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]_ 3 Computational Imagery

J. I. Glasgow & D. Papadias
Queen’s University

Numerous psychological studies have been carried out and several, often
conflicting, models of mental imagery have been proposed. This chapter
does not present another computational model for mental imagery, but
instead treats imagery as a problem solving paradigm in artificial intel-
ligence (AI). We propose a concept of computational imagery, which has
potential applications to problems whose solutions by humans involve
the use of mental imagery. As a basis for computational imagery, we
define a knowledge representation scheme that brings to the foreground
the most important visual and spatial properties of an image. Although
psychological theories are used as a guide to these properties, we do
not adhere to a strict cognitive model; whenever possible we attempt
to overcome the limitations of the human information processing sys-
tem. Thus, our primary concerns are efficiency, expressive power and
inferential adequacy.

Computational imagery involves tools and techniques for visual-spatial
reasoning, where images are generated or recalled from long-term mem-
ory and then manipulated, transformed, scanned, associated with similar
forms (constructing spatial analogies), pattern matched, increased or re-
duced in size, distorted, etc. In particular, we are concerned with the
reconstruction of image representations to facilitate the retrieval of vi-
sual and spatial information that was not explicitly stored in long-term
memory. The images generated to retrieve this information may corre-
spond to representations of real physical scenes or of abstract concepts
that are manipulated in ways similar to visual forms.

The knowledge representation scheme for computational imagery sep-
arates visual from spatial reasoning and defines independent representa-
tions for the two modes. Whereas visual thinking is concerned with what
an image looks like, spatial reasoning depends more on where an object
is located relative to other objects in a scene (complex image). Each of
these representations is constructed, as needed, from a descriptive repre-
sentation stored in long-term memory. Thus our scheme includes three
representations, each appropriate for a different kind of processing:
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e An image is stored in long-term memory as an hierarchically or-
ganized, descriptive, deep representation that contains all the rel-
evant information about the image.

e The spatial representation of an image denotes the image compo.
nents symbolically and preserves relevant spatial properties.

e The visual representation depicts the space occupied by an image
as an occupancy array. It can be used to retrieve information such
as shape, relative distance and relative size.

While the deep representation is used as a permanent store for in-
formation, the spatial and visual representations act as working (short-
term) memory stores for images.

A formal theory of arrays provides a meta-language for specifying the

representations for computational imagery. Array theory is the mathe- .

matics of nested, rectangularly-arranged data objects (More 1979). Sev-
eral primitive functions, which are used to retrieve, construct and trans-
form representations of images, have been specified in the theory and

mapped into the functional programming language Nial (Jenkins, Glas-

gow and McCrosky 1986).

The knowledge representation scheme for computational imagery pro-
vides a basis for implementing programs that involve reconstructing and
reasoning with image representations. One such system, currently under
investigation, is a knowledge-based system for molecular scené analysis.

Some of the concepts presented in the chapter will be illustrated with -

examples from this application area.
Research in computational imagery has three primary goals: a cog-

nitive science goal, an Al goal and an applications goal. The cognitive .

science goal addresses the need for computational models for theories of
cognition. We describe a precise, explicit language for specifying, im-
plementing and testing alternative, and possibly conflicting, theories of
coguition. The AI goal involves the development of a knowledge repre-
sentation scheme for visual and spatial reasoning with images. Finally,
the applications goal involves incorporating the knowledge representation
scheme for computational imagery into the development of programs for
solving real world problems.

The chapter begins with an overview of previous research in mental

imagery, which serves as a motivation for the represent: ns and pro-
cesses for computational imagery. This is followed by a detailed descrip-
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tion of the deep, visual and spatial representations for imagery, and the
primitive functions that can be applied to them. The chapter concludes
with a summary of the major contributions of computational imagery
to the fields of cognitive science, Al and knowledge-based systems de-
velopment, and a discussion of the relationship between our scheme and
previous research in the area.

13.1 Mental Imagery

In vision research, an image is typically described as a projection of a

visual scene on the back of the retina. However, in theories of mental

imagery the term image refers to an internal representation used by

" the human information processing system to retrieve information from

memory.

Although no one seems to deny the existence of the phenomenon called
imagery, there has been a continuing debate about the structure and
the function of imagery in human cognition. The imagery debate is con-
cerned with whether images are represented as descriptions or depictions.
Tt has been suggested that descriptive representations contain symbolic,
interpreted information, whereas depictive representations contain geo-

- metric, uninterpreted information (Finke, Pinker and Farah 1989). Oth-

ers debate whether or not images play any causal role in the brain’s
information processing (Block 1981). According to Farah (1988a), in
depictive theories the recall of visual objects consists of the top-down
activation of perceptual representation, while in descriptive theories vi-
sual recall is carried out using representations that are distinct from
those in vision, even when it is accompanied by the phenomenology of
“seeing with the mind’s eye”. Further discussions on the imagery de-
bate can be found in various sources (e.g. Anderson 1978; Kosslyn and
Pomerantz 1977; Block 1981).

The purpose of this chapter is not to debate the issues involved in
mental imagery, but rather to describe effective computational tech-
niques for storing and manipulating image representations. To accom-
plish this, however, requires an understanding of the broad properties of
representations and processes involved in mental imagery.
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13.1.1 Research Findings in Mental Imagery

Many psychological and physiological studies have been carried out in

an attempt to demystify the nature of mental imagery. Of particular in-

terest to our research are studies that support the existence of multiple
image representations and describe the functionality of mental imagery
processes. In this section we overview relevant results from such stud-
ies and, based on these results, propose some important properties of
mental imagery which we use to motivate our representation scheme for
computational imagery.

Several experiments provide support for the existence of a visual mem-
ory, distinct from verbal memory, in which recognition of verbal material
is inferior. Paivio’s (1975) dual-code theory suggests that there is a dis-
tinction between verbal and imagery processing. This theory leaves the
exact nature of mental images unspecified, but postulates two inter-
connected memory systems, verbal and imaginal, operating in parallel.
The two systems can be independently accessed by relevant stimuli but
they are interconnected in the sense that nonverbal information can be
transformed into verbal and vice versa. Furthermore, it has been indi-
cated that visual memory may be superior in recall (Standing 1973).

The issue of visual memory is an important one for computational
imagery. What it implies to us is the need for a separate descriptive and
depictive representations. This is reinforced by the experiments carried
out by Kosslyn (1980) and his colleagues, who concluded that images
preserve the spatial relationships, relative sizes and relative distances of
real physical objects. Pinker (1988) suggested that image scanning can
be performed in two and three-dimensional space, providing support for
Kosslyn’s proposal that mental images captlire the spatial characteristics
of an actual display. Pinker also indicates that images can be accessed
using either an object-centered or a world-centered coordinate system.

A series of experiments suggest that mental images are not only visual
and spatial in nature, but also structurally organized in patterns; that
is, they have an hierarchical organization in which subimages can occur
as eclements in more complex images (Reed 1974). Some researchers
propose that under certain conditions images can be reinterpreted: they
can be reconstructed in ways that were not initially anticipated (Finke
et al. 1989). Experiments also support the claim that creative synthesis
is performed by composing mental images to make discoveries (Shepard
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1978; Finke and Slayton 1988).

The relationship between imagery and perception has been considered
by Brooks (1968), who demonstrated that spatial visualization can in-
terfere with perception. Farah (1988a) also suggests that mental images
are visual representations in the sense that they share similar represen-
tations to those used in vision, but notes that this conclusion does not
imply that image representations are depictive since both imagery and
perception might be descriptive. She argues, from different evidence
however, that they are in fact spatial.

Findings, provided by the study of patients with visual impairments,
point toward distinct visual and spatial components of mental imagery.
Mishkin, Ungerleider and Macko (1983) have shown that there are two
distinct cortical visual systems. Their research indicates that the tempo-
ral cortex is involved in recognizing what objects are, while the parietal
cortex determines where they are located. Further studies verify that
there exists a class of patients who often have trouble localizing an ob-

ject in the visual field, although their ability to recognize the object

is unimpaired (De Renzi 1982). Other patients show the opposite pat-
terns of visual abilities; they cannot recognize visually presented objects,
although they can localize them in space (Bauers and Rubens 1985).
Such pat:lents are able to recognize objects by touch or by characteris-
tic sounds. It has also been suggested that the preserved and impaired
aspects of vision in these patients are similarly preserved or impaired
in imagery (Levine, Warach and Farah 1985). In experimental studies,
subjects with object identification problems were unable to draw or de-
scribe familiar objects despite being able to draw and describe in detail
the locations of cities in a map, furniture in a house and landmarks in
a city. Patients with localization problems were unable to describe rel-
ative locations, such as cities on a map, although they could describe
from memory the appearance of a variety of objects. Such findings have
been interpreted by some researchers (e.g. Kosslyn 1987) as suggesting
two distinct components of mental imagery, the spatial and the visual,
where the spatial component preserves information about the relative
positions of the meaningful parts of a scene and the visual component
preserves information about how (e.g., shape, size) a meaningful part of
a scene looks.

