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Abstract. Route planners are tools that support the navigator in 
selecting the best route between two locations. Solving a route 
choice problem involves sorting and ranking of alternatives 
according to underlying evaluation criteria and decision rules. Using 
an appropriate classification of route selection criteria in the user 
interface is an important ingredient for user friendly route planners. 
The paper presents a method for assessing a hierarchical structure of 
route selection criteria for bicycle route planning tasks along with 
data from two empirical studies. The first study investigates  route 
selection criteria that are relevant for bicycle navigation in urban 
environments. The second study reveals preferred classification 
schemata for these criteria. The presented methodology can be 
adopted for other transportation domains, such as car or pedestrian 
navigation.  
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support, user interface design, bicycle navigation 

1 Introduction 

Most of the current bicycle route planners apply a fixed criterion 
optimization function (Ehlers et al. 2002; MAGWIEN 2004) or offer 
preference statement functionality only between a limited set of route 
selection criteria, such as short, fast, scenic, or avoiding slopes 
(Rad.RoutenPlaner 2003; MVEL 2004). Previous work gives evidence that 
human navigators are not exclusively shortest path or least time decision 
makers (Golledge 1997; Hyodo et al. 2000; Hochmair 2004). Thus, the 
user of a route planner should be offered the possibility to select between a 



 
 
 
 
 
 

larger range of route selection criteria . We address route selection within 
the framework of multiattribute decision making (MADM), which 
involves a single objective and a limited number of choice alternatives 
(Malczewski 1999). The objective “find best route” can be measured in 
terms of several evaluation criteria. The first study of this paper will reveal 
the relevance of various route selection criteria with respect to this 
objective. 

Despite the user’s demand for additional route selection criteria in 
bicycle route planners, the number of offered criteria from which the user 
can select must be kept small due to limited human cognitive capacities in 
information processing (Miller 1956; Rosch 1978). Thus, designers of a 
user interface need to find a compromise between simplicity and more 
detailed functionality. An appropriate classification of route selection 
criteria provides the basis for intelligent user interfaces that adopt the ir 
functionality to the user’s current demand for detail: Preference statements 
between a small number of more general higher-level attributes will result 
in a good route suggestion after a small number of interactive steps. 
Additional preference statements between more detailed lower-level 
criteria would allow the decision maker to refine her query. The second 
empirical study in this work investigates how participants hierarchically 
structure a given set of 35 route selection criteria . These findings provide 
the starting point for describing a  method which derives a single final 
classification from a set of given classification suggestions, and where the 
final classification contains a reasonable number of criterion classes and 
provides a good “average” classification from the suggestions. 

The paper is structured as follows: Sections 2 and 3 describe two 
empirical studies about relevant route selection criteria for cyclists and 
their suggested classifications. Section 4 presents a guideline for deriving 
one single final classification from a set of given classification 
suggestions. Section 5 introduces a method for intra-class weighting of 
member attributes of a criterion class, and section 6 summarizes the 
findings and presents directions for future work. 

2 Study 1: Evaluation Criteria 

The set of evaluation criteria included in a decision support system should 
be complete to cover all the important aspects of the decision problem 
(Keeny and Raiffa 1993; Malczewski 1999). So far route selection criteria 
for cyclists have only been roughly sketched in the context of very specific 
applications , such as urban planning (Hyodo et al. 2000) , or Web based 



 
 
 
 
 
 

bicycle route planning for tourists (Ehlers et al. 2002). To provide a useful 
classification of route selection criteria, a more comprehensive list of 
bicycle route selection criteria is required, which we achieved by an 
internet survey. The participants in the survey took the role of a cycling 
tourist in an unfamiliar city who wants to find the best route to a given 
restaurant. Participants were asked to enter the criteria they would consider 
in their route choice as free text in the questionnaire. The importance of 
each mentioned route selection criterion had to be stated by a score value 
between 1 (quite unimportant) and 4 (very important). Table 1 shows the 
summary of the 42 filled questionnaires, i.e., the mentioned route selection 
criteria ranked after their summed score values. Numbers in brackets 
indicate how many times a criterion has been mentioned. The most 
prominent route selection criterion was “bike lane” (mentioned by 78% of 
the participants), followed by “short”, “sights”, and “avoid heavy traffic”. 

