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Abstract

The granularity of spatial calculi and the resulting
mathematical properties have always been a major
question in solving spatial tasks qualitatively. In
this paper we present the Oriented Point Relation
Algebra (OPRAm), a new orientation calculus
with adjustable granularity. Since our calculus is a
relation algebra in the sense of Tarski, fast standard
inference methods can be applied. One of the ma-
jor problems—depending on the environment, the
robots’ capabilities and the tasks to be solved—is
the choice of the granularity of an applied calculus.
To present, granularity had to be chosen at the start
and could not be changed on the fly. In a dynami-
cally changing environment under real time condi-
tions it is necessary to choose a coarse but still ade-
quate granularity of the spatial representation: only
in that case irrelevant feature changes fail to trigger
unnecessary inference steps. A qualitative, coarse
abstraction suppresses tiny changes in the environ-
ment and leads to fast computation.

1 Introduction
Most robots currently used for research issues are equipped
with a broad variety of fairly reliable sensors. Edutainment
robots however often have only low quality sensors. Despite
this, they have become increasingly popular and must be able
to solve complex spatial tasks even when accurate distance
and orientation information is not obtainable. Qualitative rea-
soning may allow them to do so.

Qualitative Reasoning about space abstracts from the phys-
ical world and enables computers to make predictions about
spatial relations, even when a precise quantitative informa-
tion is not available[Cohn, 1997]. The two main trends
in Qualitative Spatial Reasoning are topological reasoning
about regions[Cohn, 1997; Renz and Nebel, 1998] and po-
sitional reasoning about point configurations[Freksa, 1992;
Schlieder, 1995]. Positional reasoning, i.e. distance and orien-
tation, in particular is important for robot navigation[Musto
et al., 1999].

Calculi dealing with such information have been well inves-
tigated over recent years and provide sound reasoning strate-
gies, e.g. about topological relations between regions as in

RCC-8[Randell and Cohn, 1989; Randellet al., 1992], about
the relative position orientation of three points as in Freksa’s
Double Cross Calculus[Freksa, 1992] or about orientation of
two line segments as in the Dipole Calculus[Moratz et al.,
2000; Schlieder, 1995]. Standard constraint-based reasoning
techniques can be applied for reasoning with calculi such as
the above mentioned ones. For example, Schlieder[1995]
sketched how a qualitative calculus like the Dipole Calculus
might be applied to robot navigation.

One of the major problems is the choice of the granular-
ity of an applied calculus according to the environment, the
robots’ capabilities and the tasks that have to be solved. To
present, this granularity had to be chosen in the beginning
and could not be changed on the fly. In a dynamically chang-
ing environment under real time conditions it is necessary to
choose a coarse yet adequate granularity of the spatial repre-
sentation: only in that case will irrelevant feature changes fail
to trigger unnecessary inference steps. A qualitative, coarse
abstraction suppresses tiny changes in the environment and
results in fast computation.

With the Oriented Point Relation AlgebraOPRAm we
present a calculus whose granularity is scalable with a pa-
rameterm 2 N. The parameter can be adjusted according
to perception and motion capabilities. The reasonable maxi-
mum, i.e. the finest reasonable granularity, correlates to the
resolution and error of perception and motion. Yet, it would
be unwise to use the finest resolution possible just to an-
swer a question whether an object is to the left or right. We
present an integration schema where data represented in dif-
ferent granularities can be mixed when deriving new relations
from prior observations. The rest of the paper is organized
as follows: After a brief introduction of related qualitative
spatial calculi and their according properties, we will intro-
duce theOPRAm calculus. First we will give a definition
for the coarsest type (m = 1), followed by the model for ar-
bitrary m 2 N including the rules for composition of base
relations. In the end we will give an example with linguis-
tic commands and coarse perceived configuration information
that have to be integrated by constraint propagation to achieve
survey knowledge.

2 Related Work
Qualitative Spatial Reasoning (QSR) is an abstraction that
summarizes similar quantitative states into one qualitative



characterization. From a cognitive perspective the qualitative
methodcomparesfeatures of the domain rather thanmeasur-
ing them in terms of some artificial external scale[Freksa,
1992]. The two main directions in QSR are topological rea-
soning about regions, e.g. the RCC-8[Randell and Cohn,
1989; Randellet al., 1992], and positional (distance and ori-
entation) reasoning about point configurations. An overview
is given in[Cohn and Hazarika, 2001]. We will concentrate
on the most important positional calculi for our work.

