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This chapter was born of an ill-defined but definite feeling that we, as cognitive
psychologists, do not really understand our concepts of representation. We pro-
pose them, talk about them, argue about them, and try to obtain evidence in
support of them, but we do not understand them in any fundamental sense.
Anyone who has attempted to read the literature related to cognitive representa-
tion quickly becomes confused — and with good reason. The field is ¢ stuse,
poorly defined, and embarrassingly disorganized. Among the most popula: ierms,
one finds the following: visual codes, verbal codes, spatial codes, physical codes,
name codes, image codes, analog representations, digital representations, propo-
sitional representations, first-order isomorphisms, second-order isomorphisms,
multidimensional spaces, templates, features, structural descriptions, relational
networks, multicomponent vectors, and even holograms. This abundance of lan-
guage for talking about representation would be a good thing if all the distinc-
tionis were clear and if they fit together in a systematic way. The fact is that they
are not clear and do not fit together. Different people use the same term in dif-
ferent ways and different terms in the same way. These are not characteristics of
a scientific field with a deep understanding of its problem, much less its solution.
This chapter is an extended inquiry into the nature of the problem of cognitive
representation. The rationale is that a solution is more likely to be achieved if
the problem is understood properly.

In order to make systematic progress on problems concerning cognitive repre-
scntation, we must bepin at the beginnring: What is representation? This is a ques-
tion few psychologists have ever ssked and even fewer have made any serious
atterapt to answer. 1t is so bhasic a question that one might wonder whether its
answer would be of any value to cognitive psychology. It is the main thesis of
this chapter that the answer is enormously important and will change our under-
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standing of both theories and experiments concerned with cognitive represen-
tation.

Let us assume that our goal is to specify as clearly as possible the nature of

. people’s internal representations of the world. That is, we want to construct clear,

concise theories of cognitive representation that can be evaluated using the
methods of psychology as a behavioral science. The standard method of evalua-
tion is to ask questions by experimental hypothesis testing. The answers to these
questions delineate the nature of an adequate theory. If this is a reasonable char-
acterization of the situation, is there any reason to believe that knowing (or
having a theory of) what representation is will help us in either the theoretical or
experimental enterprise?

Trying to determine the nature of cognitive representation without first know-
ing about representation as a general construct is much like trying to determine
the nature of oak trees without first knowing about trees as a general class of
objects. Suppose there are two botanists whose task is to describe the essential
characteristics of oak trees by performing a series of tests on a given specimen.
Botanist A has a thoroughgoing knowledge of trees: what their defining charac-
teristics are, how types of trees differ from one another in ways that are relevant
to classification, and how they differ in ways that are irrelevant. Botanist B
knows none of these things. Botanist A works quickly and efficiently. She makes
the measurements necessary to describe oaks versus other types of trees and only
those measurements. She does not bother to note that oaks have bark and leaves
because she knows that all trees have these attributes. Nor does she bother to
count the number of branches on this particular tree, because she knows this to
be irrelevant to her task. When she is done, she describes oaks as, say, trees with
properties a, b, and ¢. Botanist B, however, necessarily performs many more
measurements than A. If he is diligent enough, he eventually discovers the defin-
ing characteristics of oaks, but these are mixed together with properties that are
relevant only to treeness and with other properties that are relevant only to this
particular specimen. When he is done, his description might be that oaks are ob-
jects with properties a, b, ¢, d, .... Obviously, A has an advantage over B in
knowing something about the general nature of trees. She is able to make fewer
empirical tests, and her description is simpler and more specific to the relevant
factors.

Although the analogy is rough, the major point is clear. If representations, like
trees, have certain defining characteristics, certain relevant dimensions of varia-
tion, and certain irrelevant dimensions of variation, then knowledge of these
things (or at least some working hypotheses about them) should be important to
psychologists for very tangible reasons. It defines the kind of experiments that
are deemed important and relevant. It specifies the general form of our theoret-
ical descriptions and separates essential aspects from nonessential ones. In fact,
without some “metatheoretical” framework of this sort, it is not clear that the
theoretical and experimental enterprises are meaningful at all. In short, the an-
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swer _to the representational question provides the larger framework for research
that Kuhn (1962).has called a “paradigm.’
If this isso, then we must currently have something that serves the function of

am@:E:o:E 503 weory: As far as I can tell, the present framework for
representations is a loose system of distinctions and classifications. Representa-
tional theories are defined by %mmm@mwmm, terms like those mentioned earlier: tem-
plates, features, structural %mo:nﬁm.rﬁ and so forth. Therefore, psychologists do
experiments that purport to test these alternatives. Such experiments abound in
the psychological literature. The issue is whether these are sensible questions to
ask in our experiments. Ultimately, this boils down to asking whether our current
framework for representation is sensible.

There are several observations suggesting that it is not. Wu:nﬁ the distinctions
we make do not follow from or lead to any coherent view of representation in
general. This is why the basic question — what is representation — is so hard to
answer. Mwooosa virtually none of the current distinctions have ever been explic-
itly defined. We can point to some samples of each concept, but this ability is
something less than a proper definition. Part of the reason they have not been
defined is that- good definitions are much easier to construct within a larger
framework.{Third, the distinctions do not relate to each other systematically. Is
the template/feature distinction independent of, the same as, or otherwise related
to the analog/propositional distinction? How do templates relate to prototypes?
Our inability to provide good answers to such questions is symptomatic of our
understanding of the concepts themselves wwmo::r — and perhaps most apparent
to experimental psychologists — the empirical tests of such distinctions rarely, if
ever, lead to conclusive results. There always seem to be ready explanations trom
the allegedly discredited theoretical position. This fact can be partially ascribed
to complications such as processing differences, because both representation and
processing assumptions are required to predict performance. But often I suspect
the problem is that many of the distinctions we purport to test are not mutually
exclusive at a level that is Eoma:m?_ woﬁ our aoam and methods.

paradigm simply vogcmo it is seen to be %?22@ Wiwoﬁ m:o%ﬁ must emerge
to take its place. The new paradigm should be able to make sense of things that
were formerly puzzling and bring 2 more elegant and coherent view to the domain
of the field. In the rest of this chapter, I propose a new view of cognitive repre-

.m..oaﬁ.mmw:gmmm @6:93% o:,,:g:méw:o:am@:ml 83833:03_;ww:wmco:
This view is developed informally with an emphasis on noncognitive representa-
tion. It is then applied to the concepts of the older framework. As far as possible

definitions are provided for constructslike templates, features, structural descrip-
tions, prototypes, isomorphisms, propositions, and analogs. Relationships among
them are clarified, and relevant aspects are separated from irrelevant ones. The re-
sults show that many of the mistakes we have made in understanding representa-

tion are alarmingly fundamental.
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REPRESENTATIONAL METATHEORY

Let us turn now to the basic question: What is representation? The first problem
is how to attack this question without considering cognitive representation itself.
The answer, of course, is to examine noncognitive forms of representation, either
real or artificially constructed for this particular purpose. Cognitive representation
is exceedingly complex and difficult to study. Other sorts of representations are
simple and easy to study. The plan is to move from simple representations to
_complex ones so that the basic issues are clear from the outset..

Some Examples of Representation

A representation is, first and foremost something that stands for something else,
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In other words, it is some sort of model of the thing (or things) it represents. This
description implies the existence of two related but functionally separate worlds:
the represented world and the representing world. The job of the representing
world is to reflect some aspects of the represented world in some fashion. Not all
aspects of the represented world need to be modeled; not all aspects of the repre-
senting world need to model an aspect of the represented world. However, there
smust be some corresponding aspects if one world is to represent the other. In or-
der to specify a representation completely, then, one must state: vaﬂirmﬂ the re-
presented world is; (2):what the representing world is; (3) what aspects of the
represented world mam.‘;@a:m modeled; (4):what aspects of the representing world
rare doing the modeling; and (5) what are the correspondences between the two

worlds. A representation is really a representational system that includes all five

Figure 9.1 shows some simple examples of representational systems that illus-
trate the previous points. In all cases, the represented world is the set of four
rectangles shown in Fig. 9.1A. These drawings, simple as they are, contain many
aspects that could be modeled in a representation. The representing Worlds B, C,
and D show how different aspects of the same represented world can be modeled
by the same representing world. World B reflects the relative height of the rect-
angles (a, b, ¢, d) by the relative length of the corresponding lines (', ', ¢, d').
In other words, the fact that 7 is taller than b in World A is reflected by the fact
that @’ is longer than &” in World B. Similar statements can be made for any pair
of rectangles in World A and the corresponding lines in World B. Tt is always true
that if x is taller than p in World A, then x' is longer than y” in World B. One
could describe this representational system hy saying, “World B is a representa-
tion of World A in which the relative length of lines in B corresponds to the rela-
tive height of rectanglesin A.” The implication is that any question that could be
answered about relative height in A could be equally well answered by consider-
ing refative length in B as long as the mapping of rectangles to lines were known.

World C reflects the relative width of rectangles in A by the relative length of
lines. For example, the fact that d is wider than any other rectangle in World A
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FI1G.9.1.  Examples of representation. The represented world in each case
consists of the objects shown in A. For eaclr representing world, the
correspondence of objects is indicated by the letters beneath them, and the
correspondence of relations is indicated by the expression beneath each
world.

is reflected in the fact that d' is longer than any other line in World C. World D
performs the same kind of representational function for relative size of the rect-
angles in World A. These examples demonstrate that one cannot specify a repre-
sentation simply cw\ wmi:uw to a representing world of objects. Without
W:oé_ammo of the represented world, its modeled aspects, and the correspondence
between the two worlds, representations B, C, and D are identical. Given this in-
formation, however, it is clear that they are quite different.

Worlds B, E, F, G, and Hillustrate how the same aspect of a represented world
can be modeled using different representing worlds. World B models height of
rectangles in terms of line length; the taller the rectangle, the longer the line.
World E also models rectangle height in terms of line length; but here, the taller
the rectangle, the shorter the line. This representational system differs from that
of B only in that a different relation (“shorter” rather than “longer™) is used to
model the represented relation (““taller”).

World F reflects the height of rectangles by the size (area) of closed geometric
forms. Note that object shape has no correlate in the represented world. In addi-
tion to using a different relation to represent “taller than,” this example illus-
trates that there may be other aspects of the representing world that are
irrelevant to its modeling function.

World G embodies a rather different way of preserving height relations among
the rectangles in A. Here, the fact that a is taller than b in A is reflected in o’
pointing to b* in G. What makes this kind of representation different from those
discussed previously is that: (1) the representing objects corresponding to the
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rectangles are identical; and (2) new elements (the arrows) have been added that
correspond explicitly to the relation being modeled (“taller than™). It is 5%3
tant to notice that the arrows of World G are not “object elements” bu

tional elements.” That is, the presence of a given arrow in the quomo:ﬁm:oza
“world d6ey ot correspond to any single object in the represented world. It is
tempting to characterize the difference between representations B and G by
saying that B represents relations (“taller than”) by relations (“longer than”)
while G represents relations (“taller than™) by elements (the m:oémv The real
difference is more subtle, however, “Points to” (more accurately, “is arrow-con-
nected to”) in World G is a relation just as “longer than” is in World B. The
difference is that although “Tonger than” is a relation that can hold between an
ordered pair of objects, “is arrow-connected to” is a relation that can hold be-
tween an ordered pair of objects only by virtue of each being related to a third
element (the relational arrow) in a particular way.

World H illustrates yet another type of representation. Like World G, it con-
tains explicit relational elements, but the arrows are not sufficient to model the
“taller than™ relation in A. “Is arrow-connected to” models some other, more
restricted relation that might be called “next-taller than.” In order for “taller
than™ to be represented, the “points to™ relation must be made transitive. The
solution is to use the “chains to” relation (more accurately, “is arrow-path-
connected to”), which is essentially a transitive version of “points to.” It is easy
to see that if all the “chains to” relations were made explicit in World H by
arrows, the resulting representation would be identical to World G.