 
Criterion Score 

  
bike lane 114 (33) 
short 66 (20) 
sights 65 (25) 
avoid heavy traffic 65 (20) 
parks 31 (13) 
side streets 27 (8) 
avoid steep street segment 26 (10) 
simple 25 (7) 
fast 20 (7) 
good signage 19 (6) 
good street condition 17 (7) 
lakes and rivers 16 (7) 
prominent buildings and LM 13 (5) 
few intersections  9 (4) 
snack bar 9 (3) 
safe area 9 (3) 
few traffic lights 8 (2) 
avoid pedestrian area 7 (3)  

Criterion Score 
  
main road 6 (2) 
no wrong enter of one-ways 6 (2) 
lighted at night 6 (3) 
safe 6 (2) 
avoid tunnel 6 (2) 
straight 5 (2) 
avoid city center 5 (3) 
shopping streets  5 (4) 
city center 5 (2) 
avoid public transport 4 (1) 
nice bridges 4 (1) 
avoid roundabout 3 (1) 
avoid busy intersections 3 (1) 
avoid controls by authorities 3 (1) 
nice view  3 (1) 
interesting route 2 (1) 
avoid construction sites 1 (1)  

Table 1. Route selection criteria for bicycle navigation in urban environments  

The route selection criteria in Table 1 are of varying generality. Some 
denote more general demands, such as “safe” or “interesting” and can be 
split into several lower-level attributes. Other ones, such as “short” or “few 
intersections”, are more focused and describe a measurable effect. 

3 Study 2: Classification Task 

The decision maker’s objective (“find best route”) and the related route 
attributes form a hierarchical structure of evaluation criteria . We expect 



 
 
 
 
 
 

that an appropriate classification which pre-sorts the lower-level criteria 
with their effects on a route into criterion classes will reduce the user’s 
mental effort in stating her preferences. Finding an adequate value function 
over a set of route selection criteria , which is needed for the 
implementation of a route search algorithm that provides trade-off 
functionality, requires a complete set of measurable lower-level attributes. 
The presented classification study will provide such a comprehensive set 
as part of its results. This paper will not discuss the assessment of value 
functions, as the importance values between the involved attributes depend 
on the range of attribute scores of choice alternatives at hand (Keeny and 
Raiffa 1993) and on the user’s subjective thresholds for accepting 
attributes scores (Srinivasan 1988).  

Cluster analysis (Hartigan 1975) sorts cases (e.g., higher-level criteria ) 
into groups of clusters based on selected characteristics, so that the degree 
of association is strong between members of the same cluster. However, 
cluster analysis cannot replace empirical investigation as the best number 
of criterion classes to be used in a route planner, as well as the cases that 
should be clustered, are not known a prior i. Factor analysis (Backhaus et 
al. 1996) attempts to identify underlying variables (factors) that explain the 
patterns of correlations within a set of observed variables. The 
disadvantage with factor analysis is that the method would require explicit  
route suggestions to be evaluated by the participants, which would affect 
the results.  

3.1 Task description 

The list of route selection criteria  from Table 1 was handed out to 12 
participants who were asked to classify all criteria into either three, four, 
five, or six classes. The participants could either re-use criteria names for 
class names or create their own class names, if none of the terms in the list 
matched their concept of a particular class in mind. Further, the 
participants had to mark, whether a lower-level criterion was positively (+) 
or negatively (-) oriented towards the class. As lower-level attributes could 
be assigned to several classes by each participant, an attribute could be 
stated as being positively oriented with one class and being negatively 
oriented with another. For example, partic ipants stated that the criterion 
“avoid pedestrian area” makes a route faster (positive orientation wrt. the 
class “fast”) but at the same time less attractive (negative orientation wrt. 
the class “attractive”). 



