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The explosion of interest in modeling cognitive
processes over the past 20 years has fueled the
cognitive sciences in many ways. Not only has it
opened up new ways of thinking about research
problems and possible solutions, but it has also
enabled researchers to gain a better understanding of
their theories by simulating a computational
instantiation of it. Modeling is now sufficiently
mainstream that one can get the impression that the
models themselves are replacing the theories from
which they evolved.

What has not kept pace with the advances and
interest in modeling is the development of methods
for evaluating and testing the models themselves.
A model is not interchangeable with a theory, but 
only one of many possible quantitative representations

of it. A thorough evaluation of a model requires
methods that are sensitive to its quantitative form.
Criteria used for evaluating theories [1], such as
testing their performance in an experimental setting,
do not speak to the quality of the choices that are
made in building their quantitative counterparts
(i.e. choice of parameters, how they are combined)
or their ramifications. The paucity of such model
selection methods is surprising given the centrality of
the problem itself. What could be more fundamental
than deciding between two alternative explanations
of a cognitive process?

How not to compare models

Mathematical model are frequently tested against
one another by evaluating how well each fits the 
data generated in an experiment or simulation. 
Such a test makes sense given that one criterion of
model performance is that it reproduce the data.
A goodness-of-fit measure (GOF; see Glossary) is
invariably used to measure their adequacy in
achieving this goal. What is measured is how much a
model’s predictions deviate from the observed data [2,3].
The model that provides the best fit (i.e. smallest
deviation) is favored. The logic of this choice rests on
the assumption that the model that provides the best
fit to all data must be a closer approximation to the
cognitive process under investigation than its
competitors [4].

Such a conclusion is reasonable if measurements
were made in a noise-free (i.e. errorless) system. One
of the biggest challenges faced by cognitive scientists
is that human and animal data are noisy. Error arises
from several sources, such as the imprecision of our
measurement tools, variation in participants and
their performance over time. The problem of random
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error and the lengths researchers go to combat it are
evident in the experimental and statistical methods
used in the field (e.g. repeated measurement,
inferential statistics). They serve to hold error in
check so that variation due to the mental process of
interest, what we are really interested in, will be
visible in the data.

Noisy data make GOF by itself a poor method of
model selection. As the simulation in Box 1
illustrates, a GOF measure such as the Root Mean
Squared Error (RMSE) is insensitive to the different
sources of variation in the data, whether it is random
error or due to the cognitive process of interest. This
could result in the selection of a model that overfits
the data, which may not be the model that best
approximates the cognitive process under study.

How to compare models

Because it is impossible to eliminate error from data,
efforts have focused on improving model selection in
other ways. The preferred solution has been to
redefine the problem as one of assessing how well a
model’s fit to one data sample generalizes to future
samples generated by that same process [5].
GENERALIZABILITY (see Glossary) uses the data and
information about the model itself to make a ‘best-
guess’ estimate as to how likely it is the model could
have generated the data sample in hand. In this

approach, a good fit is a necessary but not sufficient
condition for a model because many models are
capable of fitting a dataset reasonably well. Because
the set of such candidate models is potentially quite
large, we can only ever infer the likelihood with which
each model under consideration generated the data.
In this regard, generalizability is a statistical
inference problem. It is no different conceptually from
estimating the replicability of an experimental result
using inferential statistics or inferring the
characteristics of a population from a sample.

A handful of generalizability measures have been
proposed in the lasts 30 years [6]. By necessity, all
include a measure of GOF to assess a model’s fit to the
data (see Box 2). Terms encoding information about
the model itself are included to level the playing field
among models so that one model, by virtue of its design
choices (i.e. mathematical instantiation) does not have
an inherent advantage over its competitors in fitting
the data best, and thus being selected. By nullifying
such model-specific properties, the model that is the
best approximation to the cognitive process under
study, and not simply the one that absorbs the most
variation in the data, will be selected.

Measures of generalizability

Early measures of generalizability such as the Akaike
information criterion (AIC) [7,8] and Bayesian
information criterion (BIC) [9] addressed the most
salient differences among models: the number of free
parameters. As is generally well known, a model with
many free parameters can provide a better fit to a
data sample than a model with few parameters, even
if the latter generated the data. The second term in
these measures includes a count of the number of
parameters (k). AIC and BIC penalize a model more
as the number of parameters increases. To be
selected, the model with more parameters must
overcome this penalty and provide a substantially
better fit than a model with fewer parameters. That
is, the superior fit obtained with the extra parameters
must justify the necessity of those parameters in fully
capturing the cognitive process.