Intuitively, what all these representations have incommon is that they contain
information that reflects some infonmation about the world they represent. The
information contained by the representing worlds can be the same yet can
reflect different information about the represented world. Worlds B, C, D, and
E of Fig. 9.1 are examples of thissituation. In contrast, the information contained
by the representing worlds can be quite different, yet can reflect the same in-
formation about the represented world. Worlds B, E, I, G, and I are examples
of this possibility. No two representational systems in Fig. 9.1 are exactly the
same, but some are more similar than others. We examine these similarities and
differences in more detail shortly.

Onoaco:m_ mm_m:o:m

Thus far a representing world has been treated as a “thing” that stands for a
represented world that is also a “thing.” It does so by virtue of certain relation-
ships between it and the world it represents. But the concept of representation
also includes an operational.component. The representing world can be used for
oo;:: purposes instead of the E?mmoamm world. In order for this to happen,
there 5:2 be ?o%&% to oco;;m on the represented world. We now consider

@:o:( the interdependence of representation and its processing environment.
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It is axiomatic within an information-processing framework that one cannot
discuss representation without considering processes. The role of processing
operations in the present analysisis that they functionally determine the relations
that hold among the object elements. Consider World G of Fig. 9.1. The arrows
connecting the circles in the diagram are only meaningful and useful if there are
operations for finding them and the circles they connect. The operations of find-
ing an arrow and its associated circles define the “points to” relation. Similarly,
in World B, some operations define the “longer than” relation between pairs of
lines, and other operations define the “chains to” relation in World H.

In these cases, we relied on our intuitive notions of “longer than,” “points
to,” and ““chains to.” This works because we all have more or less the same
operational concepts for these relations. In constructing processes to use these
representations, however, operational definitions must be specified in terms of
what the processes do to determine whether or not a particular relation holds.

It is omeEo to have a representation that seems 305%:99; by intuitive :o:c:m
ABp ) 114 epr

but is_app om:ma &a se; A_Eo given the processses that operate upon it. The
height of rectangles, for SEBEP might be represented by line length where
there is no intuitively obvious relationship (such as our usual concepts of “longer
than” or “shorter than™) to model “taller than.” But if there is a process that
::.mma ts ;mm,m length of lines — whatever they may be — such that corresponding
are functionally ordered just as the rectangle heights are ordered, then
%oa is an operational relation defined by this process that corresponds to the
“taller than” relation in the represented world.

A more familiar example of the same general concept is the “next” element
of a list in list-processing computer languages. There is no necessary relationship
between one element of a list and the next element in terms of physical location
in memory or their numerical addresses. The list-processing language operationally
defines the “next” element as the one “pointed to” (i.e., addressed indirectly)
by the current element. Thus the “next” element is functionally next to the
current element in terms of access order by the interpretive process. In an array-
processing language, the situation is different. The “next” element of an array is
defined such that it is also the next numerical address in memory. This does not
mean that “next” is any less operationally defined in the array-processing language
but only that it is more intuitively obvious what the relationship is. “Next™ is
completely defined by the operations in both cases.

The importance of this argument is that the relations i

o ; L - A

%erom«: relations rather than %?:9: ﬁ&m:o:w Onmam:o:& relations are
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m::nq those defined t @% the processes that interpret the representation. [Pyly-
shyn’s “semantic interpretation function’ is very similar to the present concept
of operational relations (Pylyshyn, 1975).] Thus, in talking about operational
relations, we implicitly include certain aspects of processing operations in the
representation itself. Without those processes, the representation is meaningless.

The %bo:amzoo of 89232:3: on processing goes even deeper. There is
an important sense in which the only information contained in a representation
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is that for whi

i S

ch operations are defined. In other words, it does not matter whether
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world if there are no methods for doing so. A good example is Shepard’s (19624,
1962b) multidimensional scaling procedure. Suppose there is a matrix that
tables the ordinal distances among, say, 30 cities in the United States. It is
obvious to everyone that this representation contains weak information about
relative distances between cities. What is not so obvious — indeed, what was not
known until recently — is that this matrix contains a great deal more information
about distance and some information about direction as well. In fact, the matrix
contains enough information to produce a reasonable approximation to a map
containing those cities. The proof that such information exists is that Shepard’s
scaling algorithm (and its descendants) is able to recover it from the original
matrix. We now know that a great deal of locational information is implicitly
contained in an ordinal matrix of this sort, but prior to Shepard’s demonstration,
this was not thought to be the case. More to the point, however, is that simply
knowing it is theoretically there is not sufficient for it to be considered part of
the represented information. No person or machine can derive it without actually
wﬂmc:a:m the operations. In short, the implicit locational information is not
there at all éxcept for the computer programmed to extract it, and for that
computer, it is there even though it does not seem to be.

This rather esoteric example illustrates a very simple fact. The only.informa-

tion contained in a representation is that for which operations are mmm:mg to

,m:u::: it. When stated in this way, the point seems almost trivial, but it is not.

As we see later, the representational nature of several kinds of theories have
been universally misunderstood precisely because this fact is not appreciated.
In general, we must be very careful about deciding just what information is con-

tained in a representing world. The notion of operational relations changes the

way we view our constructs of representation.

The Nature of Representation

Let us stop now and consider what we have learned from the analysis thus far.
First, a representation requires a certain kind of relationship between two func-
tionally separate worlds. Each world consists of objects that are characterized
by relations that hold among them. These relations are operationally defined.
The function of a representing world is to preserve information about the
represented world. We can tie all of this together by assuming that the informa-
tion contained in the two worlds is the set of operational relations among
objects. Preserving information, then, is equivalent to having corresponding
relations in the two worlds.

The nature of representation is that there exists a correspondence (mapping)
from objects in the represented world to objects in the representing world

such that at ZZ some relations in the represented world are structurally preserved
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in the representing world.! In other words, if a represented relation, R, holds for
ordered @wﬂaw.,(oﬁ Ho?owm:ﬁoa objects, <x, >, then the representational mapping
requires that a corresponding relation, R’, holds for each corresponding pair of
representing objects, <x‘, y™>. This is just a very abstract and general way of
describing situations like those shown in Fig. 9.1. The “taller than” relation in
World A is preserved by the “longer than” relation in World B, by the “shorter
than” relation in World E, by the “bigger than” relation in World F, by the
“points to” relation in World G, and by the “chains to” relation in World H.
The same sort of representational relationship can hold for properties of
individual objects. All objects in the represented world that are, say, 2 feet tall
must correspond to objectsin the representing world that have whatever property
corresponds’ to 2-feet-tallness. This fits our description of representation if we
view properties of individual objects as relations that hold for single objects. In
fact, this is just the way properties are modeled in set theory — as “unary”
relations (defined for individual objects) that are no different in principle from
“binary” relations (defined for pairs of objects) or “n-ary” relations (defined
for sets of n objects). We use the terms “‘unary relations™ and “properties”
interchangeably.
""We now have at least an informal answer to the basic representational question.
A world, X, is a representation of another world, Y, if at least some of the re-
lations for objects of X are preserved by relations for corresponding objects of
Y. The second goal is to characterize the ways in which two representations can
differ from one another. A * ‘representation” obviously refers to a representing
world in relation to its represented world. The question of how two representa-
tions can differ, then, is really a question about how two worlds can differ from
one another in the way they relate to their respective represented worlds. Given

BB,

our definition of representation, it is clear that two representations can differ
in %rm@%ﬁmg mma\on the relations they represent. Having noted that two repre-
sentations can differ in the objects they represent, we focus our attention on
how two representations can differ when the objects they represent are the same.

If a pair of representations model the same set of objects, then there are two
major kinds of differences to consider. First, two representations can model
different relations of the represented objects. This is the case in Worlds B, C,
and D of Fig. 9.1. Second, two representations can model the same relations, but
in different ways. This is the case in Worlds B, E, F, G, and H of Fig. 9.1. Because
representation is concerned with preservinginformation, and information consists

of relations, we call the latter situation informationally equivalent representation

IThis definition has a straightforward formalization in terms of model theory (Tarski,
1954). The represented and representing worlds are relational systems, each consisting of a
set of objects and sets of relations. A representational system is an ordered triple con-
sisting of the two relational systems and a homomorphic function that maps the represented
objects into the representing objects. The basic approach is similar to that used in meas
urement theory for numerical representation (Krantz et al., 1971; Scott & Suppes, 1958
Suppes & Zinnes, 1963). This formalization, however, is beyond the current level of dis-
cussion.
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and the former nonequivalent representation. The only remaining cases are those

in which the sumeTelations are modeled in the same way. This situation is called
completely equivalent representation.

Nonequivalent Representations

Two representations that reflect different relations of the same objects are not
equivalent in the sense that they do not preserve the same information. In

other words, given two such representations and their processing systems, one
could not answer the same questions about the represented objects from both

representations. There are many possible differences that could result in this
situation.

/

,,m,-«@ﬁm of Information. The most obvious condition for nonequivalence is
that two représentations can model qualitatively different dimensions of varia-
tion in the represented world, For present purposes, a “dimension” is just a set
of mutually exclusive relations, only one of which is true for each object or set
of objects on which the relations are defined. Properties of individual objects
like height, length, size, and so forth are unary dimensions, because each in-
dividual object has only one value for each. The “values” m:,m:m a dimension are
simply the relations that comprise the dimension. Thus, “being two feet tall,”
“being red.” and “having a hand” are possible values for unary dimensions of
height, color, and handedness. Binary dimensions are defined just as unary dimen-
sions except that they can hold only for ordered pairs of objects. The distance
between two objects and their relative sizes are examples of binary dimensions,
because one-and-only-one of the component relations can hold between each
ordered pair. Similarly, n-ary dimensions can be defined for larger sets of objects
—¢.g., the relative distance between an object and two others.

_The intended notion of differences in type of information represented is
that one representing world may preserve some (but not necessarily all) Emo:zw,..
tion about a given dimension, whereas the other representing world may @Emo?@
1o information about that dimension. In other words, one world represents that
dimension somehow, but the other does not. Worlds B and C are examples,
because B represents relative height information whereas C does not, and C
represents relative width information whereas B does not. Clearly, this is an
important way in which two representations can differ, because Mmmv\om::oﬁ
be used to answer the same kind of questions about the represented o_&moa,,
much less the same specific questions. ,

* _Resolution,, 1f two representations model the same dimension, they can still
differ in many ways. The dimensional representation in one world may contain
just a few relations, whereas in another it may contain many. The limiting cases

are two relations and an infinite number. Consider some possible representations
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of the length dimension. In one representation, all lengths are categorized into
just two values: “short” or “long.” In the other, they are categorized into, say,
100 values. There will be many objects having the same representation of length
in the first system that have different representations of length in the second.
These two representations are nonequivalent, because there are questions for
which they provide different answers. For example, two objects both clas-
sified as “long” in the two-valued system might fall in two different length
categories within the 100-valued system.

In general, any dimension can be described as containing m relations. The
number of relations comprising the dimension is one important aspect of its

resolution_or grain. The larger the number of relations in a dimension, the

higher the resolution and the finer the grain. We are presently assuming that
the assignment of relations (values along the dimension) is completely deter-
ministic, but it need not be. One could define a probability distribution over
the m dimensional values for each object to construct a probabilistic representa-
tional system. This possibility, however, is beyond our present level of inquiry.

_ The other aspect of resolution is concerned with the particular relations that
are preserved. Two representations might each have the same number of levels
without those levels containing objects that correspond to the same objects in
the represented world. Two maps, for example, might have three levels of dot-
size to represent citysize. If they used different criteria for assigning city-size
to dot-size, the same city might be represented as a large dot in one map and a
medium dot in the other. In order for the resolution of two representations to
be identical for some dimension, then, they must not only have the same number
of levels but must classify the represented dimension in the same way.