Although there are varying strategies for retrieving spatial informa-
tion and solving problems concerning spatial relations, research has sug-
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gested that humans typically use mental imagery for spatial reasoning
(Farah 1988b). Experimental results also support an isomorphism be-
tween physical and imaged transformations (Shepard and Cooper 1982).
A premise of Kritchevsky (1988) is that behavior can be divided into spa-
tial and nonspatial components. For example, determining the color of
an object is a nonspatial behavior whereas determining relative positions
of objects is a spatial behavior. Kritchevsky assumes that the spatial
component of behavior is understood in terms of elementary spatial func-
tions. Furthermore, these functions are independent of any particular
sensor§ modality (Ratcliff 1982).

While individually the results described above do not imply a partic-
ular approach to computational imagery, collectively they imply several
properties that we wish to capture in our approach. Most importantly,
an image may be depicted and reasoned with visually or spatially, where
a visual representation encodes what the image looks like and the spa-
tial representation encodes relative location of objects within an image.
As well, images are inherently three-dimensional and hierarchically or-
ganized. This implies that computational routines must be developed
that can decompose, reconstruct and reinterpret image representations.
Results from studies comparing imagery and vision imply that the repre-
sentations and processes of imagery may be related to those of high-level
vision. Thus, we should also consider the representations and functional-
ity of object recognition when defining computational imagery. Finally,
we must be able to consider an image from either an object-centered or
a viewer-centered perspective.

The numerous experiments that have been carried out in mental im-
agery not only suggest properties for the representation scheme, but also
support the premise that mental imagery is used extensively to reason
about real world problems. Thus, computational imagery is an impor-
tant topic to investigate in relation to Al problem solving.

The subjective nature of mental imagery has made it a difficult topic
to study experimentally. Qualities like clarity, blurring and vividness of
- images are not directly observable and may differ from one person to
another. Furthermore, it has been argued by some researchers that it

is impossible to resolve the imagery debate experimentally, since depic- .

tive and descriptive representations do not have distinct nroperties from
which behavioral consequences can be predicted (Anc .on 1978). As
a result, several alternative accounts have been proposed to explain the
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findings mentioned above. The most important of these are: tacit knowl-
edge, experimenter bias, eye movements and task induced characteristics

(Intons-Peterson 1983). These difficulties involved in experimental stud-

ies emphasize the need for computer models for mental imagery. While
the knowledge representation scheme for computational imagery is not
meant to model a particular theory of imagery, it does provide the tools
for specifying, testing and formally analyzing a variety of theories, and
thus can contribute to resolving the imagery debate.

13.1.2 Theories and Principles of Mental Imagery

Pylyshyn (1981), a forceful proponent of the descriptive view, argues
that mental imagery simply consists of the use of general thought pro-
cesses to simulate perceptual events, based on tacit knowledge of how
these events happened. He disputes the idea that mental images are
stored in a raw uninterpreted form resembling mental photographs and
argues for an abstract format of representation called propositional code.
Kosslyn’s (1980) model of mental imagery is based on a depictive the-
ory which claims that images are quasi-pictorial; that is, they resemble
pictures in several ways but lack some of their properties. According
to Kosslyn’s model, mental images are working memory, visual repre-
sentations generated from long-term memory, deep representations. A
set of procedures, which is referred to as the “mind’s eye”, serves as
an interface between the visual representations and the underlying data
structures, which may be decidedly non-pictorial in form. Hinton dis-
putes the picture metaphor for imagery and claims that images are more
like generated constructions (Hinton 1979). In this approach, as in Marr
and Nishihara’s (1978) 3D model, complex images can be represented
as an hierarchy of parts.

Finke (1989) takes a different approach to the imagery debate. Instead
of proposing a model, he defines five “unifying principles” of mental
imagery:

e The principle of implicit encoding states that imagery is partic-
ularly useful for retrieving information about physical properties
of objects and relations among objects whenever this information
was not previously, explicitly encoded.

e The principle of perceptual equivalence states that similar mech-

anisms in the visnal svstem are activated when obiects or events
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are imagined, as when the same objects or events are actually per- .

ceived.

o The principle of spatial equivalence states that the spatial relations

between objects are preserved, although sometimes distorted,:in
mental images.

*e The principle of structural equivalence states that the structure of
images corresponds to that of perceived objects, in the sense that
the structure is coherent, well organized and can be reinterpreted.

e The principle of transformational equivalence states that imagined

and physical transformations exhibit similar dynamic characteris-
tics and follow the same laws of motion.

These principles provide a basis for evaluating the representations and
functions for computational imagery; in the development of our scheme
we have attempted to address each of the underlying principles for men-
tal imagery.

13.1.3 Stages of Image Representations

The hypothesis of multiple representations for mental imagery can ex-

plain several experimental results that cannot be explained indepen-
dently by either a propositional, spatial or visual representation. For
instance, after a series of experiments Atwood (1971) concludes that
memory for high image phrases is disrupted if followed by a task re-
quiring the subject to process a visually presented digit in contrast to
abstract phrases. Although other researchers found difficulty in repli-
cating Atwood’s experiments, Jannsen (1976) succeeds consistently over
several experiments and claims that other failures stem from using an
interfering task that is spatial rather than visual. Baddeley and Lieber-
man (1980) interpret these results as pointing towards distinct visual
and spatial components of mental imagery. ;

When images are retrieved, it is possible to recall information about
what objects constitute a scene and their spatial relationships with other
objects without remembering what the object looks like. Furthermore,
we are able to recognize objects independent of any context. Distinct
spatial and visual components for imagery can explain such phenomena,
where the spatial component can be considered as an index that connects
visual images to create a scene.
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Intuitively, we can distinguish between visual and spatial representa-
tions by considering the type of information we wish to retrieve. Con-
sider, for example, answering the following questions: How many win-
dows are there in your home? What city s further north, Seattle or
Montreal? What objects are sitting on top of your desk? Who was sit-
ting beside Mary in class? These questions can typically be answered
without constructing an explicit visual image; that is, you could possi-
bly recall that John was sitting beside Mary without knowing what John
looked like or what clothes he was wearing. Each of these questions does
rely on knowing the relative locations of objects within a recalled image,
information that is embodied in a spatial representation. Now consider

- questions such as: What is the shape of your dog’s ears? What does

a particular image look like if you rotate it ninety degrees? What is
larger, a rabbit or a racoon? Is Montreal or Toronto closer to Ottawa?
To answer these questions you may need to reconstruct a representa-
tion that preserves information such as size, shape or relative distance,
information that is embodied in a visual representation.

From the computational point of view, a single representational sys-
tem cannot always effectively express all the knowledge about a given do-
main; different representational formalisms are useful for different com-
putational tasks (Sloman 1985). In perceptual systems, for instance,
multiple representations have been preposed to derive cognitively use-
ful representations from a visual scene. For computational imagery, we
propose three stages of image representation, each appropriate for a
different type of information processing. The deep representation stores
structured, descriptive information in terms of a semantic network, long-
term memory model. The working memory representations (spatial and
visual) are consciously experienced and generated as symbolic and oc-
cupancy arrays, as needed, using information stored in the deep: repre-
sentation. Details about the computational advantages of each of the
image representations involved in the scheme will be presented in the
following section.

13.2 Knowledge Representation Scheme

Research in Al has long been concerned with the problem of knowledge
representation. Al programs rely on the ability to store descriptions of a
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particular domain and formally manipulate these descriptions to derive
new knowledge. Traditional approaches to knowledge representation in-
clude logic representations, which denote the objects and relations in
the world in terms of axioms, and structural knowledge representation
schemes, which denote concepts and relations in terms of structural hi-
erarchies. :

In addition to general schemes, there exist specialized schemes con-
cerned with the representation of the visual representation of images.
In discrimination trees, objects are sorted by discriminating on their co-
ordinates, as well as other quantitative and qualitative discriminators
(McDermott and Davis 1984). A simple way of describing volume or

shape is with occupancy arrays, where cells of the array denote objects
filling space. For computer vision applications, an occupancy array is of- -

ten called a grey level description, since the value of the cells encode the
intensity of light on a grey scale from white to black. For our molecular

scene analysis application, we use three-dimensional occupancy arrays . -

that correspond to electron density maps resulting from X-ray diffrac-

tion experiments. The values of the cells in such maps correspond to

the electron density in a unit cell of a crystal.