The Double Cross calculus[Zimmermann and Freksa,
1996] is an approach based on fundamental knowledge about
human spatial reasoning. In contrast to previous approaches
the base relations do not only describe a relative point posi-
tion wrt. a single point, but wrt. a vector. In other words,
an observer tries to relate to a pointC while he is walking
from positionA to B. In [Scivos and Nebel, 2001] it was
shown that the calculus is not closed under permutation and
composition, and that reasoning with a set of base relations is
NP-hard. A further application driven development based on
the scheme above is the Ternary Point Configuration Calculus
(TPCC)[Moratzet al., 2003]. We will describe this calculus
in more detail in section 4.1.

Schlieder[1995] proposed a calculus with 14 basic re-
lations based on line segments with clockwise or counter
clockwise orientation of generating starting points. Isli and
Cohn[1998] presented a ternary algebra for reasoning about
orientation containing a tractable subset of base relations.
Schlieder’s approach was extended for robot navigation tasks
in [Moratzet al., 2000; Dylla and Moratz, 2005], resulting in
relation algebras in the sense of Tarski[Ladkin and Maddux,
1994] at different levels of granularity.

Clementiniet al. [1997] introduced a binary approach for
dealing with qualitative relations at an arbitrary level of gran-
ularity. The angles are not necessarily equidistant. Their ap-
proach did not provide a general and restrictive schema for
reasoning with multiple position expressions. Also no con-
cept for combining relations at different levels was given.

In [Renz and Mitra, 2004] the Star Calculus, a qualitative
direction calculus with arbitrary granularity, was introduced.
The relation of two points in the plane with respect to one
global reference direction is expressed, which leads to4m+1
basic relations. These basic relations form a relation algebra
for the cases with uniform angles. The authors claim that
when using a Star Calculus with more than two reference
lines, the boundary between qualitative and quantitative repre-
sentation disappears. The main disadvantage of the Star Cal-
culus is its need for a global reference direction which must
always be available at each point in space.

The extended panorama approach was presented in[Wag-
neret al., 2003]. The representation is based on the cyclic or-
dering information of a 360� view within the reference frame
of an observing agent and on qualitative distance information.
It can be interpreted as an ordered set of relations between
an oriented object and the according observed point. Due to
this structure it is rotational and translational invariant. Up-
dating the model due to changes in a dynamic environment
can simply be done by changing the order. Different levels
of granularity were also introduced. No formal method for
granularity switches or composition of local observations into

survey knowledge was given.

3 The Oriented Point Relation Algebra
(OPRAm)

Objects and locations are represented as simple, featureless
points in aforementioned approaches on orientations. In con-
trast, our paper presents a positional calculus which uses
more complex basic entities: It is based on objects which are
represented as oriented points. It is closely related to a pre-
viously designed calculus which is based on straight line seg-
ments (dipoles)[Moratzet al., 2000]. In [Dylla and Moratz,
2005] the dipole approach was extended for modeling behav-
ior in dynamic environments. Conceptually, our new calculus
can be viewed as a transition from oriented line segments with
concrete length to line segments with infinitely small length.
In this conceptualization the length of the objects no longer
has any importance. Thus, only the direction of the objects is
modeled.O-points, our term for oriented points, are specified
as pair of a point and a direction on the 2D-plane.
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Figure 1: An oriented point and its qualitative spatial relative direc-
tions

3.1 Reasoning with Coarse O-Point Relations

In the coarsest representation a single o-point induces the sec-
tors depicted in figure 1. “Front” and “Back” are linear sec-
tors. “Left” and “Right” are half-planes. The position of the
point itself is denoted as “Same”. A qualitative spatial rela-
tive orientation relation between two o-points is represented
by the sector in which the second o-point lies with respect to
the first one and by the sector in which the first one lies with
respect to the second one.

For the general case of the two points having different posi-
tions we use the concatenated string of both sector names as
the relation symbol. Then the configuration shown in figure 2
is expressed with the relationA RightLeft B. If both points
share the same position the relation symbol starts with the
word “Same” and the second substring denotes the direction
of the second o-point with respect to the first one as shown in
figure 3.