/ Uniqueness. 1If two representations represent the same dimension with the

same resolution, they can still be nonequivalent in the sense defined earlier. Con-
sider two maps again with three levels for their representation of city-size. In
one map, the cities are represented as black dots of three different sizes such
that the larger the city, the larger the dot. In the other map, the cities are
represented as red, blue, and yellow dots of the same size. Using the first map,
one can tell which of two cities is the larger if they are represented as different
sized dots. That is, the ordering of dot sizes preserves the ordering of city sizes
to some extent. In the second map, this is not obviously true. One can tell
whether two cities are generally the same in size or different, but their order is
not necessarily represented. If there is a “key” on this map that indicates the
size-to-color mapping, one can figure out the relative sizes. The key provides
what is needed — an operational ordering relation for the colors. Without the
key, however, the two maps are not equivalent, because questions about relative
size of cities could be answered from the first map but not from the second.
""We call this kind of difference the uniqueness of a dimensional representation,
because it is analogous to the concept of uniqueness in measurement theory
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(Krantz et al., 1971; Suppes & Zinnes, 1963). In the case where the levels of a
dimension are not functionally ordered, only same/different relations are defined
for pairs of dimensional values. This kind of representation is called nomin
after the similar case of measurement scales. It :ﬂmrﬁ be thought that %oﬂsmzau\w
representations are so weak that they are uninteresting, but this is not so. Nearly
all current theories of language representation are exclusively nominal, and many
theories of perceptual representation contain substantial nominal components.
Any dimension in which only identity is  preserved is nominal.

If the relations of a dimension ?zozo:mzv\ order the representing objects as
the represented objects are ordered, then order information is preserved as well
as identity information. Such representations are called ordinal, after the cor-

Rmﬁc:a_:m type of measurement scale. Ordinal representations preserve more
information than nominal ones in the sense that additional higher-order relations
are Ems:::mﬁ:_ “different” relations of nominal dimensions are divided into
“more” and “less” relations in ordinal dimensions. ; -

It is not clear how to describe other types of uniqueness properties for non-
numerical representation (e.g., ,mwm,&mw ratio, or absolute representations cor-
responding to those types of scales). Certainly, when the representation. is
numerical, these concepts are meaningful. Perhaps they are in other kinds of

representation as well if the correlates of numerical transformations can be

identified. For present purposes, we simply note that such an analysis seems
plausible.

Informationally Equivalent Representations

Two representations that preserve the same relations about the same objects arc
called informationally equivalent, because they are indistinguishable in terms
of Em information they preserve about the represented world. This does not

mean that the representations are identical, of course. They can preserve the
same information in many different ways. The fact that their methods of repre-
sentation differ should not obscure the fact that they provide essentially the
same view of the world they represent.

There are countless ways in which informationally equivalent representations
can differ. These differences may be subtle (e.g., Worlds B and E of Fig. 9.1)
or obvious {e.g., Worlds B and G of Fig. 9.1). No attempt is made here to catalog
all the possibilities. Rather, I focus on two distinctions that seem to be important.

\\::S:q Versus Lxtrinsic Representation. The first distinction is most

e

o_?i; 29:252 by the contrast between Worl ds B and G as representations
of rectangle height in Fig. 9.1A. Consider two facts about the nature of the
represented relation “taller than.” First, if an object x is taller than an object y,
it cannot also be true that y is w::c:m:oozm_% taller than x. In the language of
logic, this fact defines “taller than” as an asymmelric relation. Second, if x
is taller than v, and v is taller than z, than it must be true that x is taller than z,
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This fact defines “taller than” as a fransitive relation. The asymmetry and transi-
tivity of “taller than” seem to be inherent constraints in the physical world.

It follows from our present definition of representation that if “‘taller than”
is to be represented by some other relation, it too must be functionally asym-
metric and transitive. There are two quite different ways of achieving this result.
In World B, for example, the “longer than” relation seems to have the same in-
herent constraints. It is asymmetric, because if line x is longer than line y, then
» cannot be simultaneously longer than x. It is transitive, because if x is longer
than v, and » is longer than z, then x must be longer than z. We call this method
of preserving structure intrinsic representation. Representation is (purely)

intrinsic 2:0:9\3 a representing relation has the same inherent constraints as

mmzwmwmmmm_,;wa 85:0: That is, :E _omu, 1 wS:o::o 8@::8 0m %m representing
relation is intrinsic to the relation itself rather than imposed from outside. The
representation of “taller than” would be intrinsic if it were modeled by “shorter
than” (World E), “larger than” (Wotld F), “brighter than,” “more numerous
than,” or any other relation that is inherently asymmetric and transitive.

The situation is strikingly different in World G, however. Here, “is arrow-
connected to” represents “taller than,” but there seem to be no inherent con-
straints on _this representing relation. If x is arrow-connected to y, then y might
be arrow-connected to x, or it might not. If x is arrow-connected to y, and ¥
is arrow-connected to z, then x might be arrow-connected to z, or it might not.
Thus arrow-connectedness is not necessarily either asymmetric or transitive,
although it is possible for it to be either or both. Its ability to represent “taller
than” follows directly from this fact. Asymmetry and transitivity can be literally
imposed on it by requiring that it preserve the structure of its represented relation.
We call this method of preserving structure extrinsic representation. Representa-
tion is (purely) extrinsic whenever the inherent structure of a representing rela-
tion is totally arbitrary and that of its represented relation is not. Whatever
structure the representing relation has, then, is imposed on it by the relation it
represents.

There are two ways in which intrinsic and extrinsic representation can be

Bin.@o_u,:o:wcﬁo:m 85:0: 5umZm:Bmawngco:omz@oaoaﬁaaziéf
sically and the other extrinsically. Not so obviously, both can be used in modeling
the same relation. World H is an example of this. The “is arrow-path-connected
to” relation is inherently transitive, because if there exists a path of arrows from
x to ¥ and another from y to z, then there must be a path from x to z. It is not
inherently asymmetric, however. If there is a path of arrows from x to y, then
there is no reason why there could not be one from y to x as well. Thus the
transitivity of the “taller than” relation is represented intrinsically, whereas its
asymmetry is represented extrinsically.

A word of caution is necessary about the distinction between intrinsic and
extrinsic representation. The caution is that it rests on the concept of “inherent
structure,” a notion fraught with deep philosophical problems. After a moment’s
reflection, it is seen that “inherent structure” is closely related to the philosophical
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concepts of “a priori knowledge” and “analytic and synthetic statements.” In

fact, intrinsic representation could just as well be cailed “analytic” and extrinsic

E,wamm_:m:o:om:oamv\:zaam.:,:,mwmmaammmmcois\_dorw::o,ﬁov:oarm,\m
been arguing for centurics (e.g., Grice & Strawson, 1956; Quine, 1951). Despite
such problems, I think the intrinsic—extrinsic distinction and the underlying
notion of inherent structure are intuitively clear enough to be useful. As we

see later, the distinction lies at the heart of a current psychological controversy.

&qmﬁ Versus Derived Representation.  Another way in which two informa-
:o:m:w 2::&?3 representations can differ is in terms of how basic the informa-
tion is within the representations. Intuitively, the distinction is between represent-
ing a relation so that it is a representational “primitive” and representing it so
that it must be computed from other, more primitive relations. In World G, for
example, the representation of “taller than” by “is arrow-connected to” seems
more basic than in World H, where it is represented by “is arrow-path-connected

The reason is that the latter relation relies on the former relation for its
definition. In other words, one must make use of the “is arrow-connected-to”
relation in order to evaluate the “‘is arrow-path-connected to” relation.

We call presentation of a relation direct if its operational definition relies
on no other relations. O:Enézm the relation is derived. Any derived relation
could be based on relations that are themselves either direct or derived. The de-
pendencies that exist among relations determine the derivational structure of
the system. Fach relation can be specified in terms of how it is computed from
other more basic relations.

There are some sticky problems involved with claiming that derivationat
structure is a representational issue. Strictly speaking, it is a question about how
the representation is processed, because the definitions of relations are claimed
to be operational. Still, there are cases in which it is obvious that one relation
is derived from another — e.g., in World H of Figure 9.1. Direct representation is
especially clear when representation is extrinsic, for reasons that become obvious

later. With intrinsic representation, derivational structure is often obscure.

Completely Equivalent Representation

There is not a great deal to say about completely equivalent representations.
They are simply_informationally equivalent representations in which the same

relations are modeled in precisely the same way.

It is worth mentioning. however, that no form of representational equivalence
guarantees that performance characteristics will be the same for two representa-
tions embedded in process models. Even two completely equivalent representa-
tions may not have the same temporal characteristics, because a set of operations
performed sequentially in one model may be performed simultaneously in the
other. Error characteristics are similarly opaque without considering the process-

ing environments for the representations in detail. The simple fact is that there
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are a multitude of nonrepresentational factors that contribute to performance
:M:mog:ﬁ:om, and these can differ no matter how similar the representations

might be.

Complex Representations

Thus far we have been discussing “simple” representations that model a single
dimension of their referent worlds. The situation is far more complex in cognitive
representation and in most real-world representations. Many different dimensions

o:rnsm@?mﬁmiomEozgogaraaoao_maiSmmﬁzo&ima ﬁ:wm:oémmoia
possibility that different aspects of the represented world may have qualitatively
different representations. Consider a typical road map. Dots representing cities
and lines representing roads are laid out in a spatial arrangement that simultan-
eously preserves a number of different dimensions of the real world. The location
of cities is represented by the location of dots. The population of cities is
represented by the size of dots. The condition of roads A?Zma unpaved, high-
way, elc.) is ozo: represented U< the color of lines.

tionally homogeneous. Representing city-location ¢< dot-location @Ss%m a <mQ

high resolution, whereas representing city-size by dot-size generally has very low
resolution. It seems, then, that the best way to characterize complex representa-
tions is in terms of the simpler dimensional representations that we have been
considering. There is no single, acceptable description of the map as a whole, but

we_can say mgm_2¢ Q::mm mdoi it when broken down into dimensional com-

ponents.

Interdimensional Structure. The separate dimensional pieces of a complex
representation do not tell the whole story, however. When a representation
contains more than one dimension, there is the possibility that pairs of them will
not be m:mm@o:ami. To the extent that this is true, there is interdimensional
structure that must be preserved in the representing world. To use our familiar
example, the height, width, and area of rectangles are not independent dimensions.
If a rectangle is both tall and wide, it cannot be small. Height and width determine
area in a fundamental way that prohibits such a combination.
interdimensional structure is present in the represented world must
be preserved in the representing éoza for the modeled dimensions. This is not
much of a problem if only a basic set of completely S%nmsmma dimensions
are represented directly and all others are derived from them. In such cases, the
derivation generally takes into account the interdimensional structure. Otherwise,
there is potentially a problem in preserving this information.

Once again, we can distinguish between intrinsic and extrinsic methods of
preserving structure. If the height of rectangles were modeled, say, by the
volume of spheres, and if the width of rectangles were modeled by their density,
then the area of rectangles would be intrinsically represented by their mass.
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This is so because the mass of spheres bears the same relationship to their volume
and density as the area of rectangles does to their height and width. In other
words, the inherent structure among dimensions in the representing world is the
same as the inherent structure of dimensions in the represented worlds. The
problem with this solution is that it very quickly becomes difficult to find
analogous physical systems with all the required dimensional structure. For
sufficiently complex representations, the constraints become so fierce that only
a scaled model of the represented world will suffice. Although thisis asatisfactory
solution in some applications, it is not tractable for mental representation.

The other solution is to represent interdimensional structure extrinsically.
That is, one could choose representing dimensions that are inherently independ-
ent and make them dependent by virtue of building in that structure. For ex-
ample, ‘the height. width, and area of rectangles could be represented by the
length, brightness, and orientation of lines. Because length and brightness do
not in any sense determine orientation, it would simply have to be the case that
in the representing world, tong, bright lines are oriented more vertically than are
short, dark lines. Note that even though the individual dimensions involved are
largely intrinsic representations of their referent dimensions, they are extrinsic
at the higher fevel of interdimensional structure. Naturally, a representation can
be extrinsic for both unidimensional and multidimensional structures.

Our hope that complex representations would be analyzable into simple
representations turns out to be only partly realized. As more and more dimen-
sions are added, higher-order structure increases drastically. Still, this general

Y

“considered simple representations first, we have come a long way toward our
goal of a general framework — a metatheory, if you will — for representation.
At least we have a coherent set of assumptions about what representation is and
show representations can differ from one another at different levels.