According to Biederman (1987), the visual representation for objects
can be constructed as a spatial organization of simple primitive volumes,
called geons. Other researchers have proposed alternative primitive vol-
umes, like generalized cones, spheres etc. A major contribution in rep-

resentational formalisms for images is the progression of primal sketch, - .
2-1/2D sketch and 3D sketch (Marr and Nishihara 1978). The primal

sketch represents intensity changes in a 2D image. The 2-1/2D sketch

represents orientation and depth of surface from a particular viewer per- -
spective. Finally, the 3D sketch represents object-centered spatial orga-

nization.

The representation schemes discussed above are not suggested as struc-

tures for representing human knowledge and do not necessarily commit

to addressing questions about mental processes. Although many AI re-

searchers believe that the best way to make true thinking machines is
by getting computers to imitate the way the human brain works (Israel
1987), research in knowledge representation often is more concerned with
expressiveness and efficiency, rather than explanatory and predictive

power. Thus, although our knowledge representation  eme attempts - -

to preserve the most relevant properties of Imagery, whenever possible
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Figure 13.1
Representations for Computational Imagery.

we try to overcome the limitations of the human information processing
system. For example, theories of divided attention argue that attention
can be concentrated on, at most, a few mental processes at a time. Our
proposed scheme has the capability of relatively unrestrictive parallel
processing of spatial images. Furthermore, although the resolution of
mental images is limited by the capabilities of the human mind, in the
knowledge representation scheme the resolution restrictions are imposed
by the implementation architecture.

A theory of arrays provides a formalism for the representations and
functions involved in computational imagery. Array theory (More 1979)
is the mathematics of nested, rectangularly-arranged collections of data
objects. Similar to set theory, array theory is concerned with the con-
cepts of nesting, aggregatién and membership. Array theory is also con-
cerned with the concent of data objects having a spatial position relative
to other objectsin a ilection. Thus, it provides for a multi-dimensional,
hierarchical representation of images, in which spatial relations are made
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explicit.

We consider computational imagery as the ability to represent, re-
trieve and reason about information not explicitly stored in long-term
memory. In particular, we are concerned with visual and spatial infor-
mation. Recall that the visual component of imagery specifies how an
image looks and is used to retrieve information such as shape, size and
volume, while the spatial component of imagery denotes where compo-

nents of an image are situated relative to one another and is used to "

retrieve information such as neighborhoods, adjacencies, symmetry and

relative locations. As illustrated in Figure 13.1, the long-term mem-

ory representation is implemented as a description of the image and
the working memory representations correspond to representations that
make explicit the visual and spatial properties of an image. In the re-
mainder of this section, we describe each of the representations in detail
and discuss the primitive functions that.operate on them. First, though,

we overview the theory of arrays, which provides the basis for describing

and implementing the representations and functions for computational
imagery. : '

13,21 Array Theory

Results of empirical studies suggest that images may be organized using
both a hierarchical and a spatial structure. Components of an image
may be grouped into features and stored based on their their topolog-
ical relations, such as adjacency or containment, or their spatial rela-
tions, such as above, beside, north-of, etc. Because of the relevance of
storing and reasoning about such properties of an image, we base the
development of the knowledge representation scheme for computational
imagery on a theory of arrays. This mathematical theory allows for a
multi-dimensional, hierarchical representation of images in which spa-
tial relations are made explicit. Furthermore, functions can be defined
in -array theory for constructing, manipulating and, retrieving informa-
tion from Images represented as arrays. For example, functions that
compose, translate, juxtapose and compare images have been defined
within the theory.

The development of array theory was motivated by efforts to extend
the data structures of APL and has been influenced by the search for

total operations that satisfy universal equations (More 1981). In this -

theory, an array is a collection of zero or more items held at positions
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in a rectangular arrangement along multiple axes. Rectangular arrange-
ment is the concept of data objects having a position relative to other
objects in the collection. The interpretation of this structure can be
illustrated using nested, box diagrams. Consider the. array diagram in
Figure 13.2. In this array the pair formed from 7 and 9 is an array nested
within the larger array. Nesting is the concept of having the objects of
a collection be collections themselves: This is an important concept in
array theory since it is the power of aggregating arbitrary elements in an
array that gives the theory much of its expressive power. The third ele-
ment of the array is a symbolic array, which denotes an image of a house
containing three parts. The indexing of the array allows us to make ex-
plicit such properties as above(roof,door) and left-of (door,window) in a
notation that is both compact and accessible.

Array theory has provided a formal basis for the development of the
Nested Interactive Array Language, Nial. This multi-paradigm pro-

~ gramming language combines concepts from APL, Lisp and FP with con-

ventional control mechanisms (Jenkins, Glasgow and McCrosky 1986).
The primitive functions of array theory have all been implemented in
Q’Nial (Jenkins and Jenkins 1985), a commercially available, portable
interpreter of Nial developed at Queen’s University.

Operationsvin array theory are functions that map arrays to arrays. A
large collection of total, primitive operations are described for the the-
ory. They are chosen to express fundamental properties of arrays. Nial
extends array theory by providing several syntactic forms that describe
operations, including composition, partial evaluation of a left argument,
and a lambda-form. Array theory also contains second-order functions
called transformers that map operations to operations.

It has previously been shown that the syntactic constructs of array
theory facilitate both sequential and parallel computations (Glasgow,
Jenkins, McCrosky and Meijer 1989). This is an important feature
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when considering computational imagery as a basis for specifying cog-
nitive processes, which themselves may be sequential or parallel. The
potential parallelism in array theory comes from three sources: inherent
parallelism in the primitive operations, parallelism expressed by syn-
tactic constructs, and parallelism in operation application controlled by
primitive transformers. The potential parallelisfn of the primitive oper-
ations results from treating an entire array as a single value; each array
takes an array as a single argument and returns an array as its result.

Array theory includes transformers that allow expression of the parallel

application of an operation to subparts of an array. )

The software development associated with Al problem solving in gen-
eral, and with computational imagery in particular, differs from tradi-
tional computer applications. Al problems are solved at the concep-
tual level, rather than a détailed implementation level. Thus, much
of the programming effort is spent on understanding how to represent
and manipulate the knowledge associated with a particular problem, or
class of problems. This imposes certain features on a programming lan-
guage, including interactive program development, operations for sym-
bolic computation, dynamically created data structures and easy en-
coding of search algorithms. While Lisp and Prolog both address ca-

pabilities such as these, they provide very different and complementary".

approaches to problem solving. The language Nial is an attempt at find-
ing an approach to programming that combines the logic and functional
paradigms of Prolog and Lisp (Glasgow and Browse 1985, Jenkins ef
al. 1986). It has been demonstrated that array theory and Nial can
provide a foundation for logic programming (Glasgow, Jenkins, Blevis
and Feret 1991), as well as other other descriptive knowledge represen-
tation techniques (Jenkins, Glasgow, Blevis, Chau, Hache and Lawson,
1988). These techniques have been implemented and tested on a variety
of knowledge-based applications.

13.2.2 Deep (Long-Term Memory) Representation

The deep representation for computational imagery is used for the long-
term storage of images. Earlier work has suggested that there exists a
separate long-term memory model which encodes visual information de-
scriptively (Kosslyn, 1980; Pinker 1984). This encoding can then be used
to generate depictive representations in working memor  As pointed out
in (Marschark, Richman, Yuille and Hunt 1987), most or the research in
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vision and imagery has focused on the format of the on-line conscious
representations, in exclusion of long-term storage considerations. Our
point of*view is that the deep representation falls more in the limits of
research in long-term memory than imagery and we base its implemen-
tation on the hierarchical network model of semantic memory (Collins
and Quillian 1969). This model is suitable for storing images since they
have a structured organization in which subimages can occur as elements
in more complex images.

The deep representation in our scheme is implemented using a frame
language (Minsky 1975), in which each frame contains salient infor-
mation about an image or class of images. This information includes
propositional and procedural knowledge. There are two kinds of im-
age hierarchies in the scheme: the AKO (a kind of) and the PARTS.
The AKO hierarchy provides property inheritance: images can inherit
properties from more generic image frames. The PARTS hierarchy is
used to denote the structural decomposition of complex images. The
deep representation for imagery can be characterized as non-monotonic,
since default information (stored in specific slots, or inherited from more
generic {rames) is superseded as new information is added to a frame.

A frame corresponding to the image of a map of Europe and part of
the semantic network for a map domain is illustrated in Figure 13.3.
Each node in the network corresponds to an individual frame and the
links describe the relationships among frames. The AKO slot in the
frame of the map of Europe denotes that the frame is an instance of the
concept “Map-of-Continent”. The PARTS slot contains the meaningful
parts that compose the map, along with an index value that specifies
their relative locations. The POPULATION slot contains a call to a
procedure that calculates the population of Europe, given the popu-
lations of the countries. As well, the frame could incorporate several
other slots, including ones used for the generation of the spatial and
visual representations. )

For the molecular scene analysis application, the frame hierarchy is
more complex than the simple map example. The structure of a protein
is described in terms of a crystal, which consists of a regular three-
dimensional arrangement of identical building blocks. The structural
motif for a protein crystal can be described in terms of aggregate (com-
plex or quaterr 7) three-dimensional structures. Similarly, tertiary
structures can be decomposed into secondary structures, and so on.
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Figure 13.3
Example of Deep Representation.