An equally salient but much less tangible
dimension along which models also differ is in their
functional form, which refers to the way in which the
parameters are combined in a model’s equation. More
sophisticated selection methods, such as Bayesian
model selection (BMS) [10] and MINIMUM DESCRIPTION

LENGTH (MDL) [11,12], are sensitive to a model’s
functional form as well as to the number of parameters.
Functional form is taken into account in the third
term in the MDL measure. In BMS, both are hidden
in the integral. (Cross Validation, although not listed,
is another selection method that is thought to be
sensitive to both dimensions of model COMPLEXITY. It
involves applying GOF in a non-standard way. [13])

The second and third terms in MDL together
provide a measure of a model’s complexity.
Conceptually, complexity refers to that characteristic
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Complexity: the property of a model that enables it to fit diverse patterns of data; it is the
flexibility of a model. Although the number of parameters in a model and its functional form can
be useful for gauging its complexity, a more accurate and intuitive measure is the number of
distinct probability distributions that the model can generate by varying its parameters over
their entire range. Details of this ‘geometric’ complexity measure can be found in [a].
Functional form: the way in which the parameters (θ) and data (x) are combined in a model’s
equation: y = θx and y = θ + x have the same number of parameters but different functional forms
(multiplicative versus additive).
Generalizability: the ability of a model to fit all data samples generated by the same cognitive
process, not just the currently observed sample (i.e. the model’s expected GOF with respect to
new data samples). Generalizability is estimated by combining a model’s GOF with a measure of
its complexity.
Goodness of fit (GOF): the precision with which a model fits a particular sample of observed
data. The predictions of the model are compared with the observed data. The discrepancy
between the two is measured in a number of ways, such as calculating the root mean squared
error between them.
Minimum Description Length (MDL): a versatile measure of generalizability. MDL was
developed within algorithmic coding theory in computer science [b], where the goal of model
selection is to choose the model that permits the greatest compression of data in its description.
Regularities in the data are assumed to imply redundancy. The more the data can be
compressed by the model by extracting this redundancy, the more that is learned about the
cognitive process.
Overfitting: the case where, in addition to fitting the main trends in the data, a model also fits the
microvariation from this main trend at each data point. Compare the middle and right graph
inserts in Fig. 1.
Parameters: variables in a model’s equation that represent mental constructs or processes; 
they are adjusted to improve a model’s fit to data. For example, in the model y = θx, θ is a
parameter.
Probability density function: a function that specifies the probability of observing each outcome
of a random variable given the value of a model’s parameter.
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The ability of a model to fit data is a necessary condition
that all models must satisfy to be taken seriously. GOF
measures such as RMSE are inappropriate as model
selection methods because all they do is assess fit. This
myopic focus is problematic when variation in the data
can be due to other factors (e.g. random sampling,
individual differences) as well as the cognitive process
under study.

The severity of the problem is shown in Table I, which
contains the results of a model recovery simulation using
RMSE. Four datasets were generated from a combination
of the two models (MA and MB), defined as follows: 
MA: y = (1+t)–a, MB: y = (b+ct)–a where a, b, c > 0. Datasets
were generated from each in the frequencies shown in
the four conditions (rows). In the first condition, all
100 samples were generated by MA with a = 0.4 and only
sampling error introduced as noise. In the second
condition, variation due to individual differences was
also added to the data by using a different parameter value (a = 0.6) half
of the time. In the third condition, half of the data were generated by
model MA and half by MB. Condition four is the reverse of condition one,
with the data plus sampling error being generated by MB. Models MA and
MB were then fitted to the data in each condition using RMSE. The mean
RMSE fits, along with the percentage of time each model provided the
best fit, are shown on the two right-most columns of the Table.

A good model selection method must be able to ignore irrelevant
variation in the data (e.g. sampling error, individual differences that are
not being modeled) and recover the model that generated the data.
That is, the selection method must be capable of differentiating between
the variation that the model was designed to capture and the variation
due to noise. RMSE fails miserably at this task. MB was chosen 100% of
the time in all four conditions and the mean fit is substantially better than
that of MA. MA never provided a better fit than MB, even when some or all
of the data were generated by MA (conditions 1–3). This is why a good fit
can be bad.

Readers who have some familiarity with modeling might not be
surprised by the results given that MB has two more parameters than MA.
A model with more parameters will always provide a better fit, all other
things being equal [a]. The typical solution to this problem is to control
for the number of parameters, but there are at least two reasons why this
fix is unsatisfactory. The most obvious is that it limits model comparison

to those situations in which the number of parameters is equated across
models. The diversity of models in the cognitive sciences can make 
this a significant impediment in doing research. Less obvious although
even more important is that a model’s data-fitting abilities are also
affected by other properties of the model, such as its functional form
[b,c,d]. Unless they are taken into account by the selection method,
simply equating for number of parameters will not place the models on
an equal footing.