 
 
 
 
 
 

3.2 Results 

Participants suggested ten different class names in the classification study 
(Fig. 1a). The class names “fast” and “safe” were mentioned by all 
participants, followed by “simple” (67%) and “attractive” (58%). Most 
participants (33%) used four classes (Fig. 1b). Thus, four should be an 
appropriate number of classes used in the final classification. It is 
interesting that none of the participants suggested the prominent criterion 
“short” as its own class. This finding may be explained by the fact that 
“short” cannot be decomposed into further attributes. 
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Fig. 1. Classes mentioned in the classification task (a), and distribution of used number 
of classes (b) 

Next we analyzed for each class the membership structure of included 
criteria . Fig. 2 shows a part of the membership structure for the classes 
“fast” and “safe”. A value of 100% for an attribute a in class C means that 
in all classifications where class C has been mentioned, attribute a has 
been assigned to class C. It does therefore not necessarily mean that all 
participants assigned attribute a to class C (as not all participants may have 
mentioned class C). 

 
fast 

 

safe 

 

Fig. 2. Membership structure for the classes “fast” and “safe”  



 
 
 
 
 
 

The result in Fig. 2 is in principle independent from the global importance 
of a route selection criterion (Table 1) and therefore not bound to any 
specific wayfinding situation or task. However, the wayfinding task does 
have a small impact on the found membership structure of a class, as only 
those criteria which have been mentioned in connection with a given case 
scenario (see study 1) were presented to the participants of the 
classification study.  

4 Finding the Final Classification 

4.1 Guideline 

This section presents an informal guideline of how to obtain  a single 
representative classification from a set of classification suggestions, which 
is demonstrated along with the data from the two previous studies. 
Whether a suggested class should be kept for the final classification or not 
depends on several factors. 

A major factor is the frequency with that a class has been mentioned in 
the classification study. Frequently mentioned classes represent intuitive 
higher-level criteria  and should therefore be kept as such in the user 
interface. According to this rule, the classes “fast”, “safe”, “simple”, and 
“attractive” are candidates for the final classification (see Fig. 1a). A 
second factor is the class size where we suggest that classes that 
comprehend a high number of lower-level attributes should be kept. The 
third factor concerns the similarity of the final classes: As one of the 
demands on a good classification of criteria is non-redundancy (Keeny and 
Raiffa 1993), pairs of criterion classes that share many common attributes 
should be avoided in the final classification and merged. 

4.2 Class size 

We define the size of a class C as the ratio between the attribute 
assignments to C actually made by the participants and the number of 
theoretically possible assignments to C. A (hypothetical) score of 100% for 
C thus means that all participants assign all 35 criteria from Table 1 (used 
as positively and negatively oriented criterion) to C. The class size 
correlates with the class frequency. Fig. 3 shows the computed size of all 
10 mentioned classes. According to the ranking of classes after the class 
size, again the higher-level attributes “fast”, “safe”, “simple”, and 
“attractive” should be kept for the final classification.  
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Fig. 3. Class sizes computed from the number of attribute assignments made to each 
class 

4.3 Class similarity 

We define the similarity of two criterion classes over the presence or 
absence of assigned criteria  in each of these classes, i.e., over binary 
similarity measures. Due to the fact that participants assigned only a small 
number of criteria  to each class, many zeros appear in the membership 
tables. Therefore, we use a binary similarity measure that excludes double 
zeros, i.e., the Tanimoto- (Jaccard-) coefficient (Backhaus et al. 1996). 
Tversky’s ratio model (Tversky 1977) defines a normalized similarity 
measure between objects as a linear combination of the measures of their 
common and distinctive features. If setting α = β = 1 in the ratio model, it 
defaults to the Tanimoto coefficient.  

Fig. 4 shows the lower part of the symmetric similarity matrix 
containing the Tanimoto coefficient T for each pair-combination within the 
ten suggested classes. The matrix cells for the most correlated classes are 
shaded (we use a threshold of T ≥  0.20 here).  