COGNITIVE REPRESENTATION

We now turn our attention to the form of representation in which we were in-
terested all along - cognitive representation. The plan is to use the framework
developed for representation in the previous section to analyze the problem of
cognitive representation. It must be clear from the outset that the goal is not to
present a new and better theory of cognitive representation. Rather, it is to

.c.:caaSE::a:aéﬁ:?:caw,::amzz,:a_éﬁ‘:oioom:EéE%crao@\m:ocz
approach mental representation and how we have been doing it for the past
decade or so.

The discussion focuses on perceptual representation for two reasons. First,

the concepts of perceptual representation currently in use are more confused
and confusing than for any other cognitive domain. Second, the range of dif-
ferent prapasals about perceptual representation seems greater than any other.
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In fact, some are very similar to forms of representation currently in use in other
domains such as language and various kinds of memory. Inshort, it is a microcosm
of the state of cognitive representation as a whole.

Representation and the Cognitive Approach

The first thing about which we must be clear is exactly what we are doing when
we construct a model or theory of mental representation from a cognitive point
of view. Following Weizenbaum (1976), we make a distinction between theories
and models. A theory of something is essentially a description of it at some level
of analysis. Tt expresses the structural laws that hold in the object of study at
a level of abstraction appropriate for the goals and methods of the scientific
enterprise for which it is constructed. A theory, then, does not include aspects
that are more concrete than can be verified by empirical observations of the sort

" indigenous to the science. A model is a concrete embodiment of a theory. Its

relationship to its theory is that it satisfies the assumptions of the theory. Be-
cause there are many ways in which a given theory may be satisfied, there are
many models that are consistent with it. All of these are described equally well
by the theory. Thus the theory is simultaneously a description of its object of

study and its many models.

i D P e

For the current discussion, the object of study is mental representation of

the world, perceptual representation in particular. The scientific field is cognitive
psychology complete with its goals and methods. The question at hand is how
cognitive theories and models relate to mental representation and its referent,
the real world. Further, we want to know the scope of cognitive psychology
in o:mnmoﬁmaﬁmm the nature of mental representation.

The proposed view of the situation is diagrammed in Fig. 9.2. To begin with,
the “‘mental world” in which we are interested is some kind of representation of

represents REAL represents
WORLD
MENTAL represents MENTAL
MODEL _ WORLD
describes
describes COGNITIVE describes
THEORY

F1G.9.2. A view of cognitive representation. Relationships among
constructs are indicated by labeled arrows. See text for discussion.
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the “real world.” This is indicated by the “represents” arrow pointing from the
mental world to the real world. A cognitive model of this mental world (the
“mental model”) is, in turn, a representation of that mental world. Thus the
mental model is a representation of a representation of the real world. Almost
by accident, the mental model is a representation of the real world in its own
right.? This situation should begin to sound familiar. Both the mental model

and the mental world are representations of the same 8@8833 world — the

8& éo:a j:ﬁ is just the case we considered earlier when discussing equivalence
of am?mﬁnim:ozw A relevant question, then, is what sort of equivalence can be
achieved between the mental world and our hypothetical cognitive model of
::: world. The answer is that ::&\ should be as E:Zm_oi as is ESE:m?_ for
m@:_ﬁ;m:om is also the level of abstraction 3%3?58 for the nomz:Zm theory
of ,5@:3_ 8@83:8:0: The theory should simultaneously be the proper de-
scription of both the mental world and the mental model. Indirectly, the cognitive
theory is also a description of the real world, although it will differ substantially
from, say, a physicist’s. The fact that a cognitive theory also provides a descrip-
tion of the real world is significant. It explains why some theorists — notably
Garner (1974) and 1. J. Gibson (1966) — have been able to make important
contributions to cognitive psychology by analyzing aspects of the world (the
stimulus) rather than the representation of that world.3 Note that they do not
talk about the world in physical terms (like frequency and amplitude of mechani-
cal deformations) but in psychological correlates of physical terms (like pitch
and loudness of sound). Thus they are essentially describing the world in a way
that is equally applicable to a mental model or mental world in an abstract
sense.

2This idea can be demonstrated as follows. Suppose that the objects of the real world are
a, b, ¢, and d and that those of the mental world are a', b, ¢, and d'. Because the mental
world is a representation of the real world, there exists a mapping function {correspondence)
from the real world objects to the mental world objects that could be expressed as x* =
Jflx). Because the model of the mental world is also a representation of the mental world,
its objects, a”, b", ¢”, d”', can also be considered part of a similar mapping function from
the mental world, x** = g(x'). Now we see that the objects of the mental model can also be
expressed by a mapping function from the objects of the real world, x* =g [f(x)] orx" =
1(x), where 4 is just the composite of functions g and 1. Thus, A is the representational map-
ping from the real world to the mental model. Although it is not universally true that this
will result in the same relations being preserved in the mental model as in the mental world,
it will be true if the mental model is an isomorphic (rather than homomorphic) representa-
tion of the mental world,

3The fact that Gibson does not acknowledge 26 existence of mental representation is
irrelevant. His claims about the information available  1eal world are still important for

psychologists who postulate mental representations.
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Following Neisser’s (1967) classical statement, let us assume that the goal
of cognitive psychology is to describe the “software” rather than the “hard-
ware” of the mind. This assumption is Emrmaa by the kinds omoy@S::w:S we

mm%o::. wv\ and large, they are behavioral, not physiological, even when their

object of ME% is a Ea\mwouoﬁoa distinction like hemispheric function. Even

more to the point, scalpels are not included in our apparatus, and surgeryhis not

wmm,amwﬁm%bmwmgimj:mBom:m:z::959oow:::\o%mo:mm:oﬂmxvo:ﬁsoz?
are properly concerne d with the concrete way in which mental representation is
accomplished within the brain and nervous system. Our theories and experiments
are concerned with the nature of the information represented about the external
world. Moreover, we want our models to be as equivalent to the mental world
as possible in terms of the information oo:S:Ea%oE the world. In the lan uage
defined earlier, cognitive psychology can aspire only to 5?;5%?:7; equivalence

cm?\mm: its models and actual mental representation inside the head.

ﬁ:m ?Q mﬁmc::_% Eo?ovoﬂo<m_c::maoc:mAoﬂnom:_rém:\oa;w:a
level ofabstraction defined 3\ informationally equivalent systems. The representa-
tional issues of concern for cognitive theory are things like the Qvom of informa-
tion represented, the resolution of the dimensions represented, their uniqueness
properties, and the higher-order structure that exists ameng different dimensions.
These are our tools of analysis for dealing with mental representation from a
cognitive approach. Questions about the concrete physical aspects of the mental
world are inappropriate and irrelevant. The distinction between intrinsic and

extrinsic representation is also beyond our reach. Derivational structure is some-

what unclear, because it is irrelevant as a representational construct alone but
probably is relevant as a processing construct. Within this framework for cognitive
representation, Iet us try to undesstand our current concepts of perceptual
representation.

Notation and {Hustration

When a theorist proposes a theory of representation, he or she usually draws one
or more diagrams to illustrate the nature of the theory. These diagrams are
essentially small pieces of a model of the theory being proposed. One problem
with the current view of representation is the pervasive belie{ that these diagrams
can be taken uncritically as the theory being put forth. A more subtle form of
the same mistake is to assume that even though the figures are not the theory,
they are intuitively transparent to the theory.

To demonstrate the {law in this way of thinking, Fig. 9.3 shows seven standard,
easily recognizable types of representation for a diagonal line. Within the usual
classificational system, there is a template (A), a neural network (B), a digital
matrix (C), a multicomponent vector (D), a binary feature set (E), a list of
propositions (F), and a relational network (G). Most of these are currently thought
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F1G.9.3. Seven standard cognitive representations of a diagonal line.
The letters a—7 in Representations E, F, and G refer to the locations in-
dicated in the Location Frame in the upper left corner. In Representation
D, the vector components are in alphabetical order of the location-frame
fetters (z, b, ¢, ...).

to be different theorics of representation. What are the differences, and are they
meaningful for cognitive theory? They look different, and we talk about them
differently. But these things may or may not reflect substantive differences at
the level of cognitive theories of representation.

Let us examine them from the new view of representation. Each one consists
of nine components, where each component represents a point (or, equivalently,
a point’s location) in the pattern. What dimensions are represented? Each
representation contains information about the location and color of the individual
points. In A, B, and C, location information is preserved by spatial location, in
D by position in the vector, in E by identity of the feature, and in F and G by
identity of the arguments of the relations. In A, color is represented by color,
in B and E by “+” and “--",in C and D by “1” and “0” entries, and in F and G
by the labels “white” and “black.” In each case, then, color is a two-valued
dimension, and location is a nine-valued dimension. The representation of both
color and location is nominal in most cases, although A, B, and C seem to contain
more information about location. As argued earlier, one must consider the
processes that operate on the representations to determine what information is
actually included in the representation. As we see later, the processing assump-
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tions for standard templates, neural networks, and digital matrices reveal that
location is represented nominally.

If this is a reasonable analysis, all seven representations in Fig. 9.3 are in-
formationally equivalent but not completely equivalent. That is, they differ only
in the concrete way information is preserved, notin what information is preserved
about their referents. This means that they are all models of the same cognitive
theory. In fact, they all turn out to be models of standard template theory.

[ have obviously taken some liberties in constructing these drawings. No one
has ever (to my knowledge) proposed a feature theory quite like the one shown.
But why not? It is against the rules of feature theories? If so, why? These are
questions that must be answered in order to understand our theories properly.
The pictures we draw must not be confused with the representational assumptions
contained in the theory itself, We must see through the surface form of those
pictures to the information they contain about the represented world. That is
what cognitive theories of representation are all about.

Templates

Until recently, templates have been the perennial “straw men” of perceptual
representation. Discussions by Neisser (1967) and Lindsay and Norman (1972)
have succeeded in convincing a whole generation of cognitive psychologists
that templates — whatever they are — are useless representations for pattern-
recognition systems. Two developments have brought about a resurgence of in-
terest in templates. One is the construct of “prototypes™ in representing categories
(Rosch, 1973; Chapter 2 of this volume). The other is recent work on image

53&05@00@9&qu..ﬁoowmﬂmnmrm@m&.Hoqumrwvm&%ﬁzﬁ:m—o?Gﬁv
m..mm,ﬂawmm:mnmbsﬁm (Kosslyn, 1973; 1975a; Chapter 8 of this volume). Rightly
or wrongly, these phenomena have been seen as possible evidence for the existence
of template-like representations. In addition, templates seem to be good can-
didates for the kind of low-level visual information storage studied by Sperling
(1960).

The construct of templates has been with us for a long time, but no one has
ever really defined it properly. Perhaps the most common “definition” is to
point to a figure that displays a digitized pattern overlapping to a certain extent
with an input pattern (Neisser, 1967, p. 51; Lindsay & Norman, 1972, pp. 2—6).
The figure and accompanying text provide the reader with an intuitive feel for
how template matching systems work but no real definition of the representa-
tions on which they operate. Worse still, processing assumptions that are totally
independent of representational assumptions (e.g., parallel matching) are often
confused with the form of representation.

The basic problem in understanding the fundamental nature of templates

is that they are displayed as pictures of the patterns they are intended to represent.

These pictures have all the information in their referents, at least implicitly. The
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template-picture has lines and angles plus properties like closedness and symmetry.
It is not at all transparent to the nature of the underlying theory. Only when the
operations performed on templates are considered do the mmmc.:ézo:m about
representation become clear.

Standard Templates.  The simplest case is a standard template match without
any “preprocessing operations” (Neisser, 1967). Consider what happens when
a template match is performed. The template in memory is compared to the
input pattern in a point-to-point fashion, where location determines the cor-
respondence of points. For each pair of corresponding points that have the same
color (both white or both black), a match is registered. If there are n locations,
then the number of matches can vary from no points to ali # points. This defines
a similarity dimension with n + 1 values for pairs of templates. It is used to
classify patterns according to some decision strategy, usually of the best-fit
variety.

There are two important things to notice about this process. First, no com-
ponents are considered except individual points, and no dimensions are considered
except location and color. Thus angles, lines, closedness, and all the rest of the
information in the template-picture are irrelevant. They are not represented
information, because there are no operations that define them or use them.
Second. the matching process requires only information about the identity of
locations and colors. It does not matter in the slightest whether one location
is above, below, or close to another location, as long as it is matched to the
corresponding point in the input pattern. In sum, both location and color are
nominally represented dimensions.