Altogether we obtain 20 different atomic relations (four
times four general relations plus four with the o-points at
the same position). These relations are jointly exhaustive and
pairwise disjoint (JEPD). The relation SameFront is the iden-
tity relation. We useOP1 to refer to the set of 20 atomic re-
lations, andOPRA1 to refer to the power set ofOP1 which
contains all220 possible unions of the atomic relations.
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Figure 2: Qualitative spatial relation between two oriented points at
different positions. The qualitative spatial relation depicted here isA RightLeftB (which reads:B is to the right ofA, andA is to the
left of B).
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Figure 3: Qualitative spatial relation between two oriented points
located at the same position. The qualitative spatial relation depicted
here isA SameRightB (which reads:A andB are at the same
location, andB is heading right with respect toA).

For reasoning about the o-point relations we apply
constraint-based reasoning techniques which were originally
introduced for temporal reasoning[Allen, 1983] and also
proved valuable for spatial reasoning[Renz and Nebel, 1998;
Isli and Cohn, 2000]. In order to apply these techniques to
a set of relations, the relations must form a relation algebra
[Ladkin and Maddux, 1994], i.e. the atomic relations must
be jointly exhaustive and pairwise disjoint and they must be
closed under composition (�), intersection (\), complement
(:), and converse (̂ ). There must also be an empty rela-
tion, a universal relation, and an identity relation. While the
converse, the complement, and the intersection of relations
can be computed from the set-theoretic definitions of the re-
lations, the composition of relations must be computed based
on the semantics of the relations. The compositions are usu-
ally computed only for the atomic relations and then stored in
a composition table. The composition of compound relations
can be obtained as the union of the compositions of the cor-
responding atomic relations. The compositions of the atomic
relations can be deduced directly from the geometric seman-
tics of the relations (see section 3.4).

O-point constraints are written asxRy wherex; y are vari-
ables for o-points andR is a OPRA1 relation. Given a
set � of o-point constraints, an important reasoning prob-
lem is deciding whether� is consistent, i.e., whether there
is an assignment of all variables of� with dipoles such that

all constraints are satisfied (asolution). We call this prob-
lem OPSAT. OPSAT is a Constraint Satisfaction Problem
(CSP)[Mackworth, 1977] and can be solved using the stan-
dard methods developed for CSPs with infinite domains (see,
e.g.,[Ladkin and Maddux, 1994]).

A partial method for determining inconsistency of a set
of constraints� is the path-consistency method, which en-
forces path-consistency on� [Mackworth, 1977]. A set of
constraints is path-consistent if and only if for any two consis-
tent variable instantiations, there exists an instantiation of any
third variable such that the three values taken together are con-
sistent. It is necessary but not sufficient for the consistency of
a set of constraints that path-consistency can be enforced. A
naive way to enforce path-consistency is to strengthen rela-
tions by successively applying the following operation until a
fixed point is reached:

8i; j; k : Rij  Rij \ (Rik �Rkj)
wherei; j; k are nodes andRij is the relation betweeni andj. The resulting set of constraints is equivalent to the original
set, i.e. it has the same set of solutions. If the empty relation
occurs while performing this operation,� is inconsistent, oth-
erwise the resulting set is path-consistent.

3.2 Finer Grained O-Point Calculi
The design principle forOPRA1 can be generalized to cal-
culi OPRAm with arbitrarym 2 N. Then an angular resolu-
tion of 2�2m is used for the representation (a similar scheme for
absolute direction instead of relative direction was recently
designed by Renz and Mitra[2004]).
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Figure 4: OPRA2 granularity

To formally specify the o-point relations we use two-
dimensional continuous space, in particularR2. Every o-
point S on the plane is an ordered pair of a pointpS repre-
sented by its Cartesian coordinatesx andy, with x; y 2 R
and and a direction�S .

S = (pS ; �S) ; pS = ((pS)x; (pS)y)
We distinguish the relative locations and orientations of the

two o-pointsA andB expressed by a calculusOPRAm ac-
cording to the following scheme. We use the symbol'AB for
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Figure 5: OPRA4 granularity

tan�1 (pB)y�(pA)y(pB)x�(pA)x (tan�1 has two arguments, the numera-
tor, and the denominator, and maps to the interval[0; 2�]).
Figures 4 and 5 show the resulting granularity form = 2 andm = 4. According to the cyclic order of the directions it is
appropriate to enumerate them by using the4m elements of
the cyclic groupZ4m.

If pA 6= pB the relationA m\ji B (i; j 2 Z4m) reads like
this: Given a granularitym, the relative position of B with
respect to A is described byj and the relative position of A
with respect to B is described byi.