Each level in this decomposition hierarchy corresponds to a conceptual
frame denoting a molecular fragment at a meaningful level of abstrac-
tion. If we consider a fully determined crystal as a molecular scene,
there exist databases containing over 90,000 images of small molecules
and over 600 images of protein structures (Allen, Bergerhoff and Sievers
1987). These databases include the three-dimensional geometry of the
molecular scenes that forms a basis for our long-term memory model for
molecular images. ‘

Semantic networks and frames have previously been suggested as rep-
resentations for images in vision research. One example of this deals
with the interpretation of natural scenes (Levine 1978). In Levine’s sys-
tem, the spatial relations are represented as arcs such as left-of, above,
or behind. A classic example of the use of semantic networks is the work
of Winston (1975) on structural descriptions. In this study on scene
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understanding, common structures, such as arches and pedestals, are
represented in terms of their decomposition into parts and a description
of the spatial relations among these parts. While this approach may be
useful for some applications, we argue later that explicitly representing
spatial relations in terms of an indexed array provides increased compu-
tational efficiency for spatial reasoning.

Our implementation of the deep representation has several attractive
properties. First it provides a natural way to represent knowledge since
all the information about an image (or a class of images) can be stored in
a single frame and the structure of images is captured by the PARTS hi-
erarchy. It is assumed that a property is stored at the most general level
possible (highest level in the conceptual hierarchy) and is shared by more
specific levels, thus providing a large saving in space over propositional
or database formulations of property relations. The deep representation
also incorporates the psychological concept of semantic networks in an
implementation that provides features such as procedural attachment.
The non-monotonic feature of the frame allows for reasoning with in-
complete information; default information can be stored in conceptual
frames and inherited and used for depicting or reasoning about subcon-
cepts or instances of images. Despite its attractive properties, however,
the deep representation is not the most suitable representation for all
of the information processing involved in imagery. Thus, we require
alternative representations to facilitate the efficiency of the scheme.

13.2.3 Working-Memory Representations

Mental images are not constantly experienced. When an image is needed,
it is generated on the basis of stored information. Thus, unlike the deep
representation, which is used for the permanent storage of information,
the working-memory representations of an image exist only during the
time that the image is active, i.e., when visual or spatial information
processing is taking place.

The distinct working memory representations were initially motivated
by results of cognitive studies which suggest distinct components in men-
tal imagery (Kosslyn 1987). More importantly, separate visual and spa-
tial representations provide increased efficiency in information retrieval.
The visual representation is stored in a format that allows for anal-
ysis and retrieval of such information as shape and relative distance.
Since the spatial representation makes explicit the important features
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Figure 13.4
Example of Occupancy Arrays for Visual Representations.

and structural relationships in an image, while discarding irrelevant fea-
tures such as shape and size, it provides a more compact and efficient
depiction for accessing spatial and topological properties.

Visual Representation The visual representation corresponds to the
visual component of imagery, and it can either be reconstructed from
the underlying deep representation or generated from low level percep-
tual processes. Similar to Kosslyn’s (1980) skeletal image, this repre-
- sentation is depictive and incorporates geometric information. Unlike
Kosslyn’s approach, we assume that the visual representation can be
three-dimensional and viewer-independent.

For the current implementation of the visual representation we use

occupancy arrays. An occupancy array consists of cells, each mapping

onto a local region of space and representing information such as volume,
lightness, texture and surface orientation about this region. Objects are
depicted in the arrays by patterns of filled cells isomorphic in surface area
to the objects. Figure 13.4 illustrates depictions of three-dimensional oc-
cupancy arrays corresponding to a molecular fragment at varying levels

of resolution. These arrays were constructed using geometric coordinates

and radii of the atomic components of the molecule.

Representing occupancy arrays explicitly in long-term memory can be
a costly approach. As a result other approaches to storing or generating
this information (like generalized shapes) have been developed. Such
approaches can be incorporated into an application of the scheme for
computational imagery.

Spatial Representation A primary characteristic - a good formal-
ism for knowledge representation is that it makes re.cvant properties

i
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explicit. While an occupancy array provides a representation for the
visual component of imagery, it is basically uninterpreted. For the spa-
tial component of imagery we are best served by a representation that
explicitly denotes the spatial relations between meaningful parts of an
image, corresponding to the mental maps created by humans. Thus we
use a multidimensional symbolic array to depict the spatial structure of
an image, where the symbolic elements of the array denote its meaning-
ful parts (Glasgow 1990). The symbolic array preserves the spatial and
topological relationships of the image features, but not necessarily rela-
tive sizes or distances. The arrays can be interpreted in different ways
depending on the application. If, for example, we use the scheme to
reason about geographic maps, interpretations could include predicates
such as north, east, south and west; if the array is used to represent
the image of a room, then the interpretation would involve predicates
such as above, behind, left-of, beside, etc. For molecular scene analysis
we are more concerned with properties such as symmetry and adjacency
(bonding), which are made explicit by a symbolic array. The spatial
representation can also denote non-spatial dimensions. For example,
the symbolic array could be used to index features such as height or

speed.

Norway Sweden Finland

Denmark

Treland Britain Holland Poland

Germany

. Belgium Cuzech Slovakia
Republic
Switzerland Anstria Hungary
France
7 Yugoslavia 7
Italy

Portugal Spain Greece

Figure 13.5 4
Example of Symbolic Array for Spatial Representation.

The symbolic array representation for the spatial component of im-
agery is generated, as needed, from information stored explicitly in the
frame representation of an image. For example, in Figure 13.3 the
PARTS slo.  ontains the indices needed to reconstruct the spatial rep-
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resentation for a simplified map of Europe. Figure 13.5 illustrates this
symbolic array. Note that some parts occupy more than one element in
an array (e.g., Italy, France). This is necessary to capture all the spa-
tial relationships of the parts of an image. We may also wish to denote
more complex relations, such as one object being “inside” another. This
is illustrated in Figure 13.6, which displays a spatial image of a glass
containing water.

glass | water | glass

glass | glass | glass

Figure 13.6
Symbolic Array Depiction of Inside Relation.

According to Pylyshyn (1973), images are not raw uninterpreted men-
tal pictures, but are organized into meaningful parts which are remem-
bered in terms of their spatial relations. Furthermore, we can access the
meaningful parts; that is, we are able to focus attention on a specific
feature of an image. Nested symbolic arrays capture these properties by
representing images at various levels of abstraction as prescribed by the
PART hierarchy of the deep representation; each level of embedding in
an array corresponds to a level of structural decomposition in the frame
hierarchy. For instance, focusing attention on Britain in the array of
Figure 13.5 would result in a new array in which the symbol for Britain
is replaced by its spatial representation (see Figure 13.7). This subimage
is generated using the PARTS slot for the frame of Britain in the deep
representation.

It has been suggested that people can reconstruct and reinterpret
mental images (Finke 1989). The proposed scheme also provides the
capability to combine .and reconstruct images, using special functions
that operate on the symbolic array representations. For instance we
can combine a portion of the array of Figure 13.5 with a portion of the
array that corresponds to the map of Africa and create a new array that
contains the countries of the Mediterranean Sea.

Recall that Pinker (1988) has pointed out that images are represented
and manipulated in three-dimensions. Similar to the visual represen-
tation, a symbolic array can be two or three-dimensional, depending
on the application. In the domain of molecular scenes, fragments of
molecules are represented as three-dimensional symbolic arrays at vary-
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Figure 13.7

Embedded Symbolic Array Representation for Western Europe.

ing levels of abstraction, corresponding to the level of decomposition
in the frame hierarchy. For example, a protein can be represented as a
three-dimensional array of symbols denoting high-level structures, which
can be decomposed.into nested arrays of symbols denoting progressively
more detailed substructures. Because of the size and complexity of
molecular structures, it is essential to be able to reason at multiple levels
of abstraction when analyzing a particular molecular scene. Figure 13.8
depicts a three-dimensional image of a fragment of a protein secondary
structure, and an embedded amino acid residue substructure containing

~ symbols denoting atoms. Bonding at the residue and atomic level is

made explicit through structural adjacency in the representation.

For image recognition and classification, it is necessary to pick out
characteristic properties and ignore irrelevant variations. One approach
to image classification is on the basis of shape. While the visual rep-
resentation provides one approach to shape determination, the spatial
representation allows for an hierarchical, topological representation for
shape. This approach is particularly useful in applications where images
are subject to a large number of transformations. For example, a hu-
man body can be configured many ways depending on the positions of

. arms, legs, etc. While it is impossible to store a separate representation

for every possible configuration, it is possible to represent a body us-
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Cysteine

Figure 13.8
Symbolic Array of Molecular Fragment.

ing a symbolic array that makes explicit the parts of the body and the
relations between parts that remain constant under allowable transfor-
mations. Figure 13.9 illustrates such a spatial representation. Combined
with a primitive shape descriptor (such as generalized cylinder), the spa-
tial representation provides for multi-dimensional shape descripters as
proposed by Marr (1982).