In summary, it may make perfect sense to use GOF to determine
whether a given model can even pass the test of fitting a dataset
reasonably well (i.e. capturing the main trends), but going beyond 
this and comparing such fits between models, although intuitive, 
is risky.
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Box 1. Why GOF alone is a poor measure of model selection

Listed in Table II are two GOF measures (RMSE, PVAF) and four
generalizability measures (AIC, BIC, BMS, MDL). Except for BMS, in
which the likelihood function is integrated over the parameter space, the
measures of generalizability use the maximized log-likelihood, that is,
ln(f(y|θ0)), as a GOF measure, the minus of which represents lack of fit.
This fit index is combined with a measure of model complexity to yield a
generalizability measure. The four generalizability criteria differ from
one another in the conceptualization of model complexity. In AIC, the
number of parameters (k) is the only dimension of complexity that is

considered, whereas BIC also considers sample size (n). BMS and MDL
go one step further and also take into account the functional form of a
model’s equation. In MDL, this is reflected through the third term of the
criterion equation whereas in BMS it is hidden in the integral. These
selection methods, except for PVAF, prescribe that the model that
minimizes the given criterion should be chosen.
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Box 2. Model selection criteria as measures of generalizability

Table II. Two GOF Measures, four generalizability measures, and the dimensions of complexity to which each is sensitive

Selection method Criterion equation Dimensions of complexity considered

Root Mean Squared Error RMSE = (SSE/N)1/2 None
Percent Variance Accounted For PVAF=100(1-SSE/SST) None
Akaike Information Criterion AIC = -2 ln(ƒ(y|θ0)) + 2k Number of parameters
Bayesian Information Criterion BIC = -2 ln(ƒ(y|θ0)) + k·ln(n) Number of parameters, sample size
Bayesian Model Selection BMS=–ln ∫ ƒ( y|θ)π(θ)dθ Number of parameters, sample size, functional form
Minimum Description Length MDL=–ln (ƒ( y|θ0)) + (k/2)ln(n/2π)+ln ∫ θθ dIdet ))(( Number of parameters, sample size, functional form

In the equations above, y denotes observed data, θ is the model’s parameter, θ0 is the parameter value that maximizes the likelihood function f(y|θ), k is the number
of parameters, n is the sample size, N is the number of data points fitted, SSE is the minimized sum of the squared errors between observations and predictions,
SST is the sum of the squares total, π(θ) is the parameter prior density, I(θ) is the Fisher information matrix in mathematical statistics [a], det denotes the
determinant of a matrix, and ln denotes the natural logarithm of base e.

Table I. Results of a model recovery simulation in which a GOF measure

(RMSE) was used to discriminate models when the source of the error was

varied.

Condition (sources of

variation)

Model the data were

generated from

Model fitted

M
A

a = 0.4

M
A

a = 0.6

M
B

M
A

M
B

(1) Sampling error 100  –  – 0.040 (0%) 0.029 (100%)
(2) Sampling error +
     individual differences

50 50  – 0.041 (0%) 0.029 (100%)

(3) Different models  – 50 50 0.075 (0%) 0.029 (100%)
(4) Sampling error  –  – 100 0.079 (0%) 0.029 (100%)



of a model that makes it flexible and easily able to fit
diverse patterns of data, usually by a small
adjustment in one of its parameters. In Fig. 1, it is
what enables the model (wavy line) in the lower right
graph to provide a better fit to the data (dots) than
that in the middle and left graphs. Both FUNCTIONAL

FORM and the number of PARAMETERS contribute to
model complexity.

How complexity is related to generalizability and GOF:

the dilemma of Occam’s razor

The notion of model complexity is a good vehicle with
which to illustrate further the goal of generalizability
and distinguish it from GOF. As demonstrated in Box 1,
fit is maximized with GOF. Because additional
complexity will improve fit, the two are positively
related; this is depicted by the top function in Fig. 1.
Generalizability, on the other hand, is not related to
complexity so straightforwardly. Rather, its function
follows the same trajectory as that of GOF up to a
certain point, after which fit declines as complexity
increases.

Why do the two functions diverge? The data being
fitted have a certain degree of complexity that reflects
the operation of the cognitive process. This point
corresponds to the peak of the generalizability function.
Any additional complexity beyond that needed to
capture the underlying process (to the right of the peak)
will cause the model to overfit the data by also

capturing the microvariation due to random error,
and thus reduce generalizability. The reason both
functions overlap to the left half of the peak is that the
model itself must be sufficiently complex to fit the
data well. The model will underfit the data if it lacks
the necessary complexity (i.e. it is too simple), as
illustrated in the lower left graph in Fig. 1. The dilemma
that is faced in trying to maximize generalizability
should be clear: a delicate balance must be struck
between sufficient complexity on the one hand and
good generalizability on the other. MDL achieves this
balance by choosing the model whose complexity is
most justified by considering the complexity of the
data relative to the complexity of the model.