Formally, it represents the following set of configurations:

��(i �2 1) ^ �2� i�14m < 'AB � �A < 2� i+14m �� (1)

_ �(i �2 0) ^ �'AB � �A = 2� i4m���^ ��(j �2 1) ^ �2� j�14m < 'AB � �B < 2� j+14m ��_ �(j �2 0) ^ �'AB � �B = 2� j4m���

a �2 b stands fora mod 2 = b mod 2. Using this notation,
a simple manipulation of the parameters yields the converse
operation(m\ij)^ = m\ji .

If pA = pB , the relationA m\i B represents the follow-
ing set of configurations:

�(i �2 0) ^ ��B � �A = 2� i4m�� (2)

_ �(i �2 1) ^ �2� i�14m < �B � �A < 2� i+14m ��

Hence the relation for two identical o-pointsA = B for
arbitrarym 2 N is Am\0B. Using this notation a simple
manipulation of the parameters yields the converse operation(m\i)^ = m\(4m� i). The composition tables for the
atomic relations of theOPRAm calculi can be generated us-
ing a schema which is based on the parametersm; i; j of the
corresponding relations (analogous to the generating scheme
for the converse operation). We describe the schema for the
composition operation in section 3.4.

To clarify the notation above we will give examples here.
The configuration in figure 1 withm = 1 for example results
inA 1\13 B. Front in this schema is denominated with0, Left
is 1, Back is2 and Right is3. In figure 6 the same config-
uration is shown with the reference frame form = 2. This
results in relationA 2\17 B. Thus we can say thatB lies in
segment 7 regardingA andA lies in segment 1 relative toB.
Form = 4 (figure 6) we getA 4\313 B.
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Figure 6: Two o-points in relationA 2\17 B
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Figure 7: Two o-points in relationA 4\313 B
3.3 The Triangle Constraint
Besides the composition we have an additional source for spa-
tial knowledge. The following scene is given: An agent is at
positionA and perceives objectC including the view angle
relative to the current heading. Then the agent turns towards
positionB, moves there and perceives the relative angle to
objectC again. We now are able interpret this setting as a
triangle (compare figure 8).� is defined by the difference of
the original heading, the view angle and the heading towardsB. � is determined accordingly after the perception. Due to
general knowledge about triangles (� + � +  = �) we are
able to derive.

With AB we denote the o-point positioned atA and orien-
tated towards positionB. In the following, i, k and the ac-
cording arithmetic operators are still defined inZ4m. WithinOPRAm, � now may be described asAC m\k AB



and respectively� as

BA m\i BC :
AssumingA;B;C being ordered in mathematically posi-

tive orientation andk �2 0 _ i �2 0, we can conclude angle: CB m\(2m� k � i) CA :
Thus we can generate additional relations forC with two
prior perceptions.

AB

AC BA

BC

CB
CA

β

γ

A B

C

α

Figure 8: A triangle defined by the o-points A,B and C

3.4 Composition of Relations
Throughout this section we assume that three o-pointsA, B,C and the relationsAm\jiB andBm\lkC are given. First we
also assume thatpA 6= pB 6= pC .

In the case of uneveni, j, k andl they correspond to open
angular intervals according to (1).m\ji is called atotally pla-
nar relation, if i �2 1 ^ j �2 1. If (i + j) �2 1, m\ji is
called asemi-planarrelation.m\ji is called alinear relation,
if i �2 0 ^ j �2 0.

First we will describe the composition procedure for the
special case of totally planar relations, because it is rather
straight forward. In the next section we will generalize to a
common procedure for arbitraryOPRAm relations. In the
end we point out how to compose the so-called “same” rela-
tions, where two o-points share the same location.

i j
kA

B

C

Figure 9: Composition of twoOPRA4 relationsA4\j
iB andB4\l

kC. In this example the values arei = 13, j = 5 andk = 11
(see figure 5). Because the direction ofC is not depicted in this ex-
ample, no value ofl is given. As a result of the composition,C may
lie in sectors 9 to 13 with respect toA.

Composition of Totally Planar Relations

Composition of two totally planar relationsAm\jiB andBm\lkC is mainly a composition of angular intervals. If we
want to describe the relative position ofC with respect toA,
we need to combine the angular intervals which correspond
to i, j andk. The first possible sector which can containC
is eitheri or i � j + k � 2m � 2, depending on which one
is “first” in a circular order.1 The last possible sector is eitheri or i � j + k � 2m + 2. To determine this, we define a
minimum and a maximum relation within a cyclic groupZn
(n 2 N) with a; b 2 Zn:

minZ(a; b) =
8<
:
min(a; b) jb� aj < n2max(a; b) jb� aj > n2b jb� aj = n2

(3)

maxZ(a; b) =
8<
:
max(a; b) jb� aj < n2min(a; b) jb� aj > n2b jb� aj = n2

(4)

For the sake of simplicity we assume thatmin(a; b) is the
minimum of the corresponding natural numbers toa and b.maxZ(a; b) is defined analogously tominZ(a; b).