The spatial representation can be thought of as descriptive since it
can be expressed as a propositional representation, where the predi-
cates are spatial relationships and the arguments are concrete, imagin-
able, objects. Although information in the spatial representation can

be expressed as propositions, the representations are not computation-

ally equivalent; that is, the efficiency of the inference mechanisms is not
the same. The spatial structure of images has properties not possessed
by deductive propositional representations. As pointed out by Lind-
say (1988), these properties help avoid the “combinatorial explosion of
correct but trivial inferences that must be explicitly represented in a
propositional system”. Lindsay also argues that the  itial image repre-
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" Spatial Representation for Topological Shape Description.

sentations (symbolic representations in our case) support non-deductive
inference using built-in constraints on the processes that construct and
access them. Consider, for example, the spatial representation of the
map of Europe. To retrieve the information about what countries are
north of Germany, we need only search a small portion of the symbolic
array. Alternatively, in a propositional approach the spatial relations
would be stored as axioms such as: north-of(Britain, Portugal), north-
of(France,Spain), north-of(Holland,Belgium), . ..and general rules such
as: north-of(X,Y) A north-of(Y,Z) — north-of(X,Z).

To determine what countries are north of Germany using this rep-

© resentation involves considering all axioms plus recursive calls to the

general rule. Thus, although the information embodied in the spatial
representati~n is derivable from propositional knowledge the indexing of

“this inform....on using an array data structure can make spatial reason-
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ing more efficient.

Another advantage of symbolic arrays, with respect to propositional
representations, concerns temporal reasoning. Any cognitive system,
natural or artificial, should be able to deal with a dynamic environment
in which a change in a single item of knowledge might have widespread

effects. The problem of updating a system’s representation of the state

of the world to reflect the effects of actions is known as the frame prob-
“lem (Raphael 1971). Representing an image as a symbolic array has
advantages when considering this problem. Consider, for example, that
we change the position of a country in our map of Europe. In a propo-
sitional representation we would have to consider all of the effects that
this would have on the current state. Using the symbolic array to store
the map, we need only delete the country from its previous position
and insert it in the new one. Since spatial relationships are interpreted,
not logically inferred, from image representations, we eliminate some
of the problems associated with non-monotonicity in domains involving
spatial/temporal reasoning. There still remains, however, the problem
of dealing with truth maintenance if we desire to preserve relations as
changes are made. : : .
The representation scheme provides the ability to extract proposi-
tional information from symbolic arrays and to create or manipulate
symbolic arrays with respect to propositional information. It should be
noted, though, that the spatial representation does not provide the full
expressive power of first-order logic; we cannot express quantiﬁcation
or disjunction. For example, it is not possible to represent an image of
Europe that denotes the fact that Britain is either north of or south of
Portugal. But mental images cannot express such information either.
The representation scheme can be integrated with a logic representation
through Nlog, a logic programming environment based on the theory of
nested arrays (Glasgow et al. 1991). In this environment, the spatial
information extracted through imagery processes can be used as propo-
sitions in logical deductions.

13.2.4 Primitive Functions for Computational Imagery

Approaches to knowledge representation are distinguished by the the
operations performed on the representations. Thus, the effectiveness
of our scheme can be partially measured by how well it facilitates the
implementation of imagery related processes. In this section we nreview
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some of the primitive imagery functions that have been defined for the
scheme. We also discuss how these functions provide the building blocks
for more complex processes.

In his computational model for imagery, Kosslyn (1980) considers
three basic categories of image processes: procedures for image gen-
eration (mapping deep representations into visual representations), pro-
cedures for evaluating a visual image, and procedures for transforming
an image. While we attempt to capture much of the functionality of the
procedures described by Kosslyn, and in fact can categorize our opera-
tions similarly, the nature of our representations lead to differences in
the implementations. For example, we define operations for both visual
and spatial reasoning of three dimensional images. As well, since our
images can be organized hierarchically, we have defined functions that -
allow us to depict parts of an image at varying levels of abstraction us-
ing embedded arrays. When considering spatial functions, we were also
influenced by the work of Kritchevsky (1988), who defines (but does
not implement) a classification scheme for elementary spatial functions

. that includes operations for spatial perception, spatial memory, spatial

attention, spatial mental operations and spatial construction. As well as
attempting to capture much of the functionality derived from cognitive
studies of behavior, we have been influenced by our desire to incorporate
our tools in reasoning systems for knowledge-based system development.
Thus, we have been concerned with issues such as efficiency and reusabil-
ity of our primitive functions. .

The implementation of the imagery functions assumes global variables
corresponding to the current states of long-term and working memory.
The primitive functions modify these states by retrieving images from
memory, transforming the contents of working memory or storing new
(or modified) images in long-term memory.

We consider the primitive functions for imagery in three classes cor-
responding to the three representations: deep, visual and spatial. Func-

‘tions for deep and visual memory have been considered previously in

research areas such as semantic memory, vision, computational geome-

try and graphics. Thus we provide a brief overview of these classes and

concentrate on the more novel aspect of our research, the functions for
spatial reasoning. We also discuss the processes involved in transform-

~ ing one representation into another, a powerful feature of our knowledge
- representation scheme. Note that the proposed functions have been spec-
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ified using array theory and implemented in the programming language
Nial.

Long-Term Memory Functions The frame concept was initially
proposed as a model for analogy-driven reasoning (Minsky 1975). ‘In the
context of imagery, this type of reasoning involves the understanding
of an image in a new context based on previously stored images. The
functions for the deep representation of imagery in our implementation
are exactly those of the Nial Frame Language (Hache 1986). In this lan-
guage, imagery frames contain information describing images or classes
of images, where knowledge is organized into slots that represent the
attributes of an image.

Like most frame languages, the Nial Frame Language uses a semantic
network approach to create configurations of frame taxonomies. The
hierarchical network approach supports AKO links for implementing an
inheritance mechanism within the frame structure. Frames in the lan-
guage are implemented and manipulated as nested association lists of
slots and values. Creating a generic or instance frame for an image re-
quires assigning values to its slots, which is achieved using the function
fdefine. Information is modified, added to or deleted from an exist-
ing frame using the fchange, fput and fdelete operators. Knowledge is
retrieved (directly or through inheritance) from frames using the fget
function. These and many other frame functions are implemented as
part of the Nial Al Toolkit (Jenkins et al. 1988).

The decomposition of images into their components is an important
concept of computational imagery. This is achieved through a PARTS
slot that contains the meaningful parts of an image and their relative
location. Since the spatial representation of an image is stored relative to
a particular axis, an instance frame may also contain an ORIENTATION
slot. As described later, the PARTS and ORIENTATION slots allow for
reconstruction of the spatial representation of an image.

Functions for Visual Reasoning Functions for visual reasoning have
been studied extensively in areas such as machine vision and grapvhics.
Similar to previous work, we consider visual images as surface or oc-
cupancy representations that can be constructed, transformed and ana-
lyzed.

The occupancy array representation for the vis component of im-
agery can be constructed in a number of ways, depending on the domain
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of application. For example, the visual representation can be stored as
generalized shape descriptions and regenerated at varying levels of res-
olution. They may also be reconstructed from geometric information
stored in the deep representation.

Imagery functions for manipulating occupancy arrays include rotate,
translate - and zoom, which change the orientation, location or size of
a visual image. Functions for retrieving volume and shape are also be-
ing implemented. Whereas many of these functions are generic, domain
specific functions can also be implemented for a particular application.
For example, when considering molecular scenes we are concerned with
a class of shape descriptors that correspond to the shape of molecu-
lar fragments at varying levels of abstraction (e.g. residues, secondary
structure, molecule, etc.).

Functions for Spatial Reasoning Whereas functions for visual and
memory-based reasoning have been studied previously, the primitive
functions for spatial imagery are more unique to our representation.
The importance of spatial reasoning is supported by research in a num-
ber of areas, including computer vision, task planning, navigation for

mobile robots, spatial databases, symbolic reasoning, etc. (Chen 1990).

Within the imagery context we consider spatial reasoning in terms of a
knowledge representation framework that is general enough to apply to
various problem domains. We also consider the relationship of spatial
image representations to visual and deep representations.