Standard templates, then, are defined as follows. Templates are representa-
tions in which each pattern is composed of n points, and each point is defined
by just two dimensional values: one from an n-valued, nominal dimension
representing location and the other from a two-valued, nominal dimension
representing cotor. Thus, all of the illustrations shown in Fig. 9.3 are surface
variations (i.e., informationally equivalent models) of standard template theory
when the usual processing operations are employed. Notice that many of the
bivarre forms are far more revealing of the essence of templates than is the usual
form,

Preprocessed Templutes.  The problems with standard templates are well
known. Because they are position-, orientation-, and size-specific, trivial changes
in these parameters of the input pattern have catastrophic consequences for
classification performance. To correct these difficulties, Neisser (1967) suggested
“preprocessing operations” to normalize (translate, rotate, dilate, and “clean
up”) the input pattern prior to matching. The extent to which such operations
actually solve such problems is not at issue here. The important point is that
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these preprocessing operations require a significant change in representational
assumptions.

It is still true that points, locations, and colors are the basic kinds of informa-
tion represented. But the representation of location cannot be nominal. In order
to “fill in” a light point surrounded by black points, relations like “between”
must be operationally defined. In a nominal representation of location, “filling
in” operations could not be performed. Similarly, shifting a pattern x units in
a given direction cannot be done with nominal representation of location. In
fact, the usual preprocessing operations seem to require that location be repre-
sented at least intervally, because units of locational dimensions must be constant.

Similar changes could be made in the representation of color. The resolution
of the color dimension could be greatly increased, and its values could be made
ordinal or interval. Such information could be used to construct more powerful
matching procedures that include partial matches for intermediate levels of gray-
ness. In any case, the representational assumptions of preprocessed templates
differ significantly from those of standard templates. ‘

Hierarchical Templates. A slightly more deviant type of template theory is
what might be called “hierarchical templates” or “minitemplates.” The basic
notion is that the components of a complex pattern might be a set of simpler
templates rather than just a set of points. The simpler templates would then be
defined by either even-simpler templates or by a set of individual points. Thus
this representation is a hierarchy with individual points at the terminals. Such
representations border on structural descriptions in that they have an articulated
structure of higher-order parts.

The general nature of templates, then, rests largely on the kind of informa-
tion represented: points,locations, and colors. There seems to be some agreement
on color being represented as a nominal, two-valued dimension, but that could
be relaxed. Note that the assumptions are actually of the sort that should be
important for a cognitive theory of representation. Once the surface form is
disregarded, templates are a fairly well-defined theory. Perhaps this is why tem-
plate theory is so easily and frequently shown to be false. As we see Jater, most
other purported theories are so vauge that they cannot really be tested.

Features

Feature representations were invented as an alternative to templates. As initially
proposed, features were things like horizontal lines, angles, curves, and so forth.
Since then, many additional features have been postulated for special purposes:
closedness, complexity, wiggliness, and height of forehead, to name just a few.
They are probably the most widely used form of representation. A large part of
their popularity stems from their flexibility; anything can be a feature. This is
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simultaneously their greatest strength and greatest weakness. It makes them
convenient to use to explain data, but it makes them inherently ill-defined as a
theory,

There are a number of feature theories in current use. The three most popular
seem to be binary features, multidimensional spaces, and hierarchical features.
We consider the representational assumptions of each in turn and clarify some
of the relationships among them.

Binary Features. Perthaps the most common type of feature theory is sets
of binary features. Prominent examples include E.J. Gibson’s (1969) distinctive
feature theory of letters and Jacobson, Fant, and Halle’s (1961) distinctive fea-
ture theory of phonemes.

Binary feature theories operate more or less as follows. A set of # operational
feature tests are applied to an input pattern — either serially or simultaneously.
Each test has two possible outcomes, one for presence of the feature and the
other for absence of the feature. (Precisely how this happens is seldom discussed.)
In Gibson’s theory, for example, letters are defined by presence or absence of
properties like having horizontal lines, being closed, and being symmetrical. The
results of these tests are compared to a set of stored representations of pattern
types, each one being defined by the outcomes of the same feature tests. For
each feature, a match is registered if the input pattern has the same value as the
stored representation - i.e., both have the feature, or both fail to have it. Some
measure of similarity is computed according to a function that integrates the
matching results for each feature. The simplest computation is the number of
matches, although various weighting parameters can be introduced to reflect
the saliency of different features. The resulting similarity dimension is then used
to classify the pattern according to some decision strategy. The most frequently
employed rule is a 100% threshold, requiring that the input pattern have all the
same features as the memory representation of the pattern type. Other more
complex decision strategies are sometimes used (e.g., Smith, Shoben, & Rips,
1974).

The representational assumptions of standard binary feature theories are
quite clear. Patterns are represented along » different unary (property) dimen-
sions. Each dimension has just two values defined by the results of their opera-
tional definitions. The dimensions are nominal in that only same/different
relations are defined for the matching procedure. Thus each pattern is a set of
values along n different, two-valued, nominal, unary dimensions.

Although these assumptions are clear, they are not very specific. Because the
informational nature of the dimensions is unspecified, the range of possible
theories within this class is enormous. Note that if the features are exclusively
location-colors (see Figure 9.3E), the result is a standard template theory. In
other words, if the features are strictly of the form “is dark at location x”
(where x is identified as a different location for each feature), the foregoing
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procedure would operate exactly as the template matching system described
earlier. Thus standard templates are a special case of binary features.

An obvious extension of standard binary feature representations would be
nominal m-valued feature systems. All that changes is the resolution of the
dimensions. An example would be aset of color names (red, blue, yellow, green),
in which each object has one color only and the only information in the color
values is whether they are the same or different.

Multidimensional Spaces.  Another common form of feature representation
is a multidimensjonal space. The basic metaphor is that mental objects can be

‘modeled as points in a metric space of n dimensions. Relations among groups of

objects are preserved by spatial relationships among sets of points. For example,
overall psychological similarity is usually assumed to be reflected in distance rela-
tionships. The illustrations used to depict such representations are usually low-
dimensional spaces with points labeled by object names and with coordinate
axes labeled by dimensional feature names., Most multidimensional space repre-
sentations are derived from the nonmetric scaling techniques originally developed
by Shepard (1962a, 1962b). Prominent examples include spatial representations
of animals (e.g., Rips, Shoben, & Smith, 1973), states (Shepard & Chipman,
1970) and numbers (Shepard, Kilpatrick, & Cunningham, 1975).

Multidimensional space representations are used to classify patterns in the
following way. A set of n operational feature tests are applied to the input pat-
tern. Each test has m possible outcomes, where m is a relatively large number
usually assumed to approach infinity. The outcomes generally represent the
degree to which the instance has that feature and are interpreted as interval
representations. The results of these tests specify the point within the n-dim-
ensional space occupied by the input pattern. The point is then compared to a
set of stored representations of pattern types defined for outcomes of the same
feature tests. At this stage, two different classification methods diverge: the
point method and the region method. In the point method, the stored representa-
tions of pattern types are single (or sometimes multiple) points in the metric
space. The input pattern point is compared to the category point(s) using sone
form of distance metric, usually Euclidean or city-block. This metric is taken as
a representation of psychological similarity, and the pattern is classified with the
category to which it is closest (most similar). In the region method, the repre-
sentation of pattern types is in terms of a region with in the space. The input
pattern is then classified as an instance of the category within whose region
it falls. [See Reed (1973) for a more comprehensive treatment of spatial models
of categorization.]

Notice that the basis for multidimensional space representations is essentially
an analogy. It specified that a possible model for cognitive entities is a spatial
one. But the spatial aspects of the model cannot be taken as part of the under-
lying cognitive theory, because the medium of representation is not within the
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cognitive level of analysis. That is, the “space™ is metaphorical. The essence of
multidimensional spaces as a t/ieory of representation must lie elsewhere.

Without loss of generality, each peint in an n-dimensional space can be
described by a vector of n ordered values. Each component of the vector speci-
fies the projection of the point on one of the axes of the space. Spatial relation-
ships like distance are mathematical relations on vectors. Because the vector
form of multidimensional feature theory contains the same information as the
spatial form but without the spatial assumptions, it is more transparent to the
underlying theory of representation. This theory assumes that there exists some
number of highly resolved, interval, unary dimensions in a mental representation.
In practice, the number of dimensions represented in multidimensional spaces is
small. This is more a constraint of illustrating the representation than of the
underlying theory itself, however.

Multidimensional spaces and binary feature theories seem very different from
each other. Binary feature models are presented as tables, whereas multidimen-
sional spaces are presented as spaces. These surface differences are not very
revealing of the underlying similarities and differences. The commonality that
seems to make them both versions of feature theory is that they. both represent
unary dimensions (properties of ‘individual objects). The differences are that
binary feature dimensions are two-valued and nominal, whereas multidimensional
spaces are multivalued and at least interval.

Having noticed these relationships between binary features and multidimen-
sional spaces, a number of other things become clear. For example, the language
we use to talk about these models becomes as arbitrary as their surface form in
illustrations. Consider the following spatial characterization of templates: “A
template is a point in a discrete dimensional space. Each dimension represents
the color of a particular location of the pattern, and if there are n locations, there
are n dimensions in the space. For each dimension, there are just two values:
0 if the pattern is light at the location and 1 if it is dark. Thus, the input pattern
and each memory representation occupies a point in this discrete space. The in-
put pattern is then classified as an instance of the pattern type to which it is
closest according to a city-block distance metric.” On the surface, this seems
very different from the usual description of templates, yet the theory described
is the same. Because templates are a special case of binary features, the same sort
of translation could be done for any standard binary feature theory.

The point of this discussion is not to argue that templates, binary features,
and multidimensional spaces are all the same. As these concepts are used, they
are certainly not. But they do have similarities as well as differences. These rela-
tionships are not obvious from the pictures used to illustrate them or the language
used to talk about them. They are found in the basic representational assump-
tions.
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Hierarchical Features. Another version of feature theory is that in which
feature dimensions are structured according to their interrelationships. The basic
idea is that complex features can be defined in terms of more primitive ones. A
familiar example is found in Lindsay and Norman’s (1972) pandemonium model.
At a concrete level, each pattern is defined by a number of orientation-specific
features such as the number of horizontal lines, the number of vertical lines, and
the number of oblique lines. At an abstract level, patterns are defined by orienta-
tion-free features such as the number of lines of any orientation. The higher-order
dimension of number of lines is the sum of the values for the lower-order dimen-
sions that comprise it. Thus, heirarchical feature theories are one way to specify
logical dependencies that exist among different dimensions.

There are other relationships among dimensions that are more psychological
than logical. Many of these concern what Garner (1974, 1976; Chapter 5 of this
volume) calls “integrality” and “‘separability” of dimensions. As a paradigm case
of integrality, hue, saturation, and brightness seem to be closely related psycho-
logical dimensions. We even have a name for this set of dimensions — “color.”
There seems to be a level of analysis at which these three dimensions cornbine
into a unitary aspect of the stimulus. People can make separate judgments about
the component dimensions, but it is difficult. This is a facet of dimensional
representation that cannot be modeled in either standard binary feature systems
or multidimensional spaces. Hierarchical features provide a mechanism for doing
so by allowing structural relationships among different dimensions to be repre-
sented. It is not clear whether this violates the assumptions of feature theory
in general. Just as hierarchical templates are deviant versions of template theory,

so are hierarchical feature theories deviant versions of feature theory.

Structural Descriptions

Some theorists came to reject both features and templates as representations for
pattern recognition because of their poor modeling of structural interrelation-
ships among patterns and their parts. For example, although a feature theory
can represent a given pattern having three lines and three angles, there is no
representation of which lines are part of which angles, nor of how the lines are
connected to form the angles. A more powerful representation is needed for
such information, because a pattern is no longer defined solely by unary dimen-
sions (properties). One must represent facts such as that Pattern P contains X
and Y as parts and that the top of X is joined to the middle of ¥ i.e., that X
“is top-middle-connected to” Y.

