of an explicit procedure to retrieve the

desired information

3. specifying a goal and leaving it up to the system

how to achieve it

All three methods are possible in FUZZY:

1. the FETCH statement retrieves assertions which are

explicitly stored in the associative net by pattern

matching

2. FUZZY procedures can be called by name
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3 If FUZZY procedures have been stored in the

associative net, they can be invoked by pattern

matching via the DEDUCE statement. This reliefs

the programmer from keeping track of which

particular procedures may be used to achieve a

certain task and it allows for easy addition of new

procedures to the associative net which

automatically can be utilized by existing programs

without change.

4. The GOAL statement combines the FETCHand DEDUCE

statements: first it looks whether the desired

information is explicitly available in the net of

assertions. If it fails it attempts to deduce the

goal by invoking DEDUCE procedures which match the

specified pattern.

In addition, FUZZY supports ASSERT and ERASE procedures

which are automatically invoked when assertions of

corresponding patterns are added and removed from the

assoeiative net, respectively.

8.3 Example

The following program illustrates how FUZZY may deal

with both vague and incomplete information. The vagueness

is expressed here by Z-values associated with assertions.
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Incomplete information in this example is manifested by the

absence of useful assertions. This 'missing information'

does not force the procedure into failure, but rather lowers

the confidence in the result obtained by the procedure:

=== NET ===

((CHANCE OF RAIN) 0.8)
((DRYNESS DESIRED)0.7).

((BLUE SKY) 0.4).

=== DEDUCE ===

(PROC NAME: UMBRELLA DEMON: CONFIDENCE (RAIN PROTECTION)
(BIND ?SK (FETCH ((*OR CLEAR BLUE) SKY)))
(BIND ?BU (FETCH (BURDENSOME UMBRELLA)))
(BIND ?DD (FETCH (? DESIRED)))
(IF (ZAND THRESH: 0.9 (ZNOT !SK) !DD !BU)

THEN: (SUCCEED '"STAY HOME!")
ELSE: T)

(BIND ?CR (FETCH (CHANCE ??)))
(IF (MINUSP (DIFFERENCE (PLUS (ZVAL !CR) (ZVAL !DD))

(PLUS (ZVAL !SK) (ZVAL !BU))))
THEN: (SUCCEED "'DON'T TAKE UMBRELLA" ZACCUM)
ELSE: (SUCCEED"TAKE UMBRELLA" ZACCUM)))I

(DEFPROP CONFIDENCE
(LAMBDA (RESULT THRESHOLD C-LEVEL)
(COND [(EQ RESULT FAIL) (COND [CGREAT C-LEVEL 0.25)

(DIFFERENCE C-LEVEL 0.25)]
[T (FAIL)])]

[(EQ RESULT DONE) C-LEVEL]
[(*LESS (ZVAL RESULT) THRESHOLD) (FAIL)]
[T C-LEVEL]))

EXPR)
(; RESULT = result of last top-level expression

THRESHOLD = criterion for forcing procedure to fail
C-LEVEL = current confidence level)

The computer listing shows in the beginning the associative

net, containing some deelarative knowledge about a potential

umbrella carrier and his situation. Below you see the

procedural associative net containing a deduce procedure to



169

give advise whether or not to carry an umbrella in a given

situation. On the bottom there is a LISP procedure which is

used by the deduce procedure UMBRELLA as a procedure demon.

The procedure UMBRELLA uses assertions and their modifiers

to calculate the projected pay-off for carrying an umbrella.

The demon CONFIDENCE watches this calculation and determines

a confidence measure for fche result obtained by UMBRELLA.

This is done as follows: UMBRELLA looks for four types of

assertions in the associative net:

1. information about the blueness or the clearness of

the sky

2 information about the burden to carry an umbrella

3. information about a desired goal which can be

satisfied with an umbrella

4. information about the chance of the occurrence of

an event which would make an umbrella desirable

The most reliable advise can be given by UMBRELLAif

all four pieces of information can be found. If a piece of

information cannot be found (i.e., if the corresponding

FETCH returns FAIL), the demon reduces the confidence level

ZACCUM which is returned as Z-value of UMBRELLA. Observe

that the Z-value can be used in a single program to do

different kinds of qualifications.
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