All sectors and linear relations between the first (s1) and
the last possible one (s2) may containC. Analogously, we
also get a first and a last sector aroundC which can containA:

s1 = minZ(i; i� j + k � 2m� 2) (5)s2 = maxZ(i; i� j + k � 2m+ 2)t1 = minZ(l; l � k + j � 2m� 2)t2 = maxZ(l; l � k + j � 2m+ 2)
We get all possible directions (a full circle) ifs1 = s2 ort1 = t2, because a composition of totally planar relations can

never result in a single sector:

s01 = �s1 s1 6= s20 s1 = s2 s02 = �s1 s1 6= s24m� 1 s1 = s2
t01 andt02 are derived analogously.

We achieve a disjunction of relations in whichC can be
with respect toA and a disjunction of relations in whichA
can be with respect toC. The overall result is a disjunction
of all possible combinations:

A m\ji B �B m\lk C = s02_
a=s01

t02_
b=t01A m\ba C (6)

1This notation, of course, is simplified: We need to considerm
an element of the cyclic group as well, but we did not want to intro-
duce another symbol for this purpose.



Composition of Arbitrary Relations
In this section we present a generalized schema for determin-
ing the composition of arbitraryOPRAm relations. The only
cases to be excluded are the “same” relations, which are de-
scribed in the following section, and those resulting in a linear
sector or a disjunction of two linear sectors:

((j = k + 2m) _ (j = k)) ^ j �2 0 ^ k �2 0 (7)

The solution for these few cases can be constructed fairly eas-
ily. For all other cases the procedure is as follows:

A linear part of anOPRAm relation can be seen as an
angular interval[�1; �2] with �1 = �2. According to the
second and fourth line of (1) the composition formula must be
adapted for the cases of even values ofi, j, k andl. Therefore
a linearity correction term

 (i; j; k) = X
a2fi;j;kg((a+ 1) mod 2) (8)

is incorporated to the equations in (5). counts the number
of linear relations. Simply adding (or subtracting) , however,
may deliver (half) closed intervals in the case ofi or l being
even; but this cannot happen. So we can make sure to achieve
open intervals by using modified minimum and maximum re-
lations forZn (n = 4m in this case):

min0Z(a; b) =

8>>>>>>><
>>>>>>>:

min(a; b) jb� aj < n2 ;min(a; b) �2 1min(a; b) + 1 jb� aj < n2 ;min(a; b) �2 0max(a; b) jb� aj > n2 ;max(a; b) �2 1max(a; b) + 1 jb� aj > n2 ;max(a; b) �2 0b jb� aj = n2 ; b �2 1b+ 1 jb� aj = n2 ; b �2 0

max0Z(a; b) =

8>>>>>>><
>>>>>>>:

max(a; b) jb� aj < n2 ;max(a; b) �2 1max(a; b)� 1 jb� aj < n2 ;max(a; b) �2 0min(a; b) jb� aj > n2 ;min(a; b) �2 1min(a; b)� 1 jb� aj > n2 ;min(a; b) �2 0b jb� aj = n2 ; b �2 1b+ 1 jb� aj = n2 ; b �2 0
We now get

s1 = min0Z(i; i� j + k � 2m� 2 +  (i; j; k))s2 = max0Z(i; i� j + k � 2m+ 2�  (i; j; k))t1 = min0Z(l; l � k + j � 2m� 2 +  (l; j; k))t2 = max0Z(l; l � k + j � 2m+ 2�  (l; j; k)) :
In contrast to the totally planar cases, a single sector is a

possible result when composing semi-planar relations. For
discriminating a full circle from a single sector, we need to
consider the linearity of the relations given by :

s01 = �0 s1 = s2 ^  (i; j; k) = 0s1 else
s02 = �4m� 1 s1 = s2 ^  (i; j; k) = 0s1 else

and analogously fort01 andt02.
The resultingOPRAm relation is

A m\ji B �B m\lk C = s02_
a=s01

t02_
b=t01A m\ba C : (9)

Composition with “Same” Relations
Compositions of cases where eitherpA = pB or pB = pC ,
is rather simple, because it can be seen as an addition of inter-
vals, or, ifi �2 0 ^ k �2 0, vectors.

m\i � m\lk = �Ws2a=s1 m\la i �2 0 ^ k �2 0i+ k else ; (10)

s1 = i+ k � 1 +  (i; k; 1)s2 = i+ k + 1�  (i; k; 1)
 again denotes the linearity term given in (8). The third
argument is 1 because we only need two arguments here.