The initial attempts at structural description theories followed the formalisms
of generative grammars (Narasimhan, 1969; Narasimhan & Reddy, 1967). The
representation of a pattern was the set of production rules required to generate
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it from primitive patterns. The production rules specified the manner in which
parts were to be combined into wholes. Since then, grammatical formalisms have
largely disappeared, but the legacy of representing n-ary relations has remained.
It is essentially the power of representing relations on more than single objects
that differentiates structural descriptions from features.

Simple Structural Descriptions.  Simple structural descriptions are closely
related to hierarchical templates. The basic idea is that a pattern is defined by
relationships among subpattemns. Each subpattern can be thought of as a mini-
template. The specified relationship among the minitemplates is satisfied by
moving and turning the minitemplates until the proper relations hold. Each
of the subpatterns, of course, could be either a primitive (usually, points or
lines) or relationships among further subpatterns. Simple structural descriptions
differ from hierarchical templates in that the relations among subpatterns are
subject to variation. It is this variation in relationships that is represented by the
structural relations in the representation.

In a structural description, each pattern is represented by a set of values for
m n-ary relational dimensions. Each value of an n-ary dimension is a relation
among 7 subpatterns. Because this is a rather complex concept, let us consider
an example. The letter “T” might be defined in the following kind of structural
description: “T” is the connection of the middle of a horizontal line to the top
of a vertical line. This description actually contains three components: “T”
contains a horizontal line, “T” contains a vertical line, and the horizontal line
is middle-top-connected to the vertical line. The first two are binary relations
between T and its subpatterns, and the third is a binary relation between the two
subpatterns themselves. It is the third component that is important and dis-
tinguishes structural descriptions from feature theories.

Consider how to translate the three components into unary relations for a
feature theory. The “contains” relations between T and its parts are no problem.
One simply defines two different unary relations by binding the two parts to the
second argument of the “contains” relation. The features of T then become
“contains-a-vertical-line” and “contains-a-horizontal-line,” both of which are
familiar features in existing feature theories. But the last relation is a problem
for feature theory. It is not a problem for structural description, because both
the horizontal and vertical lines are independent object-elements in their descrip-
tions. Therefore, representing the relation between them is no different in
principle from representing the relations between T and the subpatterns. In a
feature theory. however, the horizontal and vertical lines do not have independent
status as representational objects. They are inextricably bound within the two
constructed unary relations. The usual solution is to add more unary relations
that indirectly constrain how the horizontal and vertical lines can be arranged.
For example, many possible arrangements of the two lines are ruled out when
the following features are added to the definition of T: “has an intersection,’
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“has two right angles,” “is open,” and “is symmetrical.” Despite these complex,
higher-order features, the indirect constraints are seldom tight enough to rule
out all illegal patterns. The only sure-fire feature would be something like “has-
a-horizontal-line-whose-middle-is-connected-to-the-top-of-a-vertical-line.” At this
level of complexity, one might just as well have a feature called “looks-like-a-T.”
The sure-fire solution for feature theory has the unfortunate side effect of
proliferating represented relations. Suppose that there are just 10 basic subpat-
terns for a given class of patterns and 10 possible relations that might hold be-
tween any pair. The structural description theory would have 20 primitive
elements, one for each subpattern and one for cach relation. They would be
combined in appropriate ways to define the patterns. The corresponding feature
theory would require, in principle, 1000 features to have the same power. Each
complex feature would be pairing of each of the 100 possible ordered pairs of
basic subpatterns with each of the 10 possible relations. Thus, it may well be the
case that there is always a feature theory that is Emoﬂzmco:m:% equivalent to
a given structural description theory, but the latter is preferable on grounds of
simplicity.

Augmented Structural Descriptions.  One potential drawback to simple
structural descriptions is that, like templates, their representations ultimately
rely on just locations and colors of points. Although these primitives are com-
bined in powerful waysinto higher-order parts and patterns, every bit of informa-
tion must be derived from them. The problem is that when higher-order parts are
onBmm by relationships among ooB@ozai parts, the larger patterns frequently

have “emergent properties” not defined for the components. For example, a

line can be defined as a nmnroiﬁ S_w:o:m::u among a set of points, but the line
has properties like length and orientation that are not properties of the compon-
ent points. Similarly, when lines are combined into a square, the square has
properties like area and closedness that are not properties of the component
lines.

An obvious solution to this problem is to augment simple structural descrip-
ﬁﬂo:m with ?mn:am for the higher-order patterns. The result is a hybrid of feature
theory and mQ:oEB_ descriptions that we call eugmented structural Q&Q.Szcxm
The general assumptions are that any pattern is represented both as a set of
unary dimensional values and as a set of relationships among component parts.
This provides the power necessary to represent emergent properties like those
mentioned previously. Examples include the models of Palmer (1975a) and
Winston (1975).

By this point, we have reached a type of “theory” that is so powerful that it
no longer is any theory at all. Notice that there are virtually no constraints on
what information can be represented. There can be any number of dimensions
that can hold among any number of objects. The dimensions can represent any
kind of information with any resolution and any uniqueness properties. In their
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most_general form, then, augmented structural descriptions are an untestable
SSQ of perceptual representation as a general class. Particular examples
of the class, :9<m<mm.,nu,: be tested. But one must do things like specify what
dimensions are represented and how they are represented. Only then does an
augmented structural description theory become more than an abstract frame-
work in which to construct particular theories.

Prototypes

A great deal of interest has recently been generated about the possible role of
prototypes in cognitive representation and processing. This development is due
in large part to the seminal work of Eleanor Rosch on categorical prototypes
(Rosch, 1973, 1977; Chapter 2 of this volume). She has demonstrated the
existence of prototypes for natural categories like colors and animals as well as
for artificial categories like dot patterns and schematic drawings. The evidence
that prototypes of some sort play a critical role in human categorization is com-
pelling. The question that concerns us here is the nature of the representational
assumptions required by prototype theories.

The most common belief about prototypes is that they must be templates of
some sort. This is partly because prototypes are frequently discussed as “images”
and because they are associated with particular examples of the category. The
association between prototypes and templates is further strengthened by the fact
that templates are universally described as “prototypical” examples of their
class. Because everyone who has read an introductory text in cognition has been
informed that templates are wrong, however, prototypes are usually thought to
be only “template-Jike.”” For example, in a recent book on pattern recognition
(Reed, 1973), we find the following discussion of results demonstrating the im-
portance of prototypes:

Insofar as a prototype may be thought of as a type of template, these
results also support a template theory. Buta prototypeis not an unanalyzed
template in which the amount of overlap is used to judge its similarity
to other patterns. Instead, a prototype consists of features and when it
represents the central tendency, is determined by the mean value of each
feature when the mean is calculated from all patterns in the category.
[p. 321.

This passage illustrates the confusion about prototypes; they are template-like
and yet they are not templates but features. In what sense are they like templates
and in what sense like features? Are they necessarily related to these concepts
at all?
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Let us begin by considering how a prototype theory of perceptual classifica-
tion operates. There are categorical representations stored in memory. These
are assumed to be highly specific in the sense that they approximate the “most
typical” or the “ideal” instance of the category. However these representations
are constructed, the input pattern is represented along the same dimensions as
the prototypes. A measure of similarity is computed between the input pattern
and each categorical prototype. The similarity is assumed to be highly resolved
or even continuous. A decision strategy is used to assign the pattern to a category
on the basis of degree of similarity. The most common classification rule is of
the best-fit variety such that each pattern is classified into one-and-only-one
category.

The general form of this process is the same as before. The input pattern is
represented and compared to stored representations for similarity. The similarity
measures are then used to categorize the pattern. The major elaborations for
prototype theories are: (1) the stored representations are highly specific; (2) the
similarity dimension is highly resolved; and (3) a best-fit criterion is used for
classification. Note that both (2) and (3) are pragmatically determined by (1).
That is, if the categorical representation is highly specific, then using a similarity
dimension with low resolution and/or using strict 100% threshold decision criteria
would result in unacceptable categorization performance. Either too few instances
would be classified at all, or some instances would be classified into many cate-
gories. Thus the basic assumptions of prototype process-models of classification
all follow from the single assumption that categorical representations are highly
specific.

Let us consider this assumption more carefully. In what sense is the categorical
representation highly specific? The prototype approach is properly considered
in opposition to the “invariant attribute” approach (e.g., E.J. Gibson, 1969).
The essence of these theories is a very general representation of categories such
that each instance is completely and equally consistent with it. For this to be
true, invariant-attribute representations of categories cannot represent dimensions
that vary within the category. They represent only dimensions that vary across
categories. Now it becomes clear that the specificity of prototypes is with respect
to within-category variation. A prototype representation is one that has relatively
high resolution for dimensions of information that vary within the category.

The standard view seems to be that the prototype and invariant-attribute
approaches are dichotomous. The present analysis leads to a different view —
namely, that underlying the dichotomy is a broad range of possible theories,
which differ in their representation of within-category variation. At one extreme
is the usual prototype approach -- the prototypical prototype approach, if you
will — in which every aspect of within-category variation is represented. At the
other extreme is the standard invariant-attributes approach, in which no aspect
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of within-category variation is represented. In between are numerous m.mnagm
compromises. A categorical representation need not be uniformly specific for
all dimensions of variation, for example. Some might be quite specific, others
less so, and still others not at all. .

Nothing has yet been said about exactly what the dimensions are nor just
how they are represented. This is because prototype theories as a general n_mm.w do
not require such assumptions except when they are vm&oc._mawoa ﬁoﬁim given
category. Certainly, standard templates satisfy the specificity oo:m:m:.i, but
they are not the only kind of theory that does so. Binary feature 98:2 can
also represent within-category variations, provided there are sufficiently many
such features (e.g., Smith, Shoben, & Rips, 1974). In fact, any Bumozmzmuzgmoé\
of perceptual representation in general will have to be consistent with the
notion of prototypes, bécause it will have to have the capability of representing
Em_:% wvoo_wn instances. If not, the theory would never be able to account for
how people can distinguish their own house from other houses or their own dog
from otherdogs. In short, prototypes are a construct of categorical amvamaim:owm_
not of representations in general. As a class, they are equally compatible with
virtually any theory that can represent specific instances.

Shepard’s Principles of lsomorphism

Roger Shepard has discussed the nature of possible forms of ?oEoQ:WB that
might hold between the real world and people’s internal representations Ow. Emﬁ
world (Shepard & Chipman, 1970; Shepard, 1975). In particular, he has distin-
guished between what he calls “first-order” and “second-order” isomorphism,
These concepts have gained wide currency within nom::Zo wmwo:c_omv\ and are
believed to have implications for the field. I discuss the nature and ::mo:u.:oo
of Shepard’s proposals because they seem to be frequently misunderstood. First,
I formulate them within the new framework of representation to clarify them.
Then I argue that second-order isomorphism, in its most general sense, m :o.ﬁ a
theory of representation but a definition. Finally, I argue that the distinction
between first- andsecond-order isomorphismisirrelevant for cognitive psychology.

First-Order Isomorphisim.  Simply stated, first-order isomorphism m.w a con-
cept of mental representation in which the properties of real-world oEonﬂm.mE
retained in the internal representation of those objects. To use Shepard’s original
examples (Shepard & Chipman, 1970), in a first-order isomorphism, the repre-
sentations of green things must be themselves green, and those of square things
must be themselves square. Shepard rejects this notion of the correspondence
between the real world and the mental world by arguing that it is physiologically
absurd to suppose that the internal representations of green Ewsmm are themselves
preen and that it is unnecessary and implausible to suppose that those of square
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things are themselves square. In a later paper, Shepard (1975) refers to this as
concrete first-order i _isomorphism.

.?m:m_m::m this concept into the present framework is straightforward. A
representation is concretely first-order isomorphic to its referent if the unary
relations (properties) of the represented objects are preserved by the physically
equivalent unary relations (properties) of the representing objects. Thus, greenness
is reflected by greenness and squareness by squareness. The most sensible inter-
pretation for the name of this concept is that “first-order” signifies that relations
on individual objects (properties) constitute the information of interest and that
“concrete” signifies that the corresponding relations must be physically the same.