Ideally, final classes should be independent and not share any attributes. 
In this case changes in the stated intra-class weightings of one class would 
not affect the intra-class weightings of another class. Although with partly 
overlapping classes this will be principally the same, the decision maker 
needs to mentally separate the effects of changes in the weighting of a 
lower-level criterion in one class from other higher-level classes that 
contain the same attribute. Preference statements between uncorrelated 
higher-level criteria  would allow the user for defining precisely the 
direction of the objective “best route”, which is more complex with 
correlated higher-level criteria. 
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fast 1,00           

safe 0,29 1,00          

sights 0,01 0,04 1,00         

comfort 0,11 0,13 0,14 1,00        

simple 0,16 0,20 0,06 0,09 1,00       

convenient 0,11 0,13 0,05 0,29 0,07 1,00      

economic 0,01 0,00 0,00 0,00 0,00 0,00 1,00     

attractive 0,15 0,23 0,22 0,24 0,11 0,20 0,00 1,00    

aesthetic 0,06 0,08 0,37 0,22 0,05 0,12 0,03 0,35 1,00   

stopover  0,01 0,01 0,03 0,14 0,00 0,15 0,00 0,05 0,07 1,00  
Fig. 4. Similarity matrix showing the Tanimoto coefficient between all suggested classes 

Each of the four preliminary favorite classes (“fast”, “safe”, “simple”, and 
“attractive”) for the final classification, shares a similarity measure ≥  0.2 
with at least one other (Fig. 4). The highest similarity coefficient between 
favorite classes is found between “fast” and “safe” (0.29), which is partly  
caused by the fact that the lower-level criteria  “parks” (6;7), “avoid heavy 
traffic” (6;7), or “avoid construction sites” (7;7)—which are altogether not 
the most characteristic members of both classes (Fig. 2)—have been 
assigned almost equally often to both classes. Generally, as double zeros 
are not counted by Tanimoto, not a high number of common attribute 
assignments, but rather a similar number of assignments increases 
Tanimoto. However, seen from the aspect of class similarity (Fig. 4), the 
two classes “fast” and “safe” should merged in the final classification. A 
strong argument for keeping these two classes separately is that both 
classes have been mentioned by all respondents (Fig. 1a), and that both 
classes have a big class size (Fig. 3). Similar considerations concerning 
class similarity, class size, and class frequency need to be made for the 
remaining three “favorite” classes. Finally we decide to keep “fast”, 
“safe”, “simple”, and “attractive” as classes of the final classification. 

5 Class Structure 

Once a final set of higher-level classes is found, the intra-class importance 
of class members may be used in combination with a threshold for 



 
 
 
 
 
 

showing or hiding a route selection criterion in an adaptive user interface. 
If the user demands simple user interface functionality, preference 
statements should at least be possible  between the higher-level criteria . 
With the user’s increased demand for more detailed intra-class preference 
statement functionality, the order in which additional class member 
attributes are shown in the user interface should take into account several 
impacts, such as global importance (Table 1) or class memberships (Fig. 
2). Further it is relevant whether an offered route feature is actually part of 
one of the route alternatives at hand.  

Table 2 shows the result of a suggested function (Eq. 1) that ranks 
member attributes of the four final higher-level classes according to the 
two previously mentioned impacts, yet assuming that the attributes are 
actually found in the choice alternatives at hand. The relevance value r 
suggests a default intra-class importance measure for a member attribute 
wrt. to the corresponding higher-level class. The symbol r stands for the 
normalized relevance value. 

 
fast r  safe  r 

short 1,00  bike lane 1,00 
few traffic lights  0,50  safe area 0,63 
avoid pedestrian area 0,33  lighted at night  0,55 
few intersections  0,29  avoid heavy traffic  0,50 
avoid heavy traffic  0,26  good street condition 0,46 
avoid city center 0,24  avoid busy intersections  0,35 
straight  0,24  avoid public transport 0,28 
main road 0,20  no wrong enter of one-ways 0,28 
good street condition 0,14  avoid roundabout  0,25 
avoid steep street  0,11  avoid steep street  0,23 
     

simple  r  attractive r 
good signage 1,00  sights 1,00 
few intersections  0,39  parks 0,77 
bike lane 0,36  lakes and rivers 0,58 
prominent buildings and LM 0,33  nice view 0,40 
straight  0,32  nice bridges 0,37 
main road 0,19  city center 0,27 
short 0,14  good street condition 0,22 
avoid roundabout  0,12  snack bar 0,20 
lighted at night  0,12  avoid tunnel 0,15 
no wrong enter of one-ways 0,11  prominent buildings and LM 0,15 

Table 2. Normalized relevance values for the ten most relevant members of the four 
final classes 
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where 
n →  number of all classes mentioned in the classification study = N 