The compositionm\ji �m\k works analogously. Composi-
tion of two “same” relations is trivial.

3.5 Integration of Relations with Different
Granularity

Sometimes it is reasonable to perceive or act using different
degrees of accuracy depending on context or time constraints.
Therefore we have relations at different levels of granularity,
i.e. varyingm. It is not reasonable to represent such infor-
mation at a very precise level, because a large disjunction
with many literals would emerge. We call the chosenm a
context dependent granularity. Inconsistencies arising due to
imprecise or faulty perception or movement can be solved by
adding even more uncertainty to draw a reasonable conclu-
sion.

Given two relations with granularitym1 and m2, it is
no problem to integrate relations withm1 = n � m2 withn 2 N > 0 andm1 > m2. If the values are not a multi-
ple of each other, naive and fast methods for integrating the
knowledge are e.g. the least common multiple (LCM) or the
greatest common divisor (GCD). Information loss is minimal
with the LCM, but again a large disjunction might be gener-
ated. In contrast, combining the relations with the GCD ofm1 andm2 results in a greater loss of information, but the
result consists of fewer relations compared with the LCM ap-
proach. Currently, we choose a method where the relations
are combined according to their algebraic semantics and a
suitable granularity is chosen depending on the result.

4 Qualitative Spatial Reasoning in Robotics
We will now give a detailed example on how to integrate local
knowledge into survey knowledge with the presented TPCC
calculus. Afterwards we will show how the given problem
can be solved withOPRAm as well. The example we use
here has already been introduced in[Dylla and Moratz, 2004].

The basis of the example is a robot system able to perceive
colored cubes. The system only measures the direction to-
wards perceived objects. It cannot measure their distance.



Furthermore the system is able to perform discrete motion
steps. The task is to “move to the red object behind the blue
cube”. The initial situation is shown in figure 11(a). For bet-
ter differentiation we visualize the two ambiguous red objectsB1 andB2 as circles. First we will give a short recap of
TPCC[Moratzet al., 2003]. Then we show how to solve the
given task with TPCC, followed by a solution withOPRAm.

4.1 The Ternary Point Configuration Calculus
(TPCC)

TPCC[Moratz et al., 2003] deals with point-like objects in
the 2D-plane. It is an application oriented variant of the Dou-
ble Cross calculus[Freksa, 1992], which allows for finer dis-
tinctions of positional information than most calculi for con-
straint based reasoning presented before. The partition of the
calculus is shown in figure 10.
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Figure 10: The reference system used by TPCC

The letters f, b, l, r, s, d, c stand for front, back, left, right,
straight, distant, and close, respectively. The terms front,
back, etc. are given for mnemonic purposes only. The use of
TPCC relations in natural language applications is shown in
an article by Moratzet al. [2002]. In this application TPCC
relations are used for natural human robot interaction. The
configuration in which the referent is at the same position as
the relatum is calledsam(for ”same location”). The two spe-
cial configurations in which origin and relatum have the same
location (dou, tri ) are also base relations of this calculus.

For a formal and precise definition of the relations the corre-
sponding geometric configurations on the basis of a Cartesian
coordinate system represented byR2 were described. For ex-
ample, the special cases for the three pointsA = (xA; yA),B = (xB ; yB) andC = (xC ; yC) are defined as follows:

A;B dou C := xA = xB ^ yA = yB ^(xC 6= xA _ yC 6= yA)A;B tri C := xA = xB = xC ^ yA = yB = yC
For the cases withA 6= B a relative radiusrA;B;C and a

relative angle�A;B;C must be defined2:

rA;B;C :=
q(xC � xB)2 + (yC � yB)2q(xB � xA)2 + (yB � yA)2

�A;B;C := tan�1 yC � yBxC � xB � tan�1 yB � yAxB � xA
Then we have spatial relations as the examples shown be-

low. All relations are named in figure 10 except the special
casesdou and tri . For a complete list of the definitions we
refer to[Moratzet al., 2003].