As mentioned earlier, the functions for computational imagery are im-
plemented assuming a global environment consisting of the frame knowl-
edge base and the current working memory representation. Generally,
the working memory representation consists of a single symbolic array
(for spatial reasoning) or an occupancy array (for visual reasoning). One
exception to this case is when we are using the spatial array to browse
an image by focusing and unfocusing attention on particular subimages.
In this case we need to represent working memory as a stack, where we
push images onto the stack as we focus and pop images from the stack as
we unfocus. Table 13.2.4 presents a summary of some of the functions for
spatial imagery. We specify these functions as mappings with param-
eters corresponding to: deep memory (DM), working memory (WM),
image nar - (N) and relative or absolute location (L)

In order vu reason with images, it is necessary to provide functions that
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Table 13.1
Primitive Functions for Spatial Reasoning.
Name Mapping Description
retrieve DM x N — WM Reconstruct spatial image
put WMxNxNxL WM Place one image component
relative to another f
find WMx N — L Find location of component
delete WMxN—- WM Delete image component
move CWMxNxL—->WM Move image component to new location
turn WM x Direction — WM Rotate image 90° in specified direction
focus WMx N - WM Replace specified subimage with
its spatial representation
unfocus WM — WM Return to original image
store WM x DM Xx N — DM Stores current image in long-term memory
adjacent WM XN — N* Determine adjacent image components

allow us to interpret the spatial representations in terms of propositions
within a given domain. For example, consider the three-term series
problem: John is taller than Mary, Sam is shorter than Mary, who is
tallest? It has been suggested that people represent and solve such a
problem using an array where the spatial relationships correspond ‘to
the relative heights (Huttenlocker, 1968):

lﬁhn [ Mary | SarrT]

As discussed earlier, describing and solving such a problem using a
propositional approach involves an exhaustive search of all the axioms
describing the relation. The symbolic array representation allows direct
access to such information using a domain specific array theory function
tallest, which returns the first element of the array:

tallest is operation A {first A}

If our array is representing a map domain, we could similarly define
domain specific functions for north-of, east-of, bordering-on, etc.
Cognitive theories for pattern recognition support the need for at-
tention in imagery, where attention is defined as the ability to concen-
trate tasks on a component (or components) of an image. The concept
of attention is achieved using the spatial representation by defining a
global variable that corresponds to a 'region of attention (and possibly

an orientation) in a spatial representation of an image and implement-

ing functions that implicitly refer to this region. For example, we have
defined functions that initialize a region of attention (attend), shift at-
tention to a new region (shift), retrieve the components in the region of
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o attention (at-attend), focus on the region of attention to retrieve detail

(focus-attend), etc. These functions are particularly useful for applica-
tions where we may wish to describe and reason about a scene from
an internal, rather than external, perspective. Consider, for example,
a motion planning application where the spatial representation reflects
the orientation and current location of the moving body.

Complex Functions for Imagery - Using the primitive functions for
computational imagery we can design processes corresponding to more
complex imagery tasks. For example, a function for visual pattern

- matching can be defined using the rotation and translation functions
- to align two visual representations of images, and a primitive compare

function to measure the similarity between these occupancy arrays.

To retrieve properties of an image, it may be necessary to focus on
details of subirxfages. For example, we may wish to determine all the
regions of countries on the border of an arbitrary country X. This
cdn easily be determined by applying the focus function to the coun-
tries adjacent to country X and then determining the content of these
subimages. This can be expressed as the array theory function defini-
tion border, where the body of the definition is enclosed by the curly
brackets: border is operation X {content (EACH focus) adjacent X}

A key feature of our approach to knowledge representation for imagery
is the underlying array theory semantics, which allows us to consider all
representations as array data structures and implement functions that
transform one representation of an image to another. Figure 13.10 il-
lustrates the transformations supported by the scheme. While the im-
plementation of functions used for storage, retrieval and interpretation
may be complex and domain specific, the primitive functions for imagery
provide a basis for their implementation. For further details of the use
of imagery for image interpretation in the domain of molecular scene
analysis see (Glasgow, Fortier and Allen, 1991).

13.3 Contributions of Computational Imagery

In the introduction of the chapter we proposed three goals for our re-
search in computational imagery: the cognitive science goal, the Al goal
and the applications goal. Combined these goals attempt to address the
fundamental question: What are the underlying processes involved in
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Figure 13.10
Stages of Image Representation.

mental imagery, and how can corresponding computational processes be
efficiently implemented and used to solve real world problems?. We do
not believe that the three goals can be approached independently. The
representations and functionality of computational imagery are ‘moti-
vated by empirical results from cognitive science, as well as the prag-
matic needs of applications in Al. Also, the tools that have been devel-
oped for computational imagery can be used to implement and test cog-
nitive theories and thus increase our understanding of mental imagery.
In this section we discuss the major contributions of computational im-
agery to each of the prescribed goals.

13.3.1 Cognitive Science Goal

A primary objective of research in cognitive science is to study and
explain how the mind works. One aspect of work in this area is the
theory of computability. If a model is computable, then it is usually
comprehensible, complete and available for analysis; theories that are
implemented can be checked for sufficiency and used to simulate new
predictive results. In a discussion of the issues of computability of cog-
nitive theories for imagery, Kosslyn (1980) expresses frustration with
existing implementation tools:

There is a major problem with this approach however; the
program will not run without numerous “kluges”, numerous
ad hoc manipulations required by the reali of working
with a digital computer and a programming language like
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ALGOL or LISP.

Kosslyn goes on to state that:

“The ideal would be a precise, explicit language in which to
specify the theory and how it maps into the program” (p.
138).

Array theory, combined with the primitive functions and representa-
tions for computational imagery, provides such a meta-language. More-

~_over, it allows us to represent an image either visually or spatially, and
- provides for the implementation and testing of alternative, and possibly

conflicting, models for mental imagery imagery.
Consider the problem of mental rotation. Although empirical obser-

~ . vations conclude that rotation involves an object representation being

moved through intermediate orientations (Shepard and Cooper 1982),
a still unresolved issue is the actual content of the representation used.

- One obvious representation is a visual depiction of the object which pre-

serves detailed three-dimensional shape information. An alternative ap-
proach is one in which the object is represented as vectors corresponding

_ to the major axes of the object (Just and Carpenter 1985). This type
~ of representation can be considered as spatial in nature; it preserves

connectivity of parts but discards surface information about the image.
Furthermore, while some researchers argue that images encode size (e.g.

- Kosslyn 1980), others claim that mental images preserve information

about relative positions but not size (e.g. Kubovy and Podgorny 1981).
This conflict, as possibly others, could be attributed to the different rep-
resentations used by subjects in the different experimental tasks. Using

- the primitives of computational imagery and array theory, such theories

could be simulated and analyzed. While we are not interested in en-

- tering into the imagery debate, we suggest that such simulations could

contribute to discussions in this area. As another example, consider that
Pylyshyn’s (1981) main criticism of depictive theories of imagery is that
they confuse physical distance in the world with the representation of
distance in the head. The visual representation for computational im-
agery does in fact attach a real distance to the representation, in terms
of the number of cells in the array depicting the image. The spatial rep-
resentation, on the other hand, does not necessarily preserve distance
informatior ~ "hus, the distinct representations could be used to model
conflicting theories of image scanning.
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The use of abstract representations for storing and manipulating three-
dimensional images has been supported by research in cognition. At-
tneave (1974) has suggested that humans represent three-dimensional
objects using an internal model that at some abstract level is structurally
isomorphic to the object. This isomorphism provides a “what-where”
connection between the visual perception of a.n.object and its location
in space. A similar connection exists between the visual and spatial
representations for imagery.

The human brain is often compared to an information processing sys-
tem where computations can either be serial or parallel. Ullman (1984)
has suggested that there may be several forms of parallelism involved
in mental imagery. One form is spatial parallelism, which corresponds
to the same operations being applied concurrently to different spatial
locations in an image. Functional parallelism occurs when different op-
erations are applied simultaneously to the same location. Funt (1983)
has also argued that many spatial problems are amenable to parallel pro-
cessing. In developing a parallel computational model for the rotation
problem, he was able to simulate the linear-time behaviour correspond-
ing to the human solution of the problem.

As well as allowing for multiple representations for testing cognitive
theories, the array theory underlying computational imagery also pro-
vides both sequential and parallel constructs for specifying the processes
involved in imagery. For example, the EACH transformer of array theory
is a primitive second-order function that applies an operation to all of
the arguments of an array, i.e. EACHf[Ay, .., A, = [f(Ay), ..., f(An)].
Thus, we could specify a spatial parallel operation such as EACH focus,
which would simultaneously reconstruct all of the subimages in a given

image. Functional parallelism can be captured using the atlas notation
of array theory. An atlas is a list of functions that may be applied in

parallel to an array. For example, the expression (fy, fa, ..., fn] A speci-
fies simultaneous application of the functions f1, -, fn to the array A.
Using the atlas construct and the functions of computational imagery
we can specify such spatial parallelism as [turn, move], which expresses
the simultaneous updating of working and deep memory to reflect the
translation and rotation of an image.