Shepard distinguishes concrete from abstract first- order isomorphism in a
later paper (Shepard, 1975). His example is that an abstract first-order iso-
morphism would hold if the internal representation of a square contained four
parts, each of which correspondended to a corner of the square. Unfortunately,
the example is ambiguous, and Shepard does not discuss it fully enough for the
reader to know exactly what he intended.

The “abstract” version of our previous definition should be that a representa-
tion is abstractly first-order isomorphic if the unary relations of the represented
objects are preserved by functionally (or operationally) equivalent unary relations
of the representing objects. This example is then interpreted as follows. One of
the properties of squares is that they have corners as parts, four of them in fact.
This is reflected in the representing world by the square-representation having
corner-representations as parts, four of them in fact. The isomorphism is not
concrete, because “‘having-four-corners-as-parts” is not physically equivalent to
“having-four-corner-representations-as-parts.” In the special case where the
corner-representations are themselves corners, concrete first-order isomorphism
would hold.

In the other interpretation, we consider binary relations within each world
rather than unary ones. The square has a relationship to each of its corners:
Namely, the comers are “part of” the square. Similarly, the square-representation
has a relationship to each of its corner-representations: Namely, the corner-
representations are “part of”’ the square-representation. Now it seems that the
represented binary relation is physically the same as the representing binary
relation. In other words, the example might also be considered an instance of
concrete second-order isomorphism by simple extension of our previous defini-
tion. T am not sure that Shepard actually meant to convey either of these con-
cepts, but within the present framework, they are both possible

Second-Order Isomorphism.  Shepard’s alternative to first-order isomorphism
is second-order isomorphism. His example is that the internal representation of
a square need not be itself square, but — whatever it is — it must be functionatly
more similar to a rectangle than to a green flash or the taste of persimmon
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(Shepard & Chipman, 1970). It is important to realize that more than one thing
has changed from the initial example of concrete first-order isomorphism. As
the name implies. one change is from talking about the correspondence between

properties of single objects to talking about that between relationships among

?:o;mdgwmm.Om,m,<o:_aam:xz:imEmmgwo:m?o:»:mﬂg::mm:oﬁ.
~ Consider the binary relation “greener than” in contrast to the unary rejation
“green.”” First-order isomorphism implies that if an external object is green, its
internal representation is also green. If second-orderness is the essence of second-
order isomorphism, then replacing “‘green” with “greener than” relationships
should yield an example of second-order isomorphism. Thus, if object 4 is greener
than object B, then the representation of 4 should be greener than the repre-
sentation of B. The only constraint that has been lifted is that the properties of
individual objects in the external and internal worlds need not be identical. That
is, the representation of 4 need not be itself green (it might be blue-green or
even blue), but it still must be greener than the representation of B.

Now we see that the other change is from physical sameness to functional

sameness. This is the important one. Because of it, external greennessneed not be

likeinternal greennessin any physical sense but only in a functional sense. That s,
when the greenness of an external object changes, there is some corresponding
change in the internal object that may be nothing like changes in greenness. This
functional correspondences is what effectively decouples the internal and ex-

ternal world in terms oﬂ,amwmav_m:oomﬂ,‘w:@nuanm terminology is unfortunate,

! because it emphasizes the wrong change. It would be better to call first-order
p g ge. it wi ! y
isomorphism “physical isomorphism” and second-order isomorphism “functional
| P pny 3
¢ isomorphism,” where either can hold for properties or any higher-order relations.

Second-Order Isomorphism: Theory or Definition? Regardless of what one
chooses to call it, the basic concept referred to as second-order isomorphism can
be defined as follows. A representation is second-order isomorphic to its referent
world if the similarity of represented objects is functionally reflected by the
sin 1.? of the corresponding representing objects. What makes this difficult
10 pin down is the construct of similarity in both the external and internal worlds.
Whether second-order isomorphism is a theory (or class of theories) of cognitive
representation or just a definition depends on how broadly the concept of
similarity is interpreted.

In its most general sense, similarity is a binary dimension containing at least
two values. That is, the crudest sort of similarity is a one-bit classification into
“same™ or “different” relations. Inserting this into the previous definition we
have: A representation is second-order isomorphic to its referent world if a
binary dimension containing at least two values is functionally reflected by a
binary dimension containing at least two values for the corresponding represent-
ing objects. This must be true even for purely nominal representations, because
they preserve same/different binary relations. Thus, verbal labels for objects
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satisfy this broad interpretation of second-order isomorphism. (It is perhaps

worth noting at this point t

hat verbal descrip

tions constructed by selecting one

label from each of n sets of possible descriptions are no different in principle from
nominal feature sets of the kind discussed earlier. Both are purely nominal,
unary dimensions in which only same/different relationships are meaningful.)
I suspect Shepard’s intention was to convey a more restricted concept o\m
similarity, however. The intuitive notion of similarity connotes a highly resolved
oreven continuous dimension to most psychologists. With this notion of similariry,
second-order isomorphism becomes more specific. Tt rules out, for example,
representations containing only a few nominal dimensions. If the concept of
second-order isomorphism is further required to hold within a single dimension,
then it rules out all representations with low resolution of their dimensions {e.g.
standard binary features). In any case, the status of second-order mmoBo%Em_sv

similarity w;ﬁb‘caaom:&‘

as a theory or a definition of representation is unclear m.mmﬂo:m as the construct of

Distinguishing First- from Second-Order Isomorphism.  As Shepard has
pointed out, all first-order isomorphisms are necessarily second-order iso-
morphisms, but the reverse is not true. The present question is whether cognitive
psychology can hope to distinguish between them given the methods of experi-
mental, behavioral psychology.

Suppose that there are two models of cognitive representation, one first-order
and one second-order isomorph of the external world. The first-order model
specifies that external greenness is modeled by internal greenness and external
squareness by internal squareness. The second-order model specifies that external
greenness is modeled by internal squareness and external squareness by internal
greenness. There are two points to be made. First, a second-order isomorphism
cannot be distinguished from a first-order one without “looking inside the
head” at the actual representing world. Moreover, just looking inside the head
will not be sufficient to determine whether the representation is first- or second-
order isomorphic to the world, because both models are characterized by just
internal-greenness and internal-squareness. In order to test the two models,
one must have access to the mapping function from the outside world. Does
internal greenness correspond to external greenness or external squareness?
Both looking inside the head and determining the mapping function are tasks
for physiological psychology, rot cognitive psychology.

The second point is that a second-order isomorphism is not necessarily any
more plausible than a first-order isomorphism in physiological terms. The present
example illustrates this obvious fact, assuming that no part of the nervous system
is actually green or that, if it is, this fact is irrelevant to how it represents in-
formation. The only thing that matters is whether the postulated physical

properties of the internal representation are consistent with the known physical

properties of the nervous sy

stem. One can tr

y to figure out what dimensions

|

§
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could possibly be represented as first-order mmo:,oa,m:i:m,,ci this is EBoF:H
speculation for cognitive psychologists. More than Ed\:::m. o_mov the :o:.c:
of second-order isomorphism (in its general interpretation) is simply a philo-
sophical comfort to cognitive psychologists, because it provides a u.cm:mon_w:os
for not worrying about precisely those issues involved in first-order isomorphism.

The Propositional/Analog Controversy

One of the most hotly debated issues of cognition these days is whether repre-
sentations are “propositional” or “analog” in nature (e.g., Pylyshyn, 1973,
1975; Kosstyn, 1975b: Kosslyn & Pomerantz, 1977; Palmer, 1975b). The argu-
ments began with the appearance of Pylyshyn’s (1973) influential paper attacking
the “picture metaphor” of visual imagery. The arguments seem to rm.ﬁw m?o.wa to
perceptually related representations in general. The terms “propositional m.:a
“analog” have become emotionally charged buzz words capable of provoking
arguments almost instantaneously. .
Naturally, the entire controversy rests on the presupposition that proposi-
tional and analog representations are fundamentally opposed in some way that
is relevant to cognitive theories andfor experiments. Whether this is true or :ﬁ.:
depends on how the terms are defined and what one takes to be the a.o?.ﬁz
of cognitive psychology. In the following subsection, I define propositional
representations and discuss their implications. Then I discuss a few of the con-
cepts of analog representation that seem to be in current use. I also wcmmmm.ﬁ a
new way of looking at the notions of propositional and analog representation
based on the distinction between intrinsic and extrinsic representation. To
anticipate the conclusion, it turns out that propositions and analogs are funda-

Further, T suggest that the reason for the controversy lies in differences between
the two camps in terms of theoretical goals and styles.

Propositional Representation.  The fundamental nature of hﬂowom:wo:a
representation is quite simple. Recall the definition of representation: A ,EEF
X, is a representation of another world, Y, if at least some of the .R_m:o:.m
among objects of X are preserved by relations among objects of Y. This defini-
tion requires that any representation must have “object elements” to correspond
to the represented objects. It might also have “relational elements” that model
the relations (e.g.. the arrows of World G in Fig. 9.1) or it might not (e.g., Worlds
exist relational clements that model relations by virtue of themselves being related
to object clements. The result is that relationships among n object elements can-
not be determined simply by examining those n elements. One must determine
them by examining their relationships to the additional relational elements.
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Language is the paradigm case of propositional representation. Words referring
to objects are related in syntactically ordered strings through relational words
(verbs, prepositions, and the like). The sentence, “The ball is under the table,”
specifies arelationship between the ball and the table that can only be understood
by virtue of their syntactic relationships to the relational construction “is under.”
Other kinds of propositional representations have the same basic properties.
Lists of sentences in predicate calculus notation contain explicit relational
elements and devices for specifying ordered-connectedness to them. Relational
networks do also. Somewhat surprisingly, binary features are usually expressed
propositionally. In a feature table, for example, the element representing the
object is usually a row (or column) and the element representing the unary
relation is usually a column (or row). The relational elements are “predicated”
of the object elements by virtue of their being row--column connected by “+”
or “1” rather than by a “~” or “0”. In fact, there are many quite different-
looking propositional representations in current use, including some with bizzarre
notational devices (e.g., Schank, 1972; Leeuwenberg, 1971).

Analog Representations. The problem in attempting to characterize analog
representations is that they seem to be different things to different people. 1
briefly characterize three notions that seem to be used most frequently.

The clearest and most obvious interpretation is that “analog” representa-
tions are those in which dimensions are continuous rather than discrete. The
intended contrast is between analog and digital computers. Analog computers
represent information in a physical dimension that, for all functional purposes,
varies continuously (voltage). Digital computers do so in discrete, quantized
units (bits). Although the continuous/discrete distinction may be of theoretical
interest, it is not a question that seems to be answerable given state-of-the-art
behavioral techniques. The cruder question of high versus low resolution within
a given dimension is answerable, but having high resolution is not the same thing
as being continuous.

The other two meanings for “analog” are both related to the visual imagery
controversy. The claim is that visual images are, in some sense, “spatial” (Kosslyn,
1975a; Chapter 8 of this volume). The weaker version of this claim is that visual
images preserve spatial information about that which they represent. For example,
if object A is above object B in the represented world, then the representing
world — whatever it is — will have objects 4 and B in some relationship that
functionally corresponds to aboveness in the external world. Thus the weak
spatial claim is equivalent to proposing that the image represents spatial dimen-
sions in scme fashion. This is a very mild and sensible position, one that is not
opposed to propositional representation in any way.

The stronger spatial claim is, I suspect, the more usual one. In this interpreta-
tion, spatial information is not only preserved, but it is preserved (1) in a spatial
medium, and (2) in such a way that the image resembles that which it represents.
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For example, if 4 is above B in the external world, the strong claim would be
that the representation of A4 is physically above (or perhaps below, if the image
is inverted) the representation of B in the image. Although this is not a physio-
logically absurd type of first-order isomorphism, it is a first-order isomorphism
nevertheless. Like all proposals of first-order isomorphism, it is functionally
indistinguishable from informationally equivalent representations that are not
first-order isomorphic.

Intrinsic Versus Extrinsic Representation.  Although 1 have never heard
anyone define “analog” in quite the way I now suggest, I suspect it is close to
what most “analog” theorists have in mind. It is a weaker claim than physical
isomorphism but a stronger one that functional isomorphism. Moreover, it does
put analog and propositional representations in opposition to one another.

Recall that in discussing methods of preserving relational structure, we noted
two different approaches. The intrinsic method was to mode] a represented
relation or dimension by using a representing relation or dimension that has the
same inherent structure as that which it represents. In such cases, the preserva-
tion of logical structure is a “natural” consequence of the representing relation
or dimension chosen. The extrinsic method was to model the represented in-
formation using a relation or dimension that has no inherent structure, but to
build the necessary structure into the system explicitly to conform to the repre-
sented world. The propositional/analog controversy makes sense if we associate
analog representation with intrinsic methods and propositional representations

émwsmxﬁﬁmm_dm@omm.Hﬁawmmmroé%a@aovom&mommzs\:ré:i:mwcmms
discussed so far.

The previous discussion of propositional representation was mainly concerned
with surface manifestations. At a deeper level, the significance of using relational
clements in representing relations is that propositions are extrinsic representations.
The reason is that any object can, in principle, be connected to any relational
element in any fashion. Hooking up object elements by relations to relational
elements places no constraints whatsoever on the nature of the relations repre-
sented. Thus, whatever structure there is in a propositional representation exists
solely by virtue of the extrinsic constraints placed on it by the truth-preserving
informational correspondence with the represented world.

This fact is closely related to characterizations of propositional representations
as “descriptive” and “interpreted” (Pylyshyn, 1973). The essence of a descrip-
tion is that it can be either true or false. There is nothing about descriptions that
precludes contradiction with fact. One can say, for example, “A4 is above B,” and
“B is above A,” although not both descriptions could be true of the relationship
between B and A in the world. But if one is constrained to make only frue
statemments, not both descriptions could be used. Thus, if descriptions are to serve
as a representation, the constraints are external to the descriptive world. By
definition, then, descriptions are extrinsic representations.
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Analog representations are now seen to be those that contain no relational
elements — i.e., nonpropositional representations. In such cases, the properties
of individual represented objects are modeled by properties of individual repre-
senting objects, and relationships among sets of represented objects are modeled
by relationships among sets of the corresponding representing objects. These
representations are necessarily intrinsic, because the structure of the representing
relations is inherent and therefore determines completely the kind of represented
relations they can model. Thus, whatever structure is present in an analog repre-
sentation exists by virtue of the inherent constraints within the representing
world itself, without reference to the represented world.

Another way to view the nature of analog representation is in terms of a form
of isomorphism somewhere between physical (first-order) and functional (second-
order) isomorphisms. Recall that physical isomorphisms preserve information
by virtue of the representing relations being themselves the same as their repre-
sented relations in a physical sense. Any physical isomorphism is analog (intrin-
sic), because the same relations must have the same inberent structure in both
wortlds, provided their operational definitions are constant across worlds. Now,
suppose we relax the strict interpretation of physical sameness to allow repre-
senting relations to be physically the same in a more abstract sense. In the present
framework, the sense in which representing and represented relations are the
same is precisely that they have the same inherent structural constraints. We
might call this concept “natural isomorphism” to emphasize that structure is
preserved by the nature of corresponding relations themselves. Whatever one
calls it, this concept is a stronger claim than functional (second-order) isomorph-
ism, because the latter requires only a correspondence that preserves structure,
regardless of whether it is done by intrinsic or extrinsic means. Thus propositional
representations are functional isomorphisms but not natural isomorphisms.
In general, any representation that is physically isomorphic is necessarily both
naturally and functionally isomorphic to its represented world. Any representa-
mos that is naturally isomorphic is necessarily functionally isomorphic, but not
physically isomorphic, to its represented world. Finally, any representation that
is functionally isomorphic is not necessarily either naturally or physically
isomorphic to its represented world. Thus there is a strict hierarchy of isomorph-
isms in which physical isomorphism is the most concrete and functional iso-
morphism the most abstract.

Relevance to Cognitive Psychology. 1f the distinction between intrinsic
and extrinsic representation is actually the fundamental issue underlying the
propositional/analog controversy, is it relevant to and resolvable by cognitive
psychology? One can attempt to construct experiments to distinguish between
the propositions and analogs on the basis of intuitive notions about the properties
of “descriptive” versus “nondescriptive” or “interpreted” versus “noninterpreted”
representations. It has been my experience that such experiments are never
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convincing. Usually they are based on a simplistic notion of how the alternative
type of theory might operate (see Kosslyn & Pomerantz, 1977, for some ex-
amples). Although such experiments may succeed in showing that analog-theory-
X predicts better than propositional-theory-Y, the results do not seem to gen-
eralize beyond the particular examples.

The most compelling reason to believe that analog and propositional represen-
tations are not distinguishably different requires no experiments at all. Assuming
that the intrinsic/extrinsic distinction is the fundamental issue, the answer to
the controversy rests on the inherent nature of the representing relations and
their relationship to the inherent nature of the corresponding represented rela-
tions. 1 see no way this can be determined without “looking inside the head.”
The concept of the inherent nature of representing relations concerns the physical
medium that caries information. It is an abstract question about their physical
nature, but one that concerns the physical medium nevertheless. Therefore,
resolving the controversy over whether mental representation is analog or
propositional is a task beyond the scope of cognitive psychology. It should be
relegated to physiological psychologists, whose job it is to figure out the physical
nature of inside-the-head and to determine its correspondence to outside-the-
head.#

Approaches to Cognitive Models. There remains the interesting question of
why the controversy arose in the first place. The answer provides some insights
into different approaches to modeling in cognitive psychology.

There are two camps involved in the controversy. By and large, they divide
cleanly in that proponents of the propositional view construct models by writing
computer simulations, whereas proponents of the analog view do so by formulat-
ing analogies to known physical or formal systems. [Kosslyn is an exception,
because he first worked by analogy (Kosslyn, 1973,1975a; Kosslyn & Pomerantz,
1977) but has since simulated this analogy (Chapter 8 of this volume).] Accord-
ing to the analysis given here, this division is no accident.

1t should be emphasized that the argument is that analog representations are indistin-

guishable from propositional ones because they can be informationally equivalent as repre-

sentations. It is possible that they differ in some nonrepresentational way that makes one
3@?8.2@ to the other. Perhaps testable differences exist in processing operations, for ex-
ample. Whether this is true or not depends on the outcome of a rigorous analysis of the
fundamental properties of processing operations. I suspect that such an analysis will yield
a result parallel to the present one. That is, given that some operation has certain performance
characteristics, it might be that these characteristics are a necessary consequence of the
physical operation (i.e., intrinsic to the operation) or merely a possible consequence of the
physical operation (i.e., extrinsic to the operation). If so, intrinsic and extrinsic methods of
modeling performance characteristics are just as indistinguishable as intrinsic and extrinsic
methods of preserving information. There are also other grounds for preferring one type of
theory over another, such as parsimony, simplicity, and other pragmatic or esthetic con-
siderations.
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As Weizenbaum (1976) has pointed out, computers are systems in which the
programmer is freed from the constraints of the physical world. He or she works
in the domain of “possible worlds™ that can be constructed within the computer.
Therefore, when a program is intended to model something else, the programmer
needs to know everything about those aspects of the modeled world that are of
interest in order to simulate them. In the most general symbolic languages,

virtually nothing can be hidden in ::EF: structure, because in the domain
of possible computer-worlds, there is no structure in which it can be hidden.
Thus, if a computer-modeled relation is transitive or connected, it is because
either the programmer or something in the program makes it have these properties.
Any unspecified aspect is “magic” until it can be spelled out precisely. Once
the behavior of the simulated world is known to the required level of analysis,
it can be simulated. Being able to predict new things not specifically built into
the program is largely an accidental byproduct of constructing very complex
programs. There is little or no intent to predict.

Modeling by analogy is quite different. The analogizer works in the domain
of actual worlds that nearly always contain a great deal of structure, In some
sense, the more structure that is hidden in the inherent constraints of the analo-
gous system the better. This structure provides a rich base of possible future
predictions from aspects of the system over i:or the modeler has no direct

control. A mooa example of Bommrsm by analogy is the notion of multidimen-
sional spaces. If psychological coneepts are conceived as points in a multidimen-
sional space and similarity as distances between points, a great deal of structure
is built into the mode] “accidentally.” Of course, it is not really an accident at
all but the mark of a clever theorist who has recognized at least some of the
structural correspondences. In the spatial analogy, all of the dimensional features
automatically have mutually exclusive values, because this is inherent in the axes
of a space. In addition, similarity automatically has properties of symmetry,
minimality, and the triangle inequality (see Tversky, 1977; Chapter 4 of this
volume). That many of these structural properties are hidden is evidenced by
the fact that the assumptions underlying the similarity-as-distance analogy have
been tested only recently, more than a decade after the analogy gained popularity.

In short, computer modelers and systematic analogizers differ in the amount
of structure they choose to have in their modeling medium. Computer modelers
use an exceptionally :oiEo unstructured medium. As a Rmcr most structure
must be built in explicitly to correspond to that of the modeled system. Analo-
gizers work by choosing from among many rigid, highly structured media, each
of which has constraints independent of its potential as a model of something
else. It is not too surprising, then, that propositional models were developed by
those who work with computers and that analog models were developed by
those who work with more structured media. The amount of structure provided

by the representing medium is precisely the difference between propositional

(extrinsic) and analog (intrinsic) approaches to representation.
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CONCLUSION

Representation is a complex and elusive concept, much more so than is generally
supposed. Within psychology at least, it has been associated with an information-
containing “thing” that is operated upon by processes. I used to believe that if
I was looking at that “thing” in a diagram or illustration, then I knew the nature
of that representation. The view presented in this chapter indicates this to be
untrue. Our understanding of the current concepts in representation is based
largely on superficial trappings that have little to do with their fundamental
nature. If we are to make significant progress on the nature of cognitive repre-
sentation, we necd a deeper understanding of our theories.

One aspect of this deeper understanding is the realization that the representa-
tional nature of this “thing” cannot be dissociated from the operations that
define the information it contains. Considering those operations may reveal
that much of the information that seems to be there is not really there at all.
Conversely, it may turn out that much information that does not seem to be
there actually is. To determine what the representational nature of the “thing”
is, one must first consider its functional information content as defined by those
processes that use it. This is not to say that representation is indistinguishable
from processing. There are many aspects of processing that are entirely in-
dependent of representational assumptions and other aspects that are only
partly dependent on them. In general, however, operations are much more in-
tricately woven into the fabric of representation than is usually acknowledged.

Once the information content has been discovered, it must be related back to
the world it represents. In order for a ““thing” to be a representation of any sort,
it must preserve at least some information about its referent world. There is an
important sense in which the nature of a representation is simply the view it
presents of the represented world. Representations that provide the same view of
the same world are at least informationally equivalent. Representations that
provide views of the same world are not representationally equivalent, no matter
how similar they may seem on the surface. The importance of the correspondence
between represented and representing worlds should not be underestimated.
More than anything else, it is what representation is all about.

For the purposes of cognitive psychology, there is yet another step in under-
standing our models of representation. Once the information has been discovered
and related to the represented world, all other aspects of the representing world
must be disregarded. In other words, the only thing that matters about the model
of representation is what information it preserves about the representing world.
Issues that pertain to any physical aspects of the representing world are simply
beyond the scope of cognitive theories. The proper level of discourse for cognitive
theory concerns information, not the medium used to carry it. It is this last step
that allows us to see through the “thing” we find in illustrations to the repre-
sentational assumptions that define the theory it embodies.
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Perhaps the most general lesson to be learned from our discussions is that we
cannot properly understand our theories and models of cognitive representation
without some larger, metatheoretical framework in which to view them. The
concepts currently used to talk about representation are seriously confused and
inadequate. As a result, we lack the insight that allows us to separate relevant
issues from irrelevant ones and to see the relationships among our models and
theories in a clear and systematic way. I have attempted to provide the sort of
framework T believe is necessary. It has helped me to notice things that were
previously obscure and to clarify things that were previously confused. Once we
understand the problems involved in cognitive representation properly, perhaps
we can solve them more quickly.
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