Selection methods at work: the proof is in the pudding

Generalizability measures like BMS and MDL have
thus far been developed for testing only those models
that can be described in terms of a PROBABILITY DENSITY

FUNCTION. Examples of such statistical models are
models of categorization and models of information
integration [14,15].

The following model-recovery tests demonstrate
the relative performance of the three classes of
selection methods shown in Table 1. The three models
described (see Table footnote) were compared. In each
simulation, 1000 datasets were generated from each
model. Each selection method was then tested on its
ability to determine which of the three models did in
fact generate the 3000 datasets. A good selection
method should be able to discern correctly the model
that generated the data. The ideal outcome is one in
which each model generalizes best only to data
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Fig. 1. Relationship between goodness of fit and generalizability as a function of model complexity.
The y-axis represents any fit index, where a larger value indicates a better fit (e.g. percent variance
accounted for). The three smaller graphs along the x-axis show how fit improves as complexity
increases. In the left graph, the model (represneted by the line) is not complex enough to match the
complexity of the data (dots). The two are well matched in complexity in the middle graph, which is
why this occurs at the peak of the generalizability function. In the right graph, the model is more
complex than the data, fitting random error. It has better goodness of fit, but is overfitting the data.

Table 1. Model recovery performance (percentage of

correct recoveries) for three models using three

selection methods

Selection

method

Model

fitted

Model the data were generated

from

M
1

M
2

M
3

PVAF M1 0 0 0
M2 38 97 30
M3 62 3 70

AIC M1 79 0 0
M2 9 97 30
M3 12 3 70

MDL M1 86 0 0
M2 1 92 8
M3 13 8 92

Models M1, M2 and M3 were defined as follows: M1: y = (1+t)-a;
M2: y = (b+t)-a; M3: y = (1+bt)-a. In the model equations, a, b and c
are parameters that were adjusted to fit each model to the data,
which were generated using the same five points,
t = 0.1, 2.1, 4.1 6.1, 8.1. Each sample of five observations was
sampled from the binomially probability distribution of size n = 50.
One thousand samples were generated from each model and
served as the data to fit. Each selection method was then used to
determine which model generated each of the samples.
The percentage of time each model was chosen for each dataset
is shown.
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generated by itself. In the 3�3 matrices in Table 1,
this corresponds to perfect recovery in the diagonal
going from the upper left to the lower right. Errors
(cells in the off diagonals) reveal a bias in the selection
method toward either the more or less complex model.

The top matrix shows the results using PVAF, with
the percentage of correct recoveries in each cell. The
problem with using a GOF measure shows up in the
first column of the matrix, where the data were
generated by the one-parameter model M1. M1 never
recovered its own data, with one of the two-parameter
models always fitting the data best. Comparison of
these data with the middle matrix shows that using
AIC rectifies this problem. Because of its sensitivity to
the number of parameters in a model, it does a
reasonably good job of distinguishing between data
generated by M1 or M2. By contrast, note how model
recovery performance remains constant across these
two matrices in columns 2 and 3. This is not
surprising because AIC, like PVAF, is insensitive to
functional form, which is the dimension along which
M2 and M3 differ. Only when MDL is used is an
improvement in model recovery performance
observed in these columns (bottom matrix).

Why did MDL not perform perfectly, and why did it
perform slightly worse than AIC and PVAF when the
data came from M2 (middle column)? Recall that, like
a statistical test, model selection is an inference
problem. The quality of the inference depends on the
information that the selection method uses. Even
though MDL makes use of all of the information

available (data and the model), this does not
guarantee success, but it greatly improve the chances
of the inference being correct [16]. MDL will
outperform selection methods such as AIC and PVAF
most of the time, but neither it nor its Bayesian
counterpart, BMS, are infallible.

The inferential nature of model selection makes it
imperative to interpret model recovery results in the
context of the data that were used in the test itself.
Poor performance might not indicate a problem with
the selection method, but rather a constraint on the
resolving power of the selection method in
discriminating which model could have generated the
data. Conversely, biases in the selection method itself
can masquerade as good model-recovery
performance. In a recent comparison of BMS and
RMSD, we demonstrated both of these outcomes [17].

Conclusion

Methods like AIC and MDL can give the impression
that model selection can be automated and require
minimal thought. However, choosing between
competing models is no easier or less subjective than
choosing between competing theories. Selection
methods should be viewed as a tool that researchers
can use to gain additional information about the
models under consideration. These tools, however, are
ignorant of other properties of the models, such as
their plausibility or the quality of the data, so it is
inappropriate to decide between them solely on what
is learned from a test of generalizability.
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