A;B sam C := rA;B;C = 0
A;B clb C := 0 < rA;B;C < 1 ^ 0 < �A;B;C � 14�
A;B dlb C := 1 � rA;B;C ^ 0 < �A;B;C � 14�
A;B c C := 0 < rA;B;C < 1 ^ 12 � < �A;B;C < 34 �
A;B dsr C := 1 � rA;B;C ^ �A;B;C = 32 �

TPCC is not closed under transformations (intersection,
complement and converse), i.e. a transformation might gen-
erate a proper subset of base relations. It is as well not closed
under strong composition (�):
8A;B;D : A;B(r1�r2)D $ 9C : A;B(r1)C^B;C(r2)D
Therefore 4-consistency cannot be enforced directly when in-
ferring with TPCC. Instead a weak composition (~) was de-
fined:

8A;B;D : A;B(r1~r2)D  9C : A;B(r1)C^B;C(r2)D
The composition table for the weak case was already pre-
sented in[Moratzet al., 2003]. The weak operations are still
sufficient to solve a task as shown in our example in the next
subsection.

4.2 A Solution with TPCC
With the relations defined in TPCC the task “move to the red
cube behind the blue cube” can be described such that one
of the relationsclb, csb or crb must hold for(C;R1; B1) or(C;R1; B2). We will refer to the disjunction of the three
relations asc?b. We visualize the initial situation in fig-
ure 11(a). Figure 11(b) integrates the initially perceived con-
straints about what is known aboutB1 andB2. To deduce
the desired knowledge the agent has to move. How to choose
the most reasonable action for a maximum of information
gain goes beyond the scope of this paper. Therefore we ap-
ply the heuristic: ”Move straight forward until the first object
is passed and get new perceptions there”.

We will use a simple path-based scheme of constraint prop-
agation, where the two last relations of a path are composed

2Here we refer to the arcus tangent function with two arguments
mapping all four quadrants (atan2).



and then the reference system is incrementally moved to-
wards the beginning of the path to demonstrate reasoning effi-
ciently.

In the example the robot moves towards a position to the
right of the blue cube (fig. 11(c)–11(d)). In figure 11(e) it
reaches the desired position (R2). Relation 3 just describes
the fact that the agent’s move to the right of the blue cube
relative to the starting pointR1. The agent’s perception gives
additional knowledge onB1 andB2 relative to(C;R2)3. In
order to make a composition we have to transform relation 3
with the SC transformation leading to relation 3’ (fig. 11(f)).
Now 3’ can be composed with 5 leading to the fact thatc?b
is not valid for(R1; C;B2) (fig. 11(g)). Composing 3’ and 4
showsB1 being somewhere behind the blue cube relative to(R1; C) (fig. 11(h)). Although according to constraint propa-
gationB1 might be somewhere left of the reference axis,B1
is the only red object having a chance of fulfilling the given
constraint (c?b).

Solving general constraint satisfaction networks on the ba-
sis of Double Cross relations isNP -hard[Scivos and Nebel,
2001]. TPCC has not yet been proven to beNP -complete.
Anyway, in the case of many real world problems the desired
knowledge can be gained in polynomial time without the need
to solve the whole constraint system. The solution can be ob-
tained via a path-based constraint propagation as presented in
[Dylla and Moratz, 2004]. All the algorithms given there are
in P .

4.3 OPRAm— Reasoning about Perceptions
At first the agent perceives basic relations between the ob-
jects of the environment. Then the agent moves, gets new
perceptions, and can combine these perception using qualita-
tive spatial reasoning using the previously defined operations
of OPRAm. We now relate to the example in figure 11. Ac-
cording to the granularity of TPCC we assumem = 4. AB
denotes the o-point at positionA with orientation towardsB.
In contrast,BA denotes the inverting, i.e. pointA looking
away from objectB.

The initial task (figure 11(b)) may be expressed as

R1C 4\00 CR1 ^ CR1 4\f0�15gf7�9g BX� ?
withX 2 f1; 2g and withA m\fk�lgfi�jg B denoting the disjunc-
tion j_

a=i
l_

b=kA m\ba B :
The� stands for the set of all available points in our setting.
We do this, because the orientation ofBX is of no interest
for the given task.

The initial perceptions (figure 11(b)) are:

(1) R1R2 4\1 R1C ! R1R2 4\01 CR1
(2) R1R2 4\1 R1B1 ! R1R2 4\01 B1R1
(3) R1R2 4\15 R1B2 ! R1R2 4\015 B2R1

3Perhaps more relations are perceivable, but we concentrate on
the relations relevant for this example.