 
 
 
 
 
 

 
The computation of the relevance value r for an attribute a with respect to a 
final higher-level class h considers the global importance of a (ωa), the 
grade of membership of the attribute in all suggested classes n (ma,n), and 
the Tanimoto coefficient Tn,h between all suggested classes and h (Tn,h is 
part of Sn,h). For attribute members which have a high degree of 
membership in eliminated classes only (e.g., the attribute “city center” as 
member of the eliminated class “aesthetic”) the similarity (i.e., the 
Tanimoto coefficient) between this eliminated class and the final classes 
needs to be considered. Otherwise the effect of such lower-level attributes 
would be underestimated in the final classification structure. However, if 
in the classification study the assigned degree of membership of a in h 
amounts to zero, we decided to keep this zero value despite any class 
similarities (first line in Eq. 1).  

To avoid double counting of effects that are caused by the same lower-
level criterion in several final classes, we introduce SC1,C2 , which is a 
modified similarity measure between two classes C1 and C2. SC1,C2 equals 0 
if C1 ≠  C2 and if both C1 and C2 are classes of the final classification. 
Otherwise SC1,C2 yields TC1,C2. Testing various scaling factors for the 
impact of ωa and ma ,n lead to the intuitive finding that the impact of ωa 
should be reduced as compared to linear weighting (using the cubic root), 
whereas the impact of ma ,n should be increased (using the square). 
Although the global weights used (Table 1) refer to tourist navigation in 
urban environments, and the importance weights of criteria may change for 
a different wayfinding task or a different type of traveler (Bovy and Stern 
1990), the distribution of relevance values in each of the final classes will 
not change dramatically due to the use of the cubic root for ωa. 

The goal of the classification method was to find uncorrelated final 
classes that share only a small number of overlapping member attributes. 
Despite this goal, some few attributes, such as “bike lane”, appear within 
the top ten in several final classes (Table 2). This is not problematic , as 
long as the number of these shared attributes is small so that the user is 
able to mentally distinguish between the resulting effects on the route, i.e., 
wrt. the higher level classes, during her preference statements.  

6 Conclusions and Future Work 

Along with data from two empirical studies, this work presented a method 
for finding a set of higher-level criteria (factors) that cover the objective of 
finding a best bicycle route in urban environments. Though referring to 



 
 
 
 
 
 

this specific domain, we expect that the presented approach can also be 
applied for the hierarchical structuring of the criterion space of other 
transportation domains (e.g., car or pedestrian navigation). The work 
presented an intuitive intra-class ranking of route selection criteria for the 
final classes by introducing a relevance measure. However, the question of 
which criteria should actually be shown on the user interface is tricky, as 
the actual importance of criteria  depends also on the range of attribute 
scores of alternatives at hand and on contextual parameters, such as the 
user’s familiarity with the environment. The assignment of importance 
weights may even be impossible for the user if no score ranges are known, 
and it may lead to inconsistencies if too many attributes are presented at 
the same time to the decision maker (Morris and Jankowski 2000). 
Requesting the user preferences within an interactive dialogue (Robinson 
1990) would have the advantage that the user would need to consider only 
a small number of criteria at the same time, and that additional criteria 
presented to the user could be tailored to the results of previous screening 
phases. That is, unnecessary requests for user preferences that have no 
effect on the outcome of the route selection algorithm could be avoided 
(e.g., the request for the importance of bike lanes if there aren’t any in the 
area of interest).  

Future work needs to develop context dependent methods that hide 
irrelevant route selection criteria from the user interface and present only 
those functionalities that are of interest for the user at the current state of 
interaction. Hiding or offering route choice criteria is closely connected to 
the user’s preferred sequence of interactive steps and the preferred level of 
detail in each subsequent step. Whenever a refined query is submitted, the 
user should be given relevant information about the resulting pre-screened 
choice alternatives in order to be able to build a conceptual model about 
existing alternatives and to assign importance weights to each offered 
criterion. Dynamic updates and continuous feedback (similar as with 
sensitivity analysis) will give the user the chance to assess the 
consequences of her changed preference statements and to make her choice 
under a higher degree of certainty.  
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