A full study of the relationship between parallel processing in mental
imagery and computational parallelism is a topic for future research. It
has previously been demonstrated that the constructs of array theory
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- are powerful enough to express a variety of concurrent processing styles

(Glasgow et al. 1989). It may then be possible to analyze the limitations
of parallel processing in cognitive tasks by analyzing the limitations
when specifying these in array theory; if we cannot express a parallel

algorithm for a task then perhaps it is inherently sequential, cognitively

as well as computationally.

A detailed discussion of the relationship between mind and computer
has been presented by Jackendoff (1989), who addresses the issue of
studying the mind in terms of computation. More specifically, he sug-
gests that to do so involves a strategy which divides cognitive science
into studies of structure and processing. Our functional approach to
computational imagery is complimentary to this philosophy; image rep-
resentations are array data structures, which can be considered distinctly
from the array functions that operate on them. Jackendoff also supports
the possibility of different levels of visual representation with varying ex-
pressive powers.

In summary, the underlying mathematics for computational imagery
satisfies Kosslyn’s ideal by providing a precise and explicit language for
specifying theories of mental imagery. Visual and spatial representa-
tions are implemented as arrays and manipulated using the primitive
functions of computational imagery, which themselves are expressed as
array theory operations. Finally, the primitives of array theory and
computational imagery have been directly mapped into Nial programs
which run without any “kluges” or “ad hoc manipulations”. Note, that
the theory can also provide the basis for other implementations of com-
putational imagery, as illustrated by the Lisp implementation of Thagard
and Tanner (1991).

13.3.2 AI Goal

Al research is concerned with the discovery of computational tools for
solving hard problems that rely on the extensive use of knowledge. While
traditional approaches to knowledge representation have been effective
for l»inguistic reasoning, they do not always embody the salient visual
and spatial features of an image. Also, they do not allow for an efficient
implementation of the operations performed on this information, such
as comparing shapes and accessing relevant spatial properties.
Whereas representations and operations for visual reasoning have pre-
viously been studied in imagery, as well as other areas such as computer
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vision and graphics, there has been little attention given to knowledge
representations for spatial reasoning. We suggest that the proposed
scheme for representing and manipulating spatial images has several ad-
vantages over visual or propositional representations. First, the spatial
structure imposed by symbolic arrays supports efficient, non-deductive
inferencing. Furthermore, the symbolic array representation for images
can deal more easily with dynamic environments,

The symbolic array representation for computational imagery has also
provided the basis for analogical reasoning in spatial problems (Glasgow
1991; Conklin and Glasgow 1992). A thesis of this work is that the
structural aspects of images, in particular the spatial relations among
their parts, can be used to guide analogical access for spatial reasoning.
Preliminary results in the conceptual clustering: of chess game motifs
has illustrated that computational imagery can be applied to the area
of image classification. Currently we are extending this work to include
classification of molecular structures based on spatial analogies.

13.3.3 Applications Goal

Since the time of Aristotle, imagery has been considered by many as a
major medium of thought. Einstein stated that his abilities did not lie in
mathematical calculations but in (Holton 1971) “visualizing ... effects,
consequences, and possibilities”. Similarly, the German chemist Kekulé
stated that it was spontaneous imagery that led him to the discovery of
the structure of benzene (MacKenzie 1965). Mental simulations provide
insights that contribute to effective problem solving techniques. Thus,
it is only natural to use the representations and functions of computa-
tional imagery to develop knowledge-based systems that incorporate the
imagery problem solving paradigm. One such system is an application
to the problem of molecular scene analysis (Glasgow et al. 1991), which
combines tools from the areas of protein crystallography and molecular-
database analysis, through a framework of computational imagery.

In determining structures, crystallographers relate the use of visual-
ization or imagery in their interpretation of electron density maps of
a molecular scene. These maps contain features that are analyzed in
terms of the expected chemical constitution of the crystal. Thus, it
is natural for crystallographers to use their own mental recall of known
molecular structures, or of fragments thereof, to ¢ pare with, interpret
and evaluate the electron density features. Since molecular scenes can
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be represented as three-dimensional visual or spatial images, this men-

tal pattern recognition process can be implemented using the primitive

functions of computational imagery.

In molecular scene analysis, we attempt to locate and identify the
recognizable molecular fragments within a scene. As in Marr’s (1982)
definition of computational vision, it is the “process of discovering what
is present in the world, and where it is”. The integrated methodology
for molecular scene analysis is being implemented as a knowledge-based

. system, through the development of five independent, communicating

processes: 1) retrieval and reconstruction of visual representation of
anticipated motifs from the long-term memory (deep representation)
of molecular images; 2) enhancement and segmentation of the visual
representation of the three-dimensional electron density map molecular
scene; 3) visual pattern matching of the segmented image features with
the retrieved visual motifs; 4) analysis and evaluation of the hypothe-
sized partially interpreted spatial representation of the perceived image;
and 5) resolution and reconstruction of the molecular image. These

_processes are applied iteratively, resulting in progressively higher res-

olution images, until ultimately a fully interpreted molecular scene is
reconstructed. ;

The organization of the comprehensive information on crystal and
molecular structures into a deep representation is crucial to the overall
strategy for molecular scene analysis. This representation stores con-
cepts and instances of molecular scene in terms of their structural and
conceptual hierarchies. A serious problem in this domain, and in gen-

* eral, is to find appropriate visual and spatial depictions. This involves

determining what features (visual or spatial) we wish to preserve in
each of the representations. Initial algorithms have been developed to
construct visual representations that depict the surface structure of an
image and spatial representations that preserve bonding and symmetry
information. Whether these are the most appropriate structures for all
our reasoning in the domain is still an open question.

A full implementation of the knowledge-based system for molecular
scene analysis is an ambitious and on-going research project. To date

 we have been encouraged by preliminary results in the development of a
- long-term memory model (deep representation) for molecular scenes and

the implem  ation of some of the essential tasks of molecular imagery.
These tasks include transforming geometric information into spatial and
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visual representations, evaluation of partially interpreted images, clas-
sification and retrieval of images, and visual and spatial comparison of
molecular scenes.

While molecular scene analysis shares many features with visual scene
analysis, it also differs in many ways. Both tasks involve segmentation of
perceived images, retrieval and reconstruction of image templates and
pattern matching for object classification. The problem of molecular
scene analysis is more tractable, however. Molecular images are per-
ceived in three dimensions, thus eliminating the bottleneck of early vision
routines. As well, the molecular domain is highly constrained: molecular
~ interactions and symmetry constraints impose hard restrictions on the
image representations. Finally, there exists a wealth of knowledge about
molecular scenes and molecular interactions in existing crystallographic
databases. Using machine learning techniques, we hope to ultimately
generalize, correlate and classify this information.

Although molecular scene analysis is only one of many potential appli-
cations for computational imagery, we feel that it is important to apply
our reasoning paradigm to a complex problem which involves extensive
imagery abilities when carried out by humans. Because of the expe-
rience embodied in existing crystallographic databases and algorithms,
the availability of experts in the field and the natural constraints that
exist in the domain, we feel that the important and real problem of
molecular image reconstructior is an ideal test case for the concepts
and implementations of computational imagery. It also suggests that
the multiple representations of the scheme provide the framework for a
complete computational model for the complex reasoning tasks involved
in scene analysis. :

Other potential applications for imagery-based systems include haptic
percep‘gion and medical imaging. Literature in haptic perception pro-
vides evidence for an interdependence between haptic perception and
visual imagery (Katz 1989). Of special interest, are applications such as
motion planning and game playing which combine spatial and temporal
reasoning. As suggested earlier, the spatial representation for computa-
tional imagery facilitates nondeductive reasoning, thus precluding many
of the nonmonotonicity- problems involved in deductive approaches in
these areas. Preliminary work' in imagery and machine learning has
demonstrated that the spatial representation for imagery can be used to
depict and reason about structural motifs in a chess game (Conklin and
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Glasgow 1992). As well, the representations for computational imagery
have been used to describe the role of visual thinking in such complex

domains as atomic theory development (Thagard and Hardy 1992).

13.4 Discussion

This chapter introduces the concept of computational imagery, which

treats imagery as a problem solving paradigm in Al By proposing a
knowledge representation scheme that attempts to capture the funda-
mental principles of mental imagery, we provide a foundation for imple-

menting systems that rely on imagery-based reasoning.

~ Aside from related research in perception and early work in frame rep-

" resentations, the Al community has given little attention to the topic
of imagery. Thus, we rely on relevant theories of cognition to provide

initial guidance for our research. We are also driven by the need to ap-
ply the scheme to real world applications. The representation scheme is

~not intended to be a model of mental imagery; we do not claim that in

human working-memory two “mind’s eyes” exist that process visual and
spatial representations identical to the ones that we have implemented.
What we do suggest is that the internal image representations are in-

- formationally equivalent to representations involved in our scheme; that

is, information in one representation is inferable from the other (Larkin
and Simon 1987).