R1

B2

C

B1

R1, C (c?b) BX ?

(a) The initial situation
and task

R1

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

(b) Initially perceived
relations

R1

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

(c) Moving to gain addi-
tional knowledge

R1

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

(d) ... still moving

B2

C

B1R2
R1

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B1    (1)

C, R1 (dlf, clf)  B2    (2)

R1, R2 (csl, dsl)  C  (3)

C, R2 (clb, dlb)  B2  (5)

C, R2 (dfl,  cfl)   B1  (4)

(e) The agent reaches
a position where new
knowledge can be
perceived

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R2
R1

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

R1, C (crf, cfr)  R2    R1, R2 (csl, dsl)  C  (3)

C, R2 (clb, dlb)  B2  (5)

C, R2 (dfl,  cfl)   B1  (4)

(f) Transformation of re-
lation3 with SC to 30

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R2
R1

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

R1, C (crf, cfr)  R2    

R1, C (drf, crf, dfr, cfr,

R1, R2 (csl, dsl)  C  (3)

C, R2 (dfl,  cfl)   B1  (4)

            csr, dsr, cbr, dbr)  B2C, R2 (clb, dlb)  B2  (5)

(g) Path-based integration
of 30 with 5, resultingB1
being to the right ofC

B2

C

B1

C, R1 (dlf, clf)  B1    (1)

R2
R1

R1, C (c?b)  BX ?

C, R1 (dlf, clf)  B2    (2)

R1, C (crf, cfr)  R2    

R1, C (dbl, cbl, clb, dlb,

R1, R2 (csl, dsl)  C  (3)

C, R2 (clb, dlb)  B2  (5)
            csb, dsb, crb, drb)  B1

C, R2 (dfl,  cfl)   B1  (4)

(h) Integration of30 with 4
resulting inB2 being some-
where behindC

Figure 11: Solving the task: “Go to the red object (circle) behind
the blue cube!” with TPCC



So farR2 is just an abstract point in the direction of the
robot’s current orientation. For additional knowledge the
agent moves to the real positionR2, which is the rectangu-
lar point of intersection of a straight move and the first object
passed according to our heuristics.

(4) R1R2 4\80 R1R2! R1R2 4\00 R2R1
At R2 the Aibo perceives (figure 11(e))

(5) R1R2 4\4 R2C ! R1R2 4\04 CR2
(6) R1R2 4\1 R2B1 ! R1R2 4\01 B1R2
(7) R1R2 4\13 R2B2 ! R1R2 4\013 B2R2

From (5) follows

(5’) R2R1 4\12 R2C ! R2C 4\4 R2R1
Applying the triangle constraint to (1) and (5’) we now are
able to derive

(8) CR1 4\3 CR2
Again we must transform (5) to

(5”) CR2 4\40 R1R2
Now we can compose (5”) and the ”same” relation (8) result-
ing in

(9) CR1 4\43 R1R2
Deriving the relative position ofB1 needs the composition

of semi-planar relations (9) and (6), and with (7) forB2 re-
spectively.

(10) CR1 4\f11�15gf3�9g B1R2
(11) CR1 4\15f3�5g B2R2

In (11), compared to our initial task, one can see thatB2
is definitely being positioned somewhere to the left ofC1 re-
garding the orientation towards our starting positionR1. Al-
thoughB1 might also be somewhere to the left regarding the
same reference system, it is the only red object having the
chance to fulfill the initial constraint.

5 Conclusion
We presented a calculus for representing and reasoning about
qualitative relative orientation information. Oriented points
serve as the basic entities since they are the simplest spatial en-
tities that have an intrinsic orientation. We identified systems
of atomic relations on different granularity levels between o-
points and identified a scheme for computing the calculi’s op-
eration tables based on their geometric semantics. It turns out
that our calculus is a relation algebra in the sense of Tarski.
Therefore fast standard constraint-based reasoning methods
can be applied under real time conditions. The granularity of
the calculus allows to suppress irrelevant feature changes in
dynamically changing environments.

Potential applications of the calculus are demonstrated by
a robotics scenario. In the scenario, linguistic commands
and coarse perceived configuration information have to be in-
tegrated by constraint propagation to get survey knowledge.
The accuracy of the calculus permits robotics applications, in
particular in cognitively driven scenarios featuring linguistic
communication and approximate visual perception.
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