The knowledge representation scheme for computational imagery in-
cludes three image representations, each appropriate for a different kind
of information processing. A set of primitive functions, corresponding
to the fundamental processes involved in mental imagery, has been de-
signed using the mathematics of array theory and implemented in the

 functional array language Nial. These functions provide the building
blocks for more complex imagery-related processes.

The most relevant previous contribution to imagery is the work of
‘Kosslyn, who proposed a computational theory for mental imagery. In
this theory images have two components: a surface representation (a

~ quasi-pictorial representation that occurs in a visual buffer), and a deep

representation for information stored in long-term memory. Like Koss-
lyn, we consider a separate long-term memory model for imagery, which
encodes visual information descriptively. Unlike Kosslyn, we consider
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the long-term memory to be structured according to the decomposition
and conceptual hierarchies of an image domain. Thus we use a semantic
network model, implemented using frames, to describe the properties of
images. The long-term memory model in Kosslyn’s theory is structured
as sets of lists of propositions, stored in files.

The surface representation in Kosslyn's theory has been likened to -

spatial displays on a cathode ray tube screen; an image is displayed
by selectively filling in cells of a two-dimensional array. Our scheme
for representing images in working memory is richer in two important
ways. First, we treat images as inherently three-dimensional, although
two-dimensional images can be handled as special cases. As pointed out
by Pinker (1988), images must be represented and manipulated as pat-
terns in three-dimensions, which can be accessed using either an object-
centered or a world-centered coordinate system. Second, we consider
two working memory representations, corresponding to the visual and
spatial components of mental imagery. Just as the long-term memory
stores images hierarchically, the visual and spatial representations use
nested arrays to depict varying levels of resolution or abstraction of an
image. While the functionality of many of the primitive operations for
computational imagery were initially motivated by the processes defined
for Kosslyn’s theory, their implementation varies greatly because of the
nature of the image representations.

Possibly the most important distinction between our approach to com-
putational imagery and Kosslyn’s computational theory is the underly-
ing motivations behind the two pieces of work. Kosslyn’s model was
initially developed to simulate and test a particular theory for mental
imagery. While computational imagery can be used to specify and im-
plement cognitive theories, its development was based on the desire to
construct computer programs to solve hard problems that require vi-
sual and spatial reasoning.- Thus, efficiency and expressive power, not
predictive and explanatory power, are our main concerns.

As a final illustration of the knowledge representation scheme, consider
the island map used by Kosslyn to investigate the processes involved in
mental image scanning. Figure 13.11 presents a visual depiction of such
a map, as well as a spatial representation that preserves the properties of
closeness (expressed as adjacency) and relative location of the important
features of the island. It does not attempt to; serve relative distance.
Consider answering such questions as: What is the shape of the island?
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~or Is the beach or the tree closer to the hut? These properties can be

retrieved using the visual representation of the map. For example, we

"could analyze the surface of the island and compare this with known
_descriptions in the deep representation to retrieve shape information.
- Now consider the queries: What is north of the tree? and What is the
- three-dimensional structure of the hut? While it may be possible to de-
. rive this information from the visual representation, it would be a costly

process. Using the symbolic array representation, however, we can eas-
ily access and retrieve spatial information using an efficient constrained
search procedure. While it may be argued that it is also costly to ini-

_tially construct the spatial representation, the process of determining

the structure of this representation can be carried out once and then the

'_. results stored in the deep representation for later use.

.+ More detailed information can be accessed from the spatial répresen—
tation using the focus function to construct and inspect spatial images
at lower levels of the structural hierarchy. For this particular exam-

ple, there is not sufficient information to determine all of the three-

_dimensional features of the hut from the two-dimensional visual de-
- piction. Using the computational imagery paradigm, which incorpo-

rates inheritance in the deep representation, we can construct the three-

_dimensional symbolic array using information stored in the generic frame
- _for the concept “hut” to fill in missing details.

It is worth noting here that the spatial representation is not just a

. low resolution version, or approximation, of the visual representation
- of an image. As well as capturing the structural hierarchy of an im-
_age, the symbolic array may discard, not just approximate, irrelevant
visual information. For example, in particular molecular applications
©© we are primarily concerned with bonding information, which is made
. explicit using adjacency in a three-dimensional symbolic array. Visual .
and spatial properties such as size, distance, relative location (i.e. above,

behind, left-of, etc.) may not important for such applications and thus

- not preserved.

Another approach to visual reasoning was presented by Funt (1980),

w_who represented the state of the world as a diagram, and actions in the
. world as corresponding actions in the diagram. Similar to Kosslyn, Funt
‘uses two-dimensional arrays to denote his visual images. A more recent
:model descrii  how visual information can be represented within the
. cbmputational framework of discrete symbolic representations in such
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Figure 13.11

Visual and Spatial Representations of Kosslyn’s (1980) Island Map.
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:a"way that both mental images and symbolic thought processes can be
- explained (Chandrasekaran and Narayanan 1990). While this model
_allows a hierarchy of descriptions, it is not spatially organized.

:"One way of evaluating our approach to computation imagery is in

terms of the fundamental principles of mental imagery, as described in

o (Finke 1989). In particular, the scheme was designed around the prin-
- ciple of implicit encoding, which states that imagery is used to extract

information that was not explicitly stored in long-term memory. We re-

. trieve information such as shape and size using the visual representation

and information pertaining to the relative locations of objects in an im-

. age using the spatial representation for working memory. The principle
- of perceptual equivalence is captured by our assumption that percep-
_ tion and imagery share common representations. In fact the processes
. involved in transforming a visual representation to a spatial representa-

tion are just those of scene analysis - taking a raw uninterpreted image
(visual representation) and identifying the subcomponents and their rel-

- ative positions (spatial representation). The spatial representation cap-
* tures the principle of spatial equivalence, since there is a correspondence
between the arrangement of the parts of a symbolic array of an image,

and the arrangement of the actual objects in the space. Noté though
that Finke argues for a continuous space of mental images, while the
spatial representation assumes a discrete space. The principle of struc-

~ tural equivalence is preserved by the deep and the spatial representations,
~ which capture the hierarchical organization of images. Furthermore, im-

ages in our representation scheme can be reorganized and reinterpreted.

- The scheme captures the functionality required of the principle of trans-
. formational equivalence by providing primitive array functions that can
“be used to manipulate both the visual and spatial representations of
"images.

- When questioned on the most urgent unresolved difficulties in Al re-

 search, Aaron Sloman (1985) replied:

I believe that when we know how to represent shapes, spa-
tial structures and spatial relationships, many other areas of
Al will benefit, since spatial analogies and spatial modes of
reasoning are so pervasive.

.- Experimental results suggest that people use mental imagery for spa-
- tial reasoning. Thus, by facilitating an efficient implementation of the
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processes involved in mental imagery, computational imagery provides
a basis for addressing the difficulties suggested by Sloman and for de-
veloping Al systems that rely on representing, retrieving and reasoning
about visual and spatial properties of images.
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Learning Structural Descriptions from Examples. In -

: 1 4 A Cognitive Theory of Visuél Interaction

Erika Rogers
Clark Atlanta University

- The research described in this chapter was inspired by an interest in
“how visual information is used by a human practitioner to solve sci-
 entific problems. There are certain applications where understanding
- and interpretation of visual images are inherent parts of the problem-
_solving process (e.g., medical imaging, satellite imaging, geographical
_ information systems, etc.). The increasing amount and complexity of
these images mean that computers must play an important role in this
- type of task, in terms of data processing, graphical and image process-
: ing, and also knowledge processing. Current research has emphasized
' the development of improved high-resolution displays, together with so-
"phisticated toolboxes for manipulating those images. However, this puts
- the burden on the user to not only be an expert in the field, but also to
 master the interface of the software, and to understand when to use the
f&afious tools provided. The emphasis taken in our work is to apply cog-
* nitive science and artificial intelligence techniques to the design of com-
. puter systems which can cooperate with humans as they integrate the
- perceptual and problem-solving knowledge needed in such visual reason-
ing tasks. To accomplish this, however, we need to know about visual
. perception, about problem-solving, and most importantly, about how
* perception and problem-solving exchange information. This is termed
_ visual interaction, and the modeling of this process is the subject of the
“remainder of this chapter.

141 Related Work:

Despite the ill-structured nature of the problem under consideration, the
‘evolution of our model has benefited particularly from the information-
"'processing view of cognition, where human mental activities are ex-
~ pressed as a set of separable components. These include memories and
'pfbcessors, together with principles of operation. However, generally,
,theée components are treated individually, with the details of interac-
~tion (particularly  ween perception and problem-solving